research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of two new coumarin derivatives: 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­­oxy]acet­yl}piperazin-1-yl)acetamide and N-(2,4-di­meth­­oxy­benz­yl)-2-[(2-oxo-2H-chromen-4-yl)­­oxy]acetamide

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India, bDepartment of Biophysics, All India Institute of Medical Science, New Delhi 110 029, India, cDepartment of Chemistry, Anna University, Chennai 600 025, India, and dOrchid Chemicals & Pharmaceuticals Ltd, R&D Centre, Sholinganallur, Chennai 600 119, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 February 2019; accepted 18 March 2019; online 26 March 2019)

The title compounds, 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide, C17H19N3O5, (I), and N-(2,4-di­meth­oxy­benz­yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide, C20H19NO6, (II), are new coumarin derivatives. In compound (I), the six-membered piperazine adopts a chair conformation. The dihedral angles between the mean planes of the chromene ring and amide plane is 82.65 (7)° in (I) and 26.2 (4)° in (II). The dihedral angles between the mean planes of the chromene ring and the four planar C atoms of the piperazine ring in (I) and the benzene ring in (II) are 87.66 (6) and 65.0 (4)°, respectively. There are short intra­molecular contacts in both mol­ecules forming S(5) ring motifs, viz. N—H⋯N and C—H⋯O in (I), and N—H⋯O and C—H⋯N in (II). In the crystals of both compounds, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains along [1[\overline{1}]0] in (I) and [010] in (II). The chains are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane in the crystals of both compounds. In the crystal of (I), there are also C—H⋯π and offset ππ inter­actions [inter­centroid distance = 3.691 (1) Å] present within the layers. In the crystal of (II), there are only weak offset ππ inter­actions [inter­centroid distance = 3.981 (6) Å] present within the layers. The inter­molecular contacts in the crystals of both compounds have been analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

1. Chemical context

Coumarin and its derivatives represent one of the most active classes of compounds possessing a wide spectrum of biological activity. The synthesis, and pharmacological and other properties of coumarin derivatives have been studied and reviewed (Kumar et al., 2015[Kumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67-81.]; Kubrak et al., 2017[Kubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169-175.]; Srikrishna et al., 2018[Srikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113-141.]; Venugopala et al., 2013[Venugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl, Article ID 963248, 14 pages, https://dx.doi.org/10.1155/2013/963248.]). Many of these compounds have proven to be active as anti­bacterial, anti­fungal, anti-inflammatory, anti­coagulant, anti-HIV and anti­tumor agents. One of the title compounds, 2-(4-{2-[(2-oxo-2H-chromen-4-yl)­oxy]acet­yl}piperazin-1-yl)acetamide (I)[link], has been shown to exhibit anti­microbial as well as anti­oxidant activity (Govindhan, Subramanian, Chennakesava Rao et al., 2015[Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181-4190.]; Govindhan, Subramanian, Sridharan et al., 2015[Govindhan, M., Subramanian, K., Sridharan, S., ChennakesavaRao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897-1904.]). In view of the importance of their natural occurrence, biological activities, pharmacological and medicinal activities, and utility as synthetic inter­mediates, we have synthesized the title 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide derivatives, and report herein their crystal structures and Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds (I)[link] and (II)[link] are illus­trated in Figs. 1[link] and 2[link], respectively. In (I)[link], the piperazine ring (N1/N2/C12–C15) is attached to the 2-[(2-oxochroman-4-yl)­oxy]acetaldehyde moiety on atom N1 and to an acetamide moiety on atom N2. It has a chair conformation [puckering parameters: total amplitude Q = 0.561 (2) Å, θ = 0.67 (2)° and φ = 149 (2)°], and is positioned anti with respect to the C—N rotamer of the amide. Nevertheless, because the asymmetry of the chromene residue, the anti conformation can assume a cis or trans geometry with respect to the relative position of the carbonyl O atom of the carboxamide and the C10—C11 and C16—C17 bonds. Both compounds exhibit a cis relation between these bonds, as can be seen in Figs. 1[link] and 2[link]. This mol­ecular conformation permits the formation of intra­molecular hydrogen bonds (Tables 1[link] and 2[link]), which enhance the relative planarity of each compound. Specifically for each compound, as a result of the presence of the imidic nitro­gen atom, the mol­ecules display intra­molecular N—H⋯N and N—H⋯O hydrogen bonds, between the amide nitro­gen and the nitro­gen atom N2 of the piperazine ring for compound (I)[link], and oxygen atom O3 for (II)[link], forming S(5) ring motifs. In addition, the carbonyl oxygen atom O4 acts as the acceptor for a weak inter­action with a hydrogen bond of the exocyclic piperazine ring, forming a second S(5) ring motif in (I)[link], and the amide nitro­gen atom N1 acts as the acceptor for a weak inter­action with a hydrogen bond of the exocyclic benzene ring, forming a second S(5) ring motif in (II)[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N2 0.86 2.41 2.7716 (15) 106
C12—H12A⋯O4 0.97 2.35 2.7473 (15) 104
N3—H3A⋯O4i 0.86 2.05 2.8886 (15) 166
C8—H8⋯O2ii 0.93 2.56 3.3953 (16) 150
C10—H10A⋯O5iii 0.97 2.49 3.4506 (18) 173
C10—H10B⋯O2ii 0.97 2.42 3.3346 (16) 157
C14—H14A⋯O2ii 0.97 2.54 3.4012 (17) 148
C14—H14BCg1i 0.97 2.80 3.614 (2) 142
Symmetry codes: (i) x-1, y+1, z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.31 2.669 (2) 105
C14—H14⋯N1 0.93 2.59 2.923 (2) 101
N1—H1⋯O4i 0.86 2.09 2.900 (2) 156
C3—H3⋯O5ii 0.93 2.49 3.419 (2) 175
C5—H5⋯O4i 0.93 2.43 3.307 (2) 157
C15—H15⋯O4iii 0.93 2.51 3.399 (2) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular contacts (Table 1[link]) are shown as dashed lines.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Intra­molecular contacts (Table 2[link]) are shown as dashed lines.

