research communications
The crystal structures of two new coumarin derivatives: 2-(4-{2-[(2-oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide and N-(2,4-dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide
aPG & Research Department of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India, bDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110 029, India, cDepartment of Chemistry, Anna University, Chennai 600 025, India, and dOrchid Chemicals & Pharmaceuticals Ltd, R&D Centre, Sholinganallur, Chennai 600 119, India
*Correspondence e-mail: mnizam.new@gmail.com
The title compounds, 2-(4-{2-[(2-oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide, C17H19N3O5, (I), and N-(2,4-dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide, C20H19NO6, (II), are new coumarin derivatives. In compound (I), the six-membered piperazine adopts a chair conformation. The dihedral angles between the mean planes of the chromene ring and amide plane is 82.65 (7)° in (I) and 26.2 (4)° in (II). The dihedral angles between the mean planes of the chromene ring and the four planar C atoms of the piperazine ring in (I) and the benzene ring in (II) are 87.66 (6) and 65.0 (4)°, respectively. There are short intramolecular contacts in both molecules forming S(5) ring motifs, viz. N—H⋯N and C—H⋯O in (I), and N—H⋯O and C—H⋯N in (II). In the crystals of both compounds, molecules are linked by N—H⋯O hydrogen bonds, forming chains along [10] in (I) and [010] in (II). The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane in the crystals of both compounds. In the crystal of (I), there are also C—H⋯π and offset π–π interactions [intercentroid distance = 3.691 (1) Å] present within the layers. In the crystal of (II), there are only weak offset π–π interactions [intercentroid distance = 3.981 (6) Å] present within the layers. The intermolecular contacts in the crystals of both compounds have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.
1. Chemical context
Coumarin and its derivatives represent one of the most active classes of compounds possessing a wide spectrum of biological activity. The synthesis, and pharmacological and other properties of coumarin derivatives have been studied and reviewed (Kumar et al., 2015; Kubrak et al., 2017; Srikrishna et al., 2018; Venugopala et al., 2013). Many of these compounds have proven to be active as antibacterial, antifungal, anti-inflammatory, anticoagulant, anti-HIV and antitumor agents. One of the title compounds, 2-(4-{2-[(2-oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I), has been shown to exhibit antimicrobial as well as antioxidant activity (Govindhan, Subramanian, Chennakesava Rao et al., 2015; Govindhan, Subramanian, Sridharan et al., 2015). In view of the importance of their natural occurrence, biological activities, pharmacological and medicinal activities, and utility as synthetic intermediates, we have synthesized the title 2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide derivatives, and report herein their crystal structures and Hirshfeld surface analysis.
2. Structural commentary
The molecular structures of compounds (I) and (II) are illustrated in Figs. 1 and 2, respectively. In (I), the piperazine ring (N1/N2/C12–C15) is attached to the 2-[(2-oxochroman-4-yl)oxy]acetaldehyde moiety on atom N1 and to an acetamide moiety on atom N2. It has a chair conformation [puckering parameters: total amplitude Q = 0.561 (2) Å, θ = 0.67 (2)° and φ = 149 (2)°], and is positioned anti with respect to the C—N rotamer of the amide. Nevertheless, because the asymmetry of the chromene residue, the anti conformation can assume a cis or trans geometry with respect to the relative position of the carbonyl O atom of the carboxamide and the C10—C11 and C16—C17 bonds. Both compounds exhibit a cis relation between these bonds, as can be seen in Figs. 1 and 2. This molecular conformation permits the formation of intramolecular hydrogen bonds (Tables 1 and 2), which enhance the relative planarity of each compound. Specifically for each compound, as a result of the presence of the imidic nitrogen atom, the molecules display intramolecular N—H⋯N and N—H⋯O hydrogen bonds, between the amide nitrogen and the nitrogen atom N2 of the piperazine ring for compound (I), and oxygen atom O3 for (II), forming S(5) ring motifs. In addition, the carbonyl oxygen atom O4 acts as the acceptor for a weak interaction with a hydrogen bond of the exocyclic piperazine ring, forming a second S(5) ring motif in (I), and the amide nitrogen atom N1 acts as the acceptor for a weak interaction with a hydrogen bond of the exocyclic benzene ring, forming a second S(5) ring motif in (II).
|
The values of the dihedral angles between the mean planes of the planar chromene ring system (O1/C1–C9; r.m.s. deviations = 0.008 Å for both compounds) and the amide plane (C10/C11/O4/N1) are 82.65 (7) and 26.2 (4)° in compounds (I) and (II), respectively. In (I), the dihedral angle between the mean planes of the chromene ring and the four C atoms (C12–C15) of the piperazine ring is 87.66 (6)°, while in (II) the benzene ring (C13–C18) is inclined to the mean plane of the chromene ring by 65.0 (4)°. Atom O2 deviates from the coumarin ring mean plane by 0.051 (1) Å in (I) and −0.043 (9) Å in (II).
It is interesting to compare the intramolecular hydrogen bonding present in the title compounds with that of the analogous 4-oxo-N-(substituted phenyl)-4H-chromene-2-carboxamides (Reis et al., 2013; Gomes et al., 2013). It can be seen that the effect of the 2/3 positional is to `reflect' their relative positions while the effect of the cis/trans conformations is a `twofold rotation' of the rings around the Camide—Cchromene bond. These particular differences in conformation may condition the ability for docking when pharmacological activities are considered.
3. Supramolecular features
In the crystal of (I), molecules are linked by N3—H3A⋯O4i hydrogen bonds, forming chains along the [10] direction, see Fig. 3 and Table 1. The chains are linked by C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane (Fig. 3 and Table 1). The C14—H14A⋯O2ii hydrogen bond generates an inversion dimer with an R22(22) ring motif; within the ring C8—H8⋯O2ii and C10—H10B⋯O2ii hydrogen bonds link the molecules into R22(8) and R22(14) rings, respectively. These rings are linked by C(10) and C(7) chains formed via the C10—H10A⋯O5iii and N3—H3A⋯O4i hydrogen bonds, respectively. A C—H⋯π interaction is also present within the layer (Table 1). An offset π–π contact between inversion-related chromene rings further stabilizes the [Cg2⋯Cg2iv = 3.691 (1) Å, interplanar distance = 3.490 (1) Å, offset = 1.20 Å; Cg2 is the centroid of the O1/C1–C9 ring; symmetry code: (iv) −x + 1, −y + 1, −z + 1].