The values of the dihedral angles between the mean planes of the planar chromene ring system (O1/C1–C9; r.m.s. deviations = 0.008 Å for both compounds) and the amide plane (C10/C11/O4/N1) are 82.65 (7) and 26.2 (4)° in compounds (I)[link] and (II)[link], respectively. In (I)[link], the dihedral angle between the mean planes of the chromene ring and the four C atoms (C12–C15) of the piperazine ring is 87.66 (6)°, while in (II)[link] the benzene ring (C13–C18) is inclined to the mean plane of the chromene ring by 65.0 (4)°. Atom O2 deviates from the coumarin ring mean plane by 0.051 (1) Å in (I)[link] and −0.043 (9) Å in (II)[link].

It is inter­esting to compare the intra­molecular hydrogen bonding present in the title compounds with that of the analogous 4-oxo-N-(substituted phen­yl)-4H-chromene-2-carboxamides (Reis et al., 2013[Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527-1533.]; Gomes et al., 2013[Gomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294-309.]). It can be seen that the effect of the 2/3 positional isomerism is to `reflect' their relative positions while the effect of the cis/trans conformations is a `twofold rotation' of the rings around the Camide—Cchromene bond. These particular differences in conformation may condition the ability for docking when pharmacological activities are considered.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by N3—H3A⋯O4i hydrogen bonds, forming chains along the [1[\overline{1}]0] direction, see Fig. 3[link] and Table 1[link]. The chains are linked by C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane (Fig. 3[link] and Table 1[link]). The C14—H14A⋯O2ii hydrogen bond generates an inversion dimer with an R22(22) ring motif; within the ring C8—H8⋯O2ii and C10—H10B⋯O2ii hydrogen bonds link the mol­ecules into R22(8) and R22(14) rings, respectively. These rings are linked by C(10) and C(7) chains formed via the C10—H10A⋯O5iii and N3—H3A⋯O4i hydrogen bonds, respectively. A C—H⋯π inter­action is also present within the layer (Table 1[link]). An offset ππ contact between inversion-related chromene rings further stabilizes the crystal structure [Cg2⋯Cg2iv = 3.691 (1) Å, inter­planar distance = 3.490 (1) Å, offset = 1.20 Å; Cg2 is the centroid of the O1/C1–C9 ring; symmetry code: (iv) −x + 1, −y + 1, −z + 1].