In the crystal of (II), molecules are linked by N1—H1⋯O4i hydrogen bonds, forming chains along the [010] direction, see Fig. 4 and Table 2. The chains are linked by C3—H3⋯O5ii, C5—H5⋯O4i and C15—H15⋯O4iii hydrogen bonds, forming layers parallel to the ab plane (Fig. 4 and Table 2). Within the layer there are no C—H⋯π interactions present, only weak offset π–π interactions involving the benzene ring of the chromene ring system and the dimethoxybenzene ring [Cg2⋯Cg3iv = 3.981 (6) Å, interplanar distances = 3.638 (4) and 3.508 (4) Å, offset 0 1.88 Å; Cg2 and Cg3 are the centroids of rings C1–C6 and C13–C18, respectively; symmetry code: (iv) −x + 1, y + , −z + 1].
4. Hirshfeld surface analysis
A recent article by Tiekink and collaborators (Tan et al., 2019) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007), to analyse intermolecular contacts in crystals. The various calculations were performed with CrystalExplorer17 (Turner et al., 2017).
The Hirshfeld surfaces of compounds (I) and (II) mapped over dnorm are given in Fig. 5, and the intermolecular contacts are illustrated in Fig. 6 for (I) and Fig. 7 for (II). They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of −0.544 (red) to 1.418 (blue) for compound (I) and −0.501 (red) to 1.672 (blue) for compound (II), where the red spots indicate the intermolecular contacts involved in the hydrogen bonding.
The fingerprint plots are given in Figs. 8 and 9. For compound (I), they reveal that the principal intermolecular contacts are H⋯H at 41.3% (Fig. 8b) and O⋯H/H⋯O at 35.3% (Fig. 8c), followed by the C⋯H/H⋯C contacts at 11.8% (Fig. 8d). For compound (II), they reveal a similar trend, with the principal intermolecular contacts being H⋯H at 41.8% (Fig. 9b) and O⋯H/H⋯O at 32.4% (Fig. 9c), followed by the C⋯H/H⋯C contacts at 16.7% (Fig. 9d). In both compounds, the H⋯H intermolecular contacts predominate, followed by the O⋯H/H⋯O contacts. However the C⋯H/H⋯C contacts are significantly different 11.8% cf. 16.7% for (I) and (II), respectively.
5. Database survey
A search of the Cambridge Structural Database (CSD, V5.40, update February 2019; Groom et al., 2016) for 2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide derivatives gave two hits. They include 2-[(2-oxo-2H-chromen-4-yl)oxy]-N-(1-phenylethyl)acetamide (CSD refcode PUWMEB; Govindhan, Subramanian, Chennakesava Rao et al., 2015) and N-(3,5-dimethyladamantan-1-yl)-2-[(2-oxo-2H-chromen-4-yl)oxy]propanamide (SEFRAY; Rambabu et al., 2012).
A search for linear and angular pyranocoumarin (psoralene class) structures gave 35 hits. They include four reports, CSD refcodes AMYROL [Kato, 1970: seselin (smyrolin)]; AMYROL01 [Bauri et al., 2006; seselin (redetermination)]; FUGVOS [Thailambal & Pattabhi, 1987: 2,3-dihydroxy-9-hydroxy-2(1-hydroxy-1-methylethyl)-7H-furo-[3,2-g]-[1]-benzopyran-7-one; bromohydroxyseselin (Bauri et al., 2017a); dibromomomethoxyseselin (DMS) (Bauri et al., 2017b)], and a number of structures with various substituents at C3 and C4, many of which are natural products.
A CSD search found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982; Gnanaguru et al., 1985; Parveen et al., 2011; Zhuo et al., 2014; Ji et al., 2017). In these structures and those of meta-substituted coumarin (Abou et al., 2012, 2013; Bibila Mayaya Bisseyou et al., 2013; Zhang et al., 2014; Gomes et al., 2016; Ziki et al., 2016, 2017), the pyrone rings all show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated here with C1—C6 = 1.3883 (18) and 1.394 (11) Å, C6—C7 = 1.4538 (15) and 1.398 (12) Å, C7—C8 = 1.3444 (17) and 1.352 (12) Å and C8—C9 = 1.4338 (18) and 1.433 (12) Å.
Intramolecular C—H⋯O short contacts similar to that observed in the title compounds were found in five compounds in the CSD: LISLAB, 1-(1-pyrrolidinylcarbonyl)cyclopropyl sulfamate (Morin et al., 2007), PEQHAU, 2-[30-(400-chlorophenyl)-40,60-dimethoxyindol-70-yl]glyoxyl-1-pyrrolidine (Black et al., 1997), QIBBEJ, [2-hydroxy-5-(2-hydroxybenzoyl)phenyl](pyrrolidin-1-yl)-methanone (Holtz et al., 2007), SINHAZ, 2-methoxy-1-(1-pyrrolidinylcarbonyl)naphthalene (Sakamoto et al., 2007) and TAJDIR, (4S,5S)-4,5-bispyrrolidinylcarbonyl)-2,2-dimethyl-1,3-dioxolane (Garcia et al., 1991).
6. Synthesis and crystallization
Compound (I) To a solution of 1 equiv. of 4-(2-(piperazine-1-yl)ethoxy)-2H-chromen-2-one (1.0 g) in dichloromethane (10 ml) at 273–278 K were added triethylamine (0.7 g, 2.0 equiv.) followed by iodoacetamide (1.0 g, 0.5 equiv.), and the reaction mixture was stirred at the same temperature for 1 h. On completion of the reaction (monitored by TLC), the reaction mixture was diluted with dichloromethane and water (10 ml). The organic layer was separated and washed with brine solution. It was then dried over anhydrous sodium sulfate, filtered and then evaporated under reduced pressure giving compound (I) as a white solid, which was then washed with hexane and dried under vacuum. Colourless block-like crystals of compound (I) were obtained by slow evaporation of a solution in chloroform (4 ml) and methanol (1 ml).
Compound (II) N,N-Diisopropylethylamine (DIPEA; 1.82 g, 3.1 equiv.) was added to a mixture of 2-(2-oxo-2H-chromen-4-yloxy)acetic acid (1.0 g, 1.0 equiv.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI; 1.0 g, 1.2 equiv.), 1-hydroxybenzotriazole hydrate (HOBt; 0.61 g, 1.0 equiv.), 2,4-dimethoxybenzylamine (0.8 g, 1.0 equiv.) in N,N-dimethylformamide (5 ml) at 273–278 K. The temperature of the mixture was raised to ambient temperature and stirred for 8 h. Progress of the reaction was monitored by TLC (mobile phase: ethyl acetate/hexane). After completion of the reaction, the mixture was poured into ice–water and compound (II) was obtained as a white solid. It was then filtered, washed with hexane and dried under vacuum. Colourless block-like crystals of compound (II) were obtained by slow evaporation of a solution in chloroform (5 ml).
7. Refinement
Crystal data, data collection and structure . For both compounds the H atoms were positioned geometrically and constrained to ride on their parent atoms: N—H = 0.86 Å and C–H = 0.93—0.97Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(N, C) for other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019003736/su5482sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003736/su5482Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019003736/su5482IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019003736/su5482Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989019003736/su5482IIsup5.cml
For both structures, data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).C17H19N3O5 | Z = 2 |
Mr = 345.35 | F(000) = 364 |
Triclinic, P1 | Dx = 1.448 Mg m−3 |
a = 8.5260 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.8415 (3) Å | Cell parameters from 3382 reflections |
c = 11.9462 (4) Å | θ = 1.8–26.9° |
α = 88.660 (2)° | µ = 0.11 mm−1 |
β = 69.568 (2)° | T = 293 K |
γ = 70.724 (2)° | Block, colourless |
V = 792.27 (5) Å3 | 0.25 × 0.24 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2947 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 26.9°, θmin = 1.8° |
Tmin = 0.756, Tmax = 0.824 | h = −10→10 |
12022 measured reflections | k = −11→11 |
3382 independent reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2007P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3382 reflections | Δρmax = 0.30 e Å−3 |
227 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.020 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.57138 (16) | 0.24849 (15) | 0.44898 (11) | 0.0326 (3) | |
C2 | 0.72086 (18) | 0.15454 (16) | 0.47279 (13) | 0.0396 (3) | |
H2 | 0.713439 | 0.076848 | 0.526334 | 0.047* | |
C3 | 0.87983 (18) | 0.17916 (17) | 0.41538 (13) | 0.0426 (3) | |
H3 | 0.980829 | 0.116794 | 0.430161 | 0.051* | |
C4 | 0.89217 (18) | 0.29534 (18) | 0.33584 (13) | 0.0419 (3) | |
H4 | 1.000730 | 0.310220 | 0.297651 | 0.050* | |
C5 | 0.74271 (16) | 0.38890 (16) | 0.31349 (12) | 0.0355 (3) | |
H5 | 0.750512 | 0.467720 | 0.260957 | 0.043* | |
C6 | 0.57975 (15) | 0.36540 (14) | 0.36965 (11) | 0.0297 (3) | |
C7 | 0.41622 (16) | 0.45736 (14) | 0.35108 (11) | 0.0298 (3) | |
C8 | 0.26528 (16) | 0.42648 (15) | 0.40841 (12) | 0.0359 (3) | |
H8 | 0.162437 | 0.483635 | 0.393790 | 0.043* | |
C9 | 0.25981 (17) | 0.30714 (16) | 0.49166 (13) | 0.0385 (3) | |
C10 | 0.28057 (16) | 0.68340 (15) | 0.26066 (12) | 0.0328 (3) | |
H10A | 0.295441 | 0.787474 | 0.249025 | 0.039* | |
H10B | 0.176835 | 0.696178 | 0.332561 | 0.039* | |
C11 | 0.25178 (15) | 0.62523 (14) | 0.15331 (11) | 0.0316 (3) | |
C12 | 0.11451 (17) | 0.69477 (15) | 0.00279 (11) | 0.0342 (3) | |
H12A | 0.191175 | 0.585566 | −0.031236 | 0.041* | |
H12B | 0.137190 | 0.766053 | −0.059147 | 0.041* | |
C13 | −0.07778 (17) | 0.70594 (14) | 0.04377 (13) | 0.0358 (3) | |
H13A | −0.104008 | 0.680104 | −0.024677 | 0.043* | |
H13B | −0.097577 | 0.627835 | 0.100571 | 0.043* | |
C14 | −0.15445 (17) | 0.91151 (15) | 0.20136 (11) | 0.0349 (3) | |
H14A | −0.176974 | 0.839746 | 0.262958 | 0.042* | |
H14B | −0.231186 | 1.020451 | 0.236057 | 0.042* | |
C15 | 0.03821 (17) | 0.90093 (14) | 0.16159 (12) | 0.0348 (3) | |
H15A | 0.058654 | 0.980127 | 0.105913 | 0.042* | |
H15B | 0.064622 | 0.924109 | 0.230622 | 0.042* | |
C16 | −0.38171 (17) | 0.87031 (15) | 0.14408 (15) | 0.0423 (3) | |
H16A | −0.401742 | 0.814610 | 0.215885 | 0.051* | |
H16B | −0.396724 | 0.810638 | 0.083757 | 0.051* | |
C17 | −0.52246 (17) | 1.03707 (16) | 0.17290 (14) | 0.0419 (3) | |
N1 | 0.15528 (13) | 0.73936 (12) | 0.10337 (9) | 0.0319 (2) | |
N2 | −0.19807 (13) | 0.86796 (11) | 0.10060 (9) | 0.0308 (2) | |
N3 | −0.47248 (16) | 1.15212 (14) | 0.11445 (12) | 0.0465 (3) | |
H3A | −0.547778 | 1.248448 | 0.125737 | 0.056* | |
H3B | −0.364686 | 1.130611 | 0.065147 | 0.056* | |
O1 | 0.41560 (12) | 0.22028 (11) | 0.50832 (9) | 0.0416 (2) | |
O2 | 0.12892 (14) | 0.27595 (14) | 0.55044 (11) | 0.0566 (3) | |
O3 | 0.43529 (11) | 0.57057 (11) | 0.27551 (9) | 0.0382 (2) | |
O4 | 0.31673 (15) | 0.48319 (11) | 0.11304 (10) | 0.0529 (3) | |