[Figure 3]
Figure 3
A view along the c axis of the crystal packing of compound (I)[link]. The hydrogen bonds (Table 1[link]) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

In the crystal of (II)[link], mol­ecules are linked by N1—H1⋯O4i hydrogen bonds, forming chains along the [010] direction, see Fig. 4[link] and Table 2[link]. The chains are linked by C3—H3⋯O5ii, C5—H5⋯O4i and C15—H15⋯O4iii hydrogen bonds, forming layers parallel to the ab plane (Fig. 4[link] and Table 2[link]). Within the layer there are no C—H⋯π inter­actions present, only weak offset ππ inter­actions involving the benzene ring of the chromene ring system and the di­meth­oxy­benzene ring [Cg2⋯Cg3iv = 3.981 (6) Å, inter­planar distances = 3.638 (4) and 3.508 (4) Å, offset 0 1.88 Å; Cg2 and Cg3 are the centroids of rings C1–C6 and C13–C18, respectively; symmetry code: (iv) −x + 1, y + [{1\over 2}], −z + 1].

[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds (Table 2[link]) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), to analyse inter­molecular contacts in crystals. The various calculations were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]).

The Hirshfeld surfaces of compounds (I)[link] and (II)[link] mapped over dnorm are given in Fig. 5[link], and the inter­molecular contacts are illustrated in Fig. 6[link] for (I)[link] and Fig. 7[link] for (II)[link]. They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of −0.544 (red) to 1.418 (blue) for compound (I)[link] and −0.501 (red) to 1.672 (blue) for compound (II)[link], where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding.

[Figure 5]
Figure 5
The Hirshfeld surfaces of compounds (a) (I)[link] and (b) (II)[link], mapped over dnorm
[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over dnorm of compound (I)[link], showing the various inter­molecular contacts in the crystal.
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm of compound (II)[link], showing the various inter­molecular contacts in the crystal.

The fingerprint plots are given in Figs. 8[link] and 9[link]. For compound (I)[link], they reveal that the principal inter­molecular contacts are H⋯H at 41.3% (Fig. 8[link]b) and O⋯H/H⋯O at 35.3% (Fig. 8[link]c), followed by the C⋯H/H⋯C contacts at 11.8% (Fig. 8[link]d). For compound (II)[link], they reveal a similar trend, with the principal inter­molecular contacts being H⋯H at 41.8% (Fig. 9[link]b) and O⋯H/H⋯O at 32.4% (Fig. 9[link]c), followed by the C⋯H/H⋯C contacts at 16.7% (Fig. 9[link]d). In both compounds, the H⋯H inter­molecular contacts predominate, followed by the O⋯H/H⋯O contacts. However the C⋯H/H⋯C contacts are significantly different 11.8% cf. 16.7% for (I)[link] and (II)[link], respectively.

[Figure 8]
Figure 8
The full two-dimensional fingerprint plot for compound (I)[link], and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.
[Figure 9]
Figure 9
The full two-dimensional fingerprint plot for compound (II)[link], and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯·H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD, V5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-[(2-oxo-2H-chromen-4-yl)­oxy]acetamide derivatives gave two hits. They include 2-[(2-oxo-2H-chromen-4-yl)­oxy]-N-(1-phenyl­eth­yl)acetamide (CSD refcode PUWMEB; Govindhan, Subramanian, Chennakesava Rao et al., 2015[Govindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181-4190.]) and N-(3,5-di­methyl­adamantan-1-yl)-2-[(2-oxo-2H-chromen-4-yl)­oxy]prop­an­a­mide (SEFRAY; Rambabu et al., 2012[Rambabu, D., Mulakayala, N., Ismail, Ravi Kumar, K., Pavan Kumar, G., Mulakayala, C., Kumar, C. S., Kalle, A. M., Basaveswara Rao, M. V., Oruganti, S. & Pal, M. (2012). Bioorg. Med. Chem. Lett. 22, 6745-6749.]).

A search for linear and angular pyran­ocoumarin (psoralene class) structures gave 35 hits. They include four reports, CSD refcodes AMYROL [Kato, 1970[Kato, K. (1970). Acta Cryst. B26, 2022-2029.]: seselin (smyrolin)]; AMYROL01 [Bauri et al., 2006[Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340-o1341.]; seselin (redetermination)]; FUGVOS [Thailambal & Pattabhi, 1987[Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.]: 2,3-dihy­droxy-9-hy­droxy-2(1-hy­droxy-1-methyl­eth­yl)-7H-furo-[3,2-g]-[1]-benzo­pyran-7-one; bromo­hydroxy­seselin (Bauri et al., 2017a[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453-455.]); di­bromo­mometh­oxy­seselin (DMS) (Bauri et al., 2017b[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774-776.])], and a number of structures with various substituents at C3 and C4, many of which are natural products.