O5 | −0.67279 (15) | 1.05727 (14) | 0.24444 (14) | 0.0753 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0309 (6) | 0.0317 (6) | 0.0322 (6) | −0.0043 (5) | −0.0139 (5) | 0.0023 (5) |
C2 | 0.0411 (7) | 0.0344 (6) | 0.0401 (7) | −0.0007 (5) | −0.0225 (6) | 0.0044 (5) |
C3 | 0.0347 (7) | 0.0414 (7) | 0.0480 (8) | 0.0031 (5) | −0.0252 (6) | −0.0034 (6) |
C4 | 0.0283 (6) | 0.0502 (8) | 0.0437 (8) | −0.0067 (6) | −0.0150 (6) | −0.0027 (6) |
C5 | 0.0309 (6) | 0.0402 (7) | 0.0330 (7) | −0.0080 (5) | −0.0128 (5) | 0.0042 (5) |
C6 | 0.0275 (6) | 0.0309 (6) | 0.0280 (6) | −0.0032 (5) | −0.0132 (5) | 0.0006 (5) |
C7 | 0.0298 (6) | 0.0305 (6) | 0.0285 (6) | −0.0061 (5) | −0.0141 (5) | 0.0057 (5) |
C8 | 0.0282 (6) | 0.0379 (7) | 0.0415 (7) | −0.0068 (5) | −0.0173 (5) | 0.0110 (5) |
C9 | 0.0312 (6) | 0.0395 (7) | 0.0431 (7) | −0.0089 (5) | −0.0146 (5) | 0.0109 (6) |
C10 | 0.0287 (6) | 0.0318 (6) | 0.0394 (7) | −0.0072 (5) | −0.0177 (5) | 0.0130 (5) |
C11 | 0.0277 (6) | 0.0270 (6) | 0.0371 (7) | −0.0049 (4) | −0.0129 (5) | 0.0088 (5) |
C12 | 0.0354 (6) | 0.0293 (6) | 0.0328 (6) | −0.0015 (5) | −0.0153 (5) | 0.0001 (5) |
C13 | 0.0385 (7) | 0.0252 (6) | 0.0436 (7) | −0.0057 (5) | −0.0195 (6) | −0.0003 (5) |
C14 | 0.0347 (6) | 0.0295 (6) | 0.0336 (7) | −0.0003 (5) | −0.0142 (5) | 0.0009 (5) |
C15 | 0.0372 (7) | 0.0236 (5) | 0.0443 (7) | −0.0008 (5) | −0.0243 (6) | −0.0003 (5) |
C16 | 0.0325 (7) | 0.0316 (6) | 0.0635 (9) | −0.0104 (5) | −0.0192 (6) | 0.0099 (6) |
C17 | 0.0281 (6) | 0.0363 (7) | 0.0591 (9) | −0.0070 (5) | −0.0171 (6) | 0.0049 (6) |
N1 | 0.0322 (5) | 0.0250 (5) | 0.0363 (6) | −0.0012 (4) | −0.0179 (4) | 0.0017 (4) |
N2 | 0.0278 (5) | 0.0250 (5) | 0.0388 (6) | −0.0047 (4) | −0.0153 (4) | 0.0032 (4) |
N3 | 0.0340 (6) | 0.0324 (6) | 0.0650 (8) | −0.0031 (5) | −0.0166 (6) | 0.0110 (5) |
O1 | 0.0351 (5) | 0.0414 (5) | 0.0469 (6) | −0.0093 (4) | −0.0178 (4) | 0.0197 (4) |
O2 | 0.0375 (5) | 0.0654 (7) | 0.0673 (7) | −0.0209 (5) | −0.0181 (5) | 0.0328 (6) |
O3 | 0.0280 (4) | 0.0439 (5) | 0.0448 (5) | −0.0100 (4) | −0.0190 (4) | 0.0205 (4) |
O4 | 0.0659 (7) | 0.0272 (5) | 0.0597 (7) | 0.0043 (4) | −0.0346 (6) | 0.0017 (4) |
O5 | 0.0340 (6) | 0.0528 (7) | 0.1128 (11) | −0.0086 (5) | −0.0018 (6) | 0.0128 (7) |
C1—O1 | 1.3718 (16) | C11—N1 | 1.3482 (15) |
C1—C6 | 1.3883 (18) | C12—N1 | 1.4574 (16) |
C1—C2 | 1.3922 (17) | C12—C13 | 1.5073 (18) |
C2—C3 | 1.376 (2) | C12—H12A | 0.9700 |
C2—H2 | 0.9300 | C12—H12B | 0.9700 |
C3—C4 | 1.387 (2) | C13—N2 | 1.4677 (15) |
C3—H3 | 0.9300 | C13—H13A | 0.9700 |
C4—C5 | 1.3823 (18) | C13—H13B | 0.9700 |
C4—H4 | 0.9300 | C14—N2 | 1.4712 (16) |
C5—C6 | 1.3990 (17) | C14—C15 | 1.5127 (18) |
C5—H5 | 0.9300 | C14—H14A | 0.9700 |
C6—C7 | 1.4538 (15) | C14—H14B | 0.9700 |
C7—O3 | 1.3439 (15) | C15—N1 | 1.4632 (15) |
C7—C8 | 1.3444 (17) | C15—H15A | 0.9700 |
C8—C9 | 1.4338 (18) | C15—H15B | 0.9700 |
C8—H8 | 0.9300 | C16—N2 | 1.4604 (16) |
C9—O2 | 1.2089 (16) | C16—C17 | 1.5164 (18) |
C9—O1 | 1.3774 (15) | C16—H16A | 0.9700 |
C10—O3 | 1.4328 (13) | C16—H16B | 0.9700 |
C10—C11 | 1.5177 (18) | C17—O5 | 1.2232 (18) |
C10—H10A | 0.9700 | C17—N3 | 1.3226 (19) |
C10—H10B | 0.9700 | N3—H3A | 0.8600 |
C11—O4 | 1.2241 (15) | N3—H3B | 0.8600 |
O1—C1—C6 | 121.80 (11) | C13—C12—H12B | 109.6 |
O1—C1—C2 | 116.65 (12) | H12A—C12—H12B | 108.1 |
C6—C1—C2 | 121.54 (12) | N2—C13—C12 | 111.22 (10) |
C3—C2—C1 | 118.55 (13) | N2—C13—H13A | 109.4 |
C3—C2—H2 | 120.7 | C12—C13—H13A | 109.4 |
C1—C2—H2 | 120.7 | N2—C13—H13B | 109.4 |
C2—C3—C4 | 121.20 (12) | C12—C13—H13B | 109.4 |
C2—C3—H3 | 119.4 | H13A—C13—H13B | 108.0 |
C4—C3—H3 | 119.4 | N2—C14—C15 | 111.67 (10) |
C5—C4—C3 | 119.83 (13) | N2—C14—H14A | 109.3 |
C5—C4—H4 | 120.1 | C15—C14—H14A | 109.3 |
C3—C4—H4 | 120.1 | N2—C14—H14B | 109.3 |
C4—C5—C6 | 120.20 (13) | C15—C14—H14B | 109.3 |
C4—C5—H5 | 119.9 | H14A—C14—H14B | 107.9 |
C6—C5—H5 | 119.9 | N1—C15—C14 | 109.84 (10) |
C1—C6—C5 | 118.66 (11) | N1—C15—H15A | 109.7 |
C1—C6—C7 | 117.34 (11) | C14—C15—H15A | 109.7 |
C5—C6—C7 | 123.99 (11) | N1—C15—H15B | 109.7 |
O3—C7—C8 | 126.49 (11) | C14—C15—H15B | 109.7 |
O3—C7—C6 | 113.36 (10) | H15A—C15—H15B | 108.2 |
C8—C7—C6 | 120.14 (11) | N2—C16—C17 | 114.84 (10) |
C7—C8—C9 | 121.26 (11) | N2—C16—H16A | 108.6 |
C7—C8—H8 | 119.4 | C17—C16—H16A | 108.6 |
C9—C8—H8 | 119.4 | N2—C16—H16B | 108.6 |
O2—C9—O1 | 116.18 (12) | C17—C16—H16B | 108.6 |
O2—C9—C8 | 125.71 (12) | H16A—C16—H16B | 107.5 |
O1—C9—C8 | 118.11 (11) | O5—C17—N3 | 124.21 (13) |
O3—C10—C11 | 110.44 (10) | O5—C17—C16 | 119.73 (13) |
O3—C10—H10A | 109.6 | N3—C17—C16 | 116.04 (12) |
C11—C10—H10A | 109.6 | C11—N1—C12 | 120.29 (10) |
O3—C10—H10B | 109.6 | C11—N1—C15 | 125.01 (11) |
C11—C10—H10B | 109.6 | C12—N1—C15 | 111.98 (9) |
H10A—C10—H10B | 108.1 | C16—N2—C13 | 109.10 (10) |
O4—C11—N1 | 122.28 (12) | C16—N2—C14 | 109.88 (10) |
O4—C11—C10 | 121.53 (11) | C13—N2—C14 | 109.94 (9) |
N1—C11—C10 | 116.17 (10) | C17—N3—H3A | 120.0 |
N1—C12—C13 | 110.40 (10) | C17—N3—H3B | 120.0 |
N1—C12—H12A | 109.6 | H3A—N3—H3B | 120.0 |
C13—C12—H12A | 109.6 | C1—O1—C9 | 121.30 (10) |
N1—C12—H12B | 109.6 | C7—O3—C10 | 119.29 (9) |
O1—C1—C2—C3 | −179.85 (11) | N2—C16—C17—O5 | −155.82 (15) |
C6—C1—C2—C3 | −0.22 (19) | N2—C16—C17—N3 | 25.9 (2) |
C1—C2—C3—C4 | 0.4 (2) | O4—C11—N1—C12 | 4.18 (19) |
C2—C3—C4—C5 | 0.2 (2) | C10—C11—N1—C12 | −177.62 (10) |
C3—C4—C5—C6 | −0.8 (2) | O4—C11—N1—C15 | 163.96 (13) |
O1—C1—C6—C5 | 179.20 (11) | C10—C11—N1—C15 | −17.84 (18) |
C2—C1—C6—C5 | −0.42 (18) | C13—C12—N1—C11 | 105.42 (13) |
O1—C1—C6—C7 | −0.25 (18) | C13—C12—N1—C15 | −56.81 (14) |
C2—C1—C6—C7 | −179.87 (11) | C14—C15—N1—C11 | −105.06 (14) |
C4—C5—C6—C1 | 0.93 (19) | C14—C15—N1—C12 | 56.17 (14) |
C4—C5—C6—C7 | −179.66 (12) | C17—C16—N2—C13 | −163.63 (12) |
C1—C6—C7—O3 | 178.34 (10) | C17—C16—N2—C14 | 75.77 (15) |
C5—C6—C7—O3 | −1.09 (17) | C12—C13—N2—C16 | −177.13 (11) |
C1—C6—C7—C8 | −0.84 (18) | C12—C13—N2—C14 | −56.57 (14) |
C5—C6—C7—C8 | 179.74 (12) | C15—C14—N2—C16 | 176.60 (10) |
O3—C7—C8—C9 | −176.93 (12) | C15—C14—N2—C13 | 56.50 (13) |
C6—C7—C8—C9 | 2.1 (2) | C6—C1—O1—C9 | 0.03 (18) |
C7—C8—C9—O2 | 176.98 (14) | C2—C1—O1—C9 | 179.66 (12) |
C7—C8—C9—O1 | −2.3 (2) | O2—C9—O1—C1 | −178.15 (12) |
O3—C10—C11—O4 | 21.02 (17) | C8—C9—O1—C1 | 1.20 (19) |
O3—C10—C11—N1 | −157.19 (10) | C8—C7—O3—C10 | 6.90 (19) |
N1—C12—C13—N2 | 56.80 (14) | C6—C7—O3—C10 | −172.21 (10) |
N2—C14—C15—N1 | −56.02 (13) | C11—C10—O3—C7 | −94.52 (13) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3B···N2 | 0.86 | 2.41 | 2.7716 (15) | 106 |
C12—H12A···O4 | 0.97 | 2.35 | 2.7473 (15) | 104 |
N3—H3A···O4i | 0.86 | 2.05 | 2.8886 (15) | 166 |
C8—H8···O2ii | 0.93 | 2.56 | 3.3953 (16) | 150 |
C10—H10A···O5iii | 0.97 | 2.49 | 3.4506 (18) | 173 |
C10—H10B···O2ii | 0.97 | 2.42 | 3.3346 (16) | 157 |
C14—H14A···O2ii | 0.97 | 2.54 | 3.4012 (17) | 148 |
C14—H14B···Cg1i | 0.97 | 2.80 | 3.614 (2) | 142 |
Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z. |
C20H19NO6 | F(000) = 388 |
Mr = 369.36 | Dx = 1.367 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2779 (2) Å | Cell parameters from 2630 reflections |
b = 8.5759 (3) Å | θ = 1.4–25.0° |
c = 14.4099 (5) Å | µ = 0.10 mm−1 |
β = 93.796 (5)° | T = 296 K |
V = 897.41 (5) Å3 | Block, colourless |
Z = 2 | 0.30 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 1623 reflections with I > 2σ(I) |
ω and φ scans | Rint = 0.088 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 25.0°, θmin = 1.4° |
Tmin = 0.763, Tmax = 0.852 | h = −8→8 |
4058 measured reflections | k = −9→9 |
2630 independent reflections | l = −17→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.083 | H-atom parameters constrained |
wR(F2) = 0.243 | w = 1/[σ2(Fo2) + (0.1336P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max < 0.001 |
2630 reflections | Δρmax = 0.28 e Å−3 |
247 parameters | Δρmin = −0.29 e Å−3 |
1 restraint | Extinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.042 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C9 | 0.7608 (13) | 0.3941 (14) | 0.8943 (6) | 0.063 (3) | |
C1 | 0.9935 (12) | 0.5490 (11) | 0.8258 (6) | 0.053 (2) | |
C2 | 1.1588 (13) | 0.6195 (14) | 0.8397 (7) | 0.064 (3) | |
H2 | 1.225084 | 0.612966 | 0.897037 | 0.077* | |