A CSD search found five coumarin ester structures with substituents at the 7 position (Ramasubbu et al., 1982[Ramasubbu, N., Row, T. N. G., Venkatesan, K., Ramamurthy, V. & Rao, C. N. R. (1982). J. Chem. Soc. Chem. Commun. pp. 178.]; Gnanaguru et al., 1985[Gnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337-2346.]; Parveen et al., 2011[Parveen, M., Ali, A., Malla, A., Silva, P. & Ramos Silva, M. (2011). Chem. Pap. 65, 735-738.]; Zhuo et al., 2014[Zhuo, J.-B., Zhu, X., Lin, C.-X., Bai, S., Xie, L.-L. & Yuan, Y.-F. (2014). J. Organomet. Chem. 770, 85-93.]; Ji et al., 2017[Ji, W., Zhang, S., Filonenko, G. A., Li, G., Sasaki, T., Feng, C. & Zhang, Y. (2017). Chem. Commun. 53, 4702-4705.]). In these structures and those of meta-substituted coumarin esters (Abou et al., 2012[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438-o3439.], 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]; Bibila Mayaya Bisseyou et al., 2013[Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125-o1126.]; Zhang et al., 2014[Zhang, Y., Zhou, C., Wang, B., Zhou, Y., Xu, K., Jia, S. & Zhao, F. (2014). Propellants, Explosives, Pyrotech. 39, 809-814.]; Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.], 2017[Ziki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45-47.]), the pyrone rings all show three long (in the range 1.37–1.46 Å) and one short (1.32–1.34 Å) C—C distances, suggesting that the electronic density is preferentially located in the short C—C bond at the pyrone ring. This pattern is clearly repeated here with C1—C6 = 1.3883 (18) and 1.394 (11) Å, C6—C7 = 1.4538 (15) and 1.398 (12) Å, C7—C8 = 1.3444 (17) and 1.352 (12) Å and C8—C9 = 1.4338 (18) and 1.433 (12) Å.

Intra­molecular C—H⋯O short contacts similar to that observed in the title compounds were found in five compounds in the CSD: LISLAB, 1-(1-pyrrolidinylcarbon­yl)cyclo­propyl sulfamate (Morin et al., 2007[Morin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531-8535.]), PEQHAU, 2-[30-(400-chloro­phen­yl)-40,60-di­meth­oxy­indol-70-yl]glyoxyl-1-pyrrolidine (Black et al., 1997[Black, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287-4290.]), QIBBEJ, [2-hy­droxy-5-(2-hy­droxy­benzo­yl)phen­yl](pyrrolidin-1-yl)-methanone (Holtz et al., 2007[Holtz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293-3301.]), SINHAZ, 2-meth­oxy-1-(1-pyrrolidinylcarbon­yl)naphthalene (Sakamoto et al., 2007[Sakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586-3588.]) and TAJDIR, (4S,5S)-4,5-bispyrrolidinylcarbon­yl)-2,2-dimethyl-1,3-dioxolane (Garcia et al., 1991[Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202-204.]).

6. Synthesis and crystallization

Compound (I) To a solution of 1 equiv. of 4-(2-(piperazine-1-yl)eth­oxy)-2H-chromen-2-one (1.0 g) in di­chloro­methane (10 ml) at 273–278 K were added tri­ethyl­amine (0.7 g, 2.0 equiv.) followed by iodo­acetamide (1.0 g, 0.5 equiv.), and the reaction mixture was stirred at the same temperature for 1 h. On completion of the reaction (monitored by TLC), the reaction mixture was diluted with di­chloro­methane and water (10 ml). The organic layer was separated and washed with brine solution. It was then dried over anhydrous sodium sulfate, filtered and then evaporated under reduced pressure giving compound (I)[link] as a white solid, which was then washed with hexane and dried under vacuum. Colourless block-like crystals of compound (I)[link] were obtained by slow evaporation of a solution in chloro­form (4 ml) and methanol (1 ml).