C3 | 1.2277 (13) | 0.7016 (13) | 0.7673 (7) | 0.067 (3) | |
H3 | 1.340590 | 0.752129 | 0.775680 | 0.080* | |
C4 | 1.1281 (13) | 0.7085 (14) | 0.6818 (7) | 0.065 (3) | |
H4 | 1.175985 | 0.762353 | 0.632809 | 0.078* | |
C5 | 0.9635 (12) | 0.6383 (12) | 0.6689 (6) | 0.056 (3) | |
H5 | 0.898157 | 0.645409 | 0.611398 | 0.067* | |
C6 | 0.8876 (11) | 0.5536 (11) | 0.7417 (6) | 0.048 (2) | |
C7 | 0.7177 (12) | 0.4769 (10) | 0.7354 (5) | 0.047 (2) | |
C8 | 0.6529 (13) | 0.3977 (13) | 0.8075 (7) | 0.060 (3) | |
H8 | 0.540283 | 0.346313 | 0.800782 | 0.072* | |
C10 | 0.4698 (11) | 0.3848 (12) | 0.6345 (6) | 0.052 (2) | |
H10A | 0.365667 | 0.432162 | 0.662342 | 0.062* | |
H10B | 0.493567 | 0.284583 | 0.664029 | 0.062* | |
C11 | 0.4238 (11) | 0.3613 (11) | 0.5313 (6) | 0.046 (2) | |
C12 | 0.4617 (11) | 0.4368 (12) | 0.3725 (6) | 0.053 (2) | |
H12A | 0.461193 | 0.326030 | 0.358746 | 0.064* | |
H12B | 0.563467 | 0.482854 | 0.341984 | 0.064* | |
C13 | 0.2869 (10) | 0.5056 (10) | 0.3312 (5) | 0.043 (2) | |
C14 | 0.1620 (12) | 0.5896 (12) | 0.3804 (7) | 0.059 (3) | |
H14 | 0.190916 | 0.609186 | 0.443136 | 0.071* | |
C15 | −0.0013 (12) | 0.6448 (14) | 0.3410 (7) | 0.062 (3) | |
H15 | −0.081969 | 0.699614 | 0.376388 | 0.074* | |
C16 | −0.0442 (11) | 0.6175 (12) | 0.2473 (6) | 0.052 (2) | |
C17 | 0.0765 (11) | 0.5380 (11) | 0.1954 (6) | 0.052 (2) | |
H17 | 0.048794 | 0.523211 | 0.132044 | 0.062* | |
C18 | 0.2389 (11) | 0.4798 (11) | 0.2368 (6) | 0.048 (2) | |
C19 | 0.3259 (14) | 0.3671 (17) | 0.0943 (6) | 0.080 (4) | |
H19A | 0.212442 | 0.310013 | 0.086580 | 0.120* | |
H19B | 0.423474 | 0.306460 | 0.070819 | 0.120* | |
H19C | 0.313972 | 0.463616 | 0.060635 | 0.120* | |
C20 | −0.2598 (13) | 0.6447 (17) | 0.1157 (7) | 0.085 (4) | |
H20A | −0.162895 | 0.679847 | 0.078717 | 0.127* | |
H20B | −0.371543 | 0.699158 | 0.097180 | 0.127* | |
H20C | −0.278034 | 0.534745 | 0.106668 | 0.127* | |
N1 | 0.4962 (10) | 0.4564 (9) | 0.4721 (5) | 0.051 (2) | |
H1 | 0.565201 | 0.531787 | 0.492909 | 0.061* | |
O1 | 0.9285 (9) | 0.4669 (9) | 0.9009 (4) | 0.068 (2) | |
O2 | 0.7213 (10) | 0.3219 (10) | 0.9634 (5) | 0.084 (3) | |
O3 | 0.6246 (8) | 0.4805 (7) | 0.6494 (4) | 0.0562 (18) | |
O4 | 0.3165 (8) | 0.2542 (8) | 0.5078 (4) | 0.0560 (18) | |
O5 | 0.3671 (8) | 0.3989 (9) | 0.1907 (4) | 0.0641 (19) | |
O6 | −0.2109 (8) | 0.6749 (9) | 0.2111 (5) | 0.072 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C9 | 0.079 (6) | 0.082 (8) | 0.028 (5) | −0.001 (6) | −0.004 (4) | −0.001 (5) |
C1 | 0.074 (6) | 0.060 (6) | 0.025 (5) | 0.007 (5) | −0.004 (4) | 0.000 (4) |
C2 | 0.065 (6) | 0.087 (9) | 0.039 (5) | −0.006 (6) | −0.009 (4) | 0.004 (6) |
C3 | 0.063 (6) | 0.079 (8) | 0.056 (7) | −0.010 (6) | −0.011 (5) | 0.002 (6) |
C4 | 0.073 (6) | 0.080 (8) | 0.042 (6) | −0.006 (6) | 0.002 (4) | 0.007 (6) |
C5 | 0.057 (5) | 0.066 (7) | 0.042 (5) | −0.008 (5) | −0.008 (4) | 0.009 (5) |
C6 | 0.053 (5) | 0.058 (6) | 0.029 (5) | −0.002 (4) | −0.007 (4) | 0.001 (4) |
C7 | 0.071 (5) | 0.049 (6) | 0.018 (4) | 0.002 (5) | −0.008 (4) | 0.003 (4) |
C8 | 0.068 (6) | 0.075 (7) | 0.036 (5) | −0.007 (5) | −0.003 (4) | 0.004 (5) |
C10 | 0.059 (5) | 0.065 (7) | 0.031 (5) | −0.012 (5) | −0.007 (4) | 0.003 (5) |
C11 | 0.057 (5) | 0.046 (5) | 0.033 (5) | −0.004 (5) | −0.007 (4) | 0.004 (5) |
C12 | 0.056 (5) | 0.063 (6) | 0.040 (5) | 0.000 (5) | −0.002 (4) | −0.006 (5) |
C13 | 0.049 (4) | 0.048 (6) | 0.032 (4) | −0.003 (4) | 0.001 (3) | 0.001 (4) |
C14 | 0.059 (5) | 0.072 (7) | 0.048 (6) | 0.006 (5) | 0.000 (4) | −0.006 (5) |
C15 | 0.063 (5) | 0.077 (7) | 0.046 (5) | 0.012 (5) | 0.007 (4) | −0.021 (6) |
C16 | 0.043 (4) | 0.073 (7) | 0.041 (5) | 0.011 (5) | 0.005 (4) | 0.001 (5) |
C17 | 0.055 (5) | 0.066 (6) | 0.035 (5) | 0.011 (5) | 0.000 (4) | −0.001 (5) |
C18 | 0.049 (4) | 0.053 (6) | 0.042 (5) | 0.004 (4) | 0.009 (4) | −0.003 (5) |
C19 | 0.082 (7) | 0.130 (11) | 0.029 (5) | 0.008 (7) | 0.005 (4) | −0.006 (7) |
C20 | 0.067 (6) | 0.137 (11) | 0.048 (6) | 0.033 (7) | −0.012 (5) | −0.014 (7) |
N1 | 0.065 (4) | 0.046 (5) | 0.041 (4) | −0.010 (4) | −0.009 (3) | 0.001 (4) |
O1 | 0.080 (4) | 0.090 (5) | 0.033 (4) | −0.009 (4) | −0.009 (3) | 0.007 (4) |