Compound (II) N,N-Diiso­propyl­ethyl­amine (DIPEA; 1.82 g, 3.1 equiv.) was added to a mixture of 2-(2-oxo-2H-chromen-4-yl­oxy)acetic acid (1.0 g, 1.0 equiv.), 1-ethyl-3-(3-di­methyl­amino­prop­yl)carbodi­imide (EDCI; 1.0 g, 1.2 equiv.), 1-hy­droxy­benzotriazole hydrate (HOBt; 0.61 g, 1.0 equiv.), 2,4-di­meth­oxy­benzyl­amine (0.8 g, 1.0 equiv.) in N,N-di­methyl­formamide (5 ml) at 273–278 K. The temperature of the mixture was raised to ambient temperature and stirred for 8 h. Progress of the reaction was monitored by TLC (mobile phase: ethyl acetate/hexa­ne). After completion of the reaction, the mixture was poured into ice–water and compound (II)[link] was obtained as a white solid. It was then filtered, washed with hexane and dried under vacuum. Colourless block-like crystals of compound (II)[link] were obtained by slow evaporation of a solution in chloro­form (5 ml).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds the H atoms were positioned geometrically and constrained to ride on their parent atoms: N—H = 0.86 Å and C–H = 0.93—0.97Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N, C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H19N3O5 C20H19NO6
Mr 345.35 369.36
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21
Temperature (K) 293 296
a, b, c (Å) 8.5260 (3), 8.8415 (3), 11.9462 (4) 7.2779 (2), 8.5759 (3), 14.4099 (5)
α, β, γ (°) 88.660 (2), 69.568 (2), 70.724 (2) 90, 93.796 (5), 90
V3) 792.27 (5) 897.41 (5)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.10
Crystal size (mm) 0.25 × 0.24 × 0.20 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.756, 0.824 0.763, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 12022, 3382, 2947 4058, 2630, 1623
Rint 0.027 0.088
(sin θ/λ)max−1) 0.637 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.04 0.083, 0.243, 0.98
No. of reflections 3382 2630
No. of parameters 227 247
No. of restraints 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.18 0.28, −0.29
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