O2 | 0.105 (6) | 0.115 (7) | 0.030 (4) | −0.014 (5) | 0.001 (3) | 0.012 (4) |
O3 | 0.070 (4) | 0.068 (4) | 0.029 (3) | −0.017 (3) | −0.012 (3) | 0.007 (3) |
O4 | 0.070 (4) | 0.060 (4) | 0.038 (4) | −0.012 (3) | −0.006 (3) | 0.002 (3) |
O5 | 0.067 (4) | 0.090 (5) | 0.035 (4) | 0.015 (4) | 0.002 (3) | −0.002 (4) |
O6 | 0.065 (4) | 0.102 (6) | 0.048 (4) | 0.026 (4) | −0.003 (3) | −0.011 (4) |
C9—O2 | 1.223 (11) | C12—N1 | 1.451 (11) |
C9—O1 | 1.369 (11) | C12—C13 | 1.490 (11) |
C9—C8 | 1.433 (12) | C12—H12A | 0.9700 |
C1—C2 | 1.350 (13) | C12—H12B | 0.9700 |
C1—C6 | 1.394 (11) | C13—C14 | 1.391 (12) |
C1—O1 | 1.399 (11) | C13—C18 | 1.400 (11) |
C2—C3 | 1.381 (14) | C14—C15 | 1.367 (12) |
C2—H2 | 0.9300 | C14—H14 | 0.9300 |
C3—C4 | 1.389 (12) | C15—C16 | 1.386 (12) |
C3—H3 | 0.9300 | C15—H15 | 0.9300 |
C4—C5 | 1.343 (13) | C16—C17 | 1.372 (12) |
C4—H4 | 0.9300 | C16—O6 | 1.379 (10) |
C5—C6 | 1.417 (12) | C17—C18 | 1.382 (11) |
C5—H5 | 0.9300 | C17—H17 | 0.9300 |
C6—C7 | 1.398 (12) | C18—O5 | 1.369 (10) |
C7—C8 | 1.352 (12) | C19—O5 | 1.428 (11) |
C7—O3 | 1.373 (9) | C19—H19A | 0.9600 |
C8—H8 | 0.9300 | C19—H19B | 0.9600 |
C10—O3 | 1.399 (10) | C19—H19C | 0.9600 |
C10—C11 | 1.516 (11) | C20—O6 | 1.421 (11) |
C10—H10A | 0.9700 | C20—H20A | 0.9600 |
C10—H10B | 0.9700 | C20—H20B | 0.9600 |
C11—O4 | 1.239 (10) | C20—H20C | 0.9600 |
C11—N1 | 1.315 (11) | N1—H1 | 0.8600 |
O2—C9—O1 | 115.5 (8) | C13—C12—H12B | 108.3 |
O2—C9—C8 | 125.3 (10) | H12A—C12—H12B | 107.4 |
O1—C9—C8 | 119.0 (9) | C14—C13—C18 | 116.6 (7) |
C2—C1—C6 | 123.5 (9) | C14—C13—C12 | 124.8 (8) |
C2—C1—O1 | 117.0 (7) | C18—C13—C12 | 118.5 (7) |
C6—C1—O1 | 119.4 (8) | C15—C14—C13 | 123.2 (9) |
C1—C2—C3 | 118.7 (8) | C15—C14—H14 | 118.4 |
C1—C2—H2 | 120.6 | C13—C14—H14 | 118.4 |
C3—C2—H2 | 120.6 | C14—C15—C16 | 118.7 (8) |
C2—C3—C4 | 119.9 (9) | C14—C15—H15 | 120.7 |
C2—C3—H3 | 120.0 | C16—C15—H15 | 120.7 |
C4—C3—H3 | 120.0 | C17—C16—O6 | 123.4 (7) |
C5—C4—C3 | 120.8 (10) | C17—C16—C15 | 120.3 (8) |
C5—C4—H4 | 119.6 | O6—C16—C15 | 116.4 (7) |
C3—C4—H4 | 119.6 | C16—C17—C18 | 120.3 (8) |
C4—C5—C6 | 121.1 (8) | C16—C17—H17 | 119.9 |
C4—C5—H5 | 119.5 | C18—C17—H17 | 119.9 |
C6—C5—H5 | 119.5 | O5—C18—C17 | 124.4 (8) |
C1—C6—C7 | 118.6 (8) | O5—C18—C13 | 114.6 (7) |
C1—C6—C5 | 116.0 (8) | C17—C18—C13 | 120.9 (8) |
C7—C6—C5 | 125.4 (7) | O5—C19—H19A | 109.5 |
C8—C7—O3 | 121.9 (8) | O5—C19—H19B | 109.5 |
C8—C7—C6 | 122.6 (7) | H19A—C19—H19B | 109.5 |
O3—C7—C6 | 115.4 (7) | O5—C19—H19C | 109.5 |
C7—C8—C9 | 118.9 (9) | H19A—C19—H19C | 109.5 |
C7—C8—H8 | 120.6 | H19B—C19—H19C | 109.5 |
C9—C8—H8 | 120.6 | O6—C20—H20A | 109.5 |
O3—C10—C11 | 110.6 (7) | O6—C20—H20B | 109.5 |
O3—C10—H10A | 109.5 | H20A—C20—H20B | 109.5 |
C11—C10—H10A | 109.5 | O6—C20—H20C | 109.5 |
O3—C10—H10B | 109.5 | H20A—C20—H20C | 109.5 |
C11—C10—H10B | 109.5 | H20B—C20—H20C | 109.5 |
H10A—C10—H10B | 108.1 | C11—N1—C12 | 121.3 (7) |
O4—C11—N1 | 123.7 (7) | C11—N1—H1 | 119.4 |
O4—C11—C10 | 117.5 (8) | C12—N1—H1 | 119.4 |
N1—C11—C10 | 118.8 (8) | C9—O1—C1 | 121.4 (7) |
N1—C12—C13 | 115.9 (8) | C7—O3—C10 | 118.0 (6) |
N1—C12—H12A | 108.3 | C18—O5—C19 | 117.5 (7) |
C13—C12—H12A | 108.3 | C16—O6—C20 | 117.3 (7) |
N1—C12—H12B | 108.3 | ||
C6—C1—C2—C3 | 0.3 (16) | C13—C14—C15—C16 | −0.7 (17) |
O1—C1—C2—C3 | 179.9 (9) | C14—C15—C16—C17 | −0.7 (16) |
C1—C2—C3—C4 | −0.9 (17) | C14—C15—C16—O6 | 179.7 (10) |
C2—C3—C4—C5 | 1.1 (17) | O6—C16—C17—C18 | −178.1 (9) |
C3—C4—C5—C6 | −0.8 (17) | C15—C16—C17—C18 | 2.2 (15) |
C2—C1—C6—C7 | −179.6 (10) | C16—C17—C18—O5 | 179.9 (9) |
O1—C1—C6—C7 | 0.8 (13) | C16—C17—C18—C13 | −2.5 (15) |
C2—C1—C6—C5 | 0.0 (14) | C14—C13—C18—O5 | 179.0 (8) |
O1—C1—C6—C5 | −179.6 (9) | C12—C13—C18—O5 | −3.5 (12) |
C4—C5—C6—C1 | 0.3 (15) | C14—C13—C18—C17 | 1.1 (13) |
C4—C5—C6—C7 | 179.8 (10) | C12—C13—C18—C17 | 178.6 (9) |
C1—C6—C7—C8 | −0.6 (14) | O4—C11—N1—C12 | −3.4 (13) |
C5—C6—C7—C8 | 179.9 (10) | C10—C11—N1—C12 | 178.1 (8) |
C1—C6—C7—O3 | −177.3 (8) | C13—C12—N1—C11 | 83.3 (11) |
C5—C6—C7—O3 | 3.2 (14) | O2—C9—O1—C1 | 177.8 (9) |
O3—C7—C8—C9 | 177.7 (9) | C8—C9—O1—C1 | 2.3 (15) |
C6—C7—C8—C9 | 1.1 (14) | C2—C1—O1—C9 | 178.7 (10) |
O2—C9—C8—C7 | −177.0 (11) | C6—C1—O1—C9 | −1.7 (13) |
O1—C9—C8—C7 | −2.0 (15) | C8—C7—O3—C10 | −7.3 (12) |
O3—C10—C11—O4 | 164.9 (8) | C6—C7—O3—C10 | 169.5 (8) |
O3—C10—C11—N1 | −16.4 (11) | C11—C10—O3—C7 | −160.9 (7) |
N1—C12—C13—C14 | 2.3 (14) | C17—C18—O5—C19 | −2.8 (13) |
N1—C12—C13—C18 | −175.0 (8) | C13—C18—O5—C19 | 179.4 (10) |
C18—C13—C14—C15 | 0.5 (15) | C17—C16—O6—C20 | 1.9 (14) |
C12—C13—C14—C15 | −176.8 (10) | C15—C16—O6—C20 | −178.4 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.86 | 2.31 | 2.669 (2) | 105 |
C14—H14···N1 | 0.93 | 2.59 | 2.923 (2) | 101 |
N1—H1···O4i | 0.86 | 2.09 | 2.900 (2) | 156 |
C3—H3···O5ii | 0.93 | 2.49 | 3.419 (2) | 175 |
C5—H5···O4i | 0.93 | 2.43 | 3.307 (2) | 157 |
C15—H15···O4iii | 0.93 | 2.51 | 3.399 (2) | 160 |
Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y+1/2, −z+1; (iii) −x, y+1/2, −z+1. |
Acknowledgements
The authors are grateful to the SAIF, IIT Madras, for the data collection.
References
Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439. CrossRef CAS IUCr Journals Google Scholar
Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341. Web of Science CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455. Web of Science CrossRef IUCr Journals Google Scholar
Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776. Web of Science CrossRef IUCr Journals Google Scholar
Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. CrossRef IUCr Journals Google Scholar
Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290. CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202–204. CrossRef CAS IUCr Journals Google Scholar
Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346. CrossRef CAS Web of Science Google Scholar
Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CrossRef IUCr Journals Google Scholar
Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181–4190. CrossRef CAS Google Scholar
Govindhan, M., Subramanian, K., Sridharan, S., ChennakesavaRao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897–1904. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301. Web of Science CrossRef CAS Google Scholar
Ji, W., Zhang, S., Filonenko, G. A., Li, G., Sasaki, T., Feng, C. & Zhang, Y. (2017). Chem. Commun. 53, 4702–4705. CrossRef CAS Google Scholar
Kato, K. (1970). Acta Cryst. B26, 2022–2029. CrossRef IUCr Journals Web of Science Google Scholar
Kubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169–175. CrossRef Google Scholar
Kumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67–81. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535. Web of Science CrossRef CAS Google Scholar
Parveen, M., Ali, A., Malla, A., Silva, P. & Ramos Silva, M. (2011). Chem. Pap. 65, 735–738. CrossRef CAS Google Scholar
Ramasubbu, N., Row, T. N. G., Venkatesan, K., Ramamurthy, V. & Rao, C. N. R. (1982). J. Chem. Soc. Chem. Commun. pp. 178. Google Scholar
Rambabu, D., Mulakayala, N., Ismail, Ravi Kumar, K., Pavan Kumar, G., Mulakayala, C., Kumar, C. S., Kalle, A. M., Basaveswara Rao, M. V., Oruganti, S. & Pal, M. (2012). Bioorg. Med. Chem. Lett. 22, 6745–6749. CrossRef CAS Google Scholar
Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527–1533. Web of Science CrossRef IUCr Journals Google Scholar
Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113–141. CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. CrossRef IUCr Journals Google Scholar
Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372. CrossRef CAS Web of Science IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl, Article ID 963248, 14 pages, https://dx.doi.org/10.1155/2013/963248. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Y., Zhou, C., Wang, B., Zhou, Y., Xu, K., Jia, S. & Zhao, F. (2014). Propellants, Explosives, Pyrotech. 39, 809–814. Google Scholar
Zhuo, J.-B., Zhu, X., Lin, C.-X., Bai, S., Xie, L.-L. & Yuan, Y.-F. (2014). J. Organomet. Chem. 770, 85–93. CrossRef CAS Google Scholar
Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47. Web of Science CrossRef IUCr Journals Google Scholar
Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.