2-(4-{2-[(2-Oxo-2H-chromen-4-yl)oxy]acetyl}piperazin-1-yl)acetamide (I) top
Crystal data top
C17H19N3O5Z = 2
Mr = 345.35F(000) = 364
Triclinic, P1Dx = 1.448 Mg m3
a = 8.5260 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8415 (3) ÅCell parameters from 3382 reflections
c = 11.9462 (4) Åθ = 1.8–26.9°
α = 88.660 (2)°µ = 0.11 mm1
β = 69.568 (2)°T = 293 K
γ = 70.724 (2)°Block, colourless
V = 792.27 (5) Å30.25 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2947 reflections with I > 2σ(I)
ω and φ scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.9°, θmin = 1.8°
Tmin = 0.756, Tmax = 0.824h = 1010
12022 measured reflectionsk = 1111
3382 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.2007P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3382 reflectionsΔρmax = 0.30 e Å3
227 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57138 (16)0.24849 (15)0.44898 (11)0.0326 (3)
C20.72086 (18)0.15454 (16)0.47279 (13)0.0396 (3)
H20.7134390.0768480.5263340.047*
C30.87983 (18)0.17916 (17)0.41538 (13)0.0426 (3)
H30.9808290.1167940.4301610.051*
C40.89217 (18)0.29534 (18)0.33584 (13)0.0419 (3)
H41.0007300.3102200.2976510.050*
C50.74271 (16)0.38890 (16)0.31349 (12)0.0355 (3)
H50.7505120.4677200.2609570.043*
C60.57975 (15)0.36540 (14)0.36965 (11)0.0297 (3)
C70.41622 (16)0.45736 (14)0.35108 (11)0.0298 (3)
C80.26528 (16)0.42648 (15)0.40841 (12)0.0359 (3)
H80.1624370.4836350.3937900.043*
C90.25981 (17)0.30714 (16)0.49166 (13)0.0385 (3)
C100.28057 (16)0.68340 (15)0.26066 (12)0.0328 (3)
H10A0.2954410.7874740.2490250.039*
H10B0.1768350.6961780.3325610.039*
C110.25178 (15)0.62523 (14)0.15331 (11)0.0316 (3)
C120.11451 (17)0.69477 (15)0.00279 (11)0.0342 (3)
H12A0.1911750.5855660.0312360.041*
H12B0.1371900.7660530.0591470.041*
C130.07778 (17)0.70594 (14)0.04377 (13)0.0358 (3)
H13A0.1040080.6801040.0246770.043*
H13B0.0975770.6278350.1005710.043*
C140.15445 (17)0.91151 (15)0.20136 (11)0.0349 (3)
H14A0.1769740.8397460.2629580.042*
H14B0.2311861.0204510.2360570.042*
C150.03821 (17)0.90093 (14)0.16159 (12)0.0348 (3)
H15A0.0586540.9801270.1059130.042*
H15B0.0646220.9241090.2306220.042*
C160.38171 (17)0.87031 (15)0.14408 (15)0.0423 (3)
H16A0.4017420.8146100.2158850.051*
H16B0.3967240.8106380.0837570.051*
C170.52246 (17)1.03707 (16)0.17290 (14)0.0419 (3)
N10.15528 (13)0.73936 (12)0.10337 (9)0.0319 (2)
N20.19807 (13)0.86796 (11)0.10060 (9)0.0308 (2)
N30.47248 (16)1.15212 (14)0.11445 (12)0.0465 (3)
H3A0.5477781.2484480.1257370.056*
H3B0.3646861.1306110.0651470.056*
O10.41560 (12)0.22028 (11)0.50832 (9)0.0416 (2)
O20.12892 (14)0.27595 (14)0.55044 (11)0.0566 (3)
O30.43529 (11)0.57057 (11)0.27551 (9)0.0382 (2)
O40.31673 (15)0.48319 (11)0.11304 (10)0.0529 (3)
O50.67279 (15)1.05727 (14)0.24444 (14)0.0753 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (6)0.0317 (6)0.0322 (6)0.0043 (5)0.0139 (5)0.0023 (5)
C20.0411 (7)0.0344 (6)0.0401 (7)0.0007 (5)0.0225 (6)0.0044 (5)
C30.0347 (7)0.0414 (7)0.0480 (8)0.0031 (5)0.0252 (6)0.0034 (6)
C40.0283 (6)0.0502 (8)0.0437 (8)0.0067 (6)0.0150 (6)0.0027 (6)
C50.0309 (6)0.0402 (7)0.0330 (7)0.0080 (5)0.0128 (5)0.0042 (5)
C60.0275 (6)0.0309 (6)0.0280 (6)0.0032 (5)0.0132 (5)0.0006 (5)
C70.0298 (6)0.0305 (6)0.0285 (6)0.0061 (5)0.0141 (5)0.0057 (5)
C80.0282 (6)0.0379 (7)0.0415 (7)0.0068 (5)0.0173 (5)0.0110 (5)
C90.0312 (6)0.0395 (7)0.0431 (7)0.0089 (5)0.0146 (5)0.0109 (6)
C100.0287 (6)0.0318 (6)0.0394 (7)0.0072 (5)0.0177 (5)0.0130 (5)
C110.0277 (6)0.0270 (6)0.0371 (7)0.0049 (4)0.0129 (5)0.0088 (5)
C120.0354 (6)0.0293 (6)0.0328 (6)0.0015 (5)0.0153 (5)0.0001 (5)
C130.0385 (7)0.0252 (6)0.0436 (7)0.0057 (5)0.0195 (6)0.0003 (5)
C140.0347 (6)0.0295 (6)0.0336 (7)0.0003 (5)0.0142 (5)0.0009 (5)
C150.0372 (7)0.0236 (5)0.0443 (7)0.0008 (5)0.0243 (6)0.0003 (5)
C160.0325 (7)0.0316 (6)0.0635 (9)0.0104 (5)0.0192 (6)0.0099 (6)
C170.0281 (6)0.0363 (7)0.0591 (9)0.0070 (5)0.0171 (6)0.0049 (6)
N10.0322 (5)0.0250 (5)0.0363 (6)0.0012 (4)0.0179 (4)0.0017 (4)
N20.0278 (5)0.0250 (5)0.0388 (6)0.0047 (4)0.0153 (4)0.0032 (4)
N30.0340 (6)0.0324 (6)0.0650 (8)0.0031 (5)0.0166 (6)0.0110 (5)
O10.0351 (5)0.0414 (5)0.0469 (6)0.0093 (4)0.0178 (4)0.0197 (4)
O20.0375 (5)0.0654 (7)0.0673 (7)0.0209 (5)0.0181 (5)0.0328 (6)
O30.0280 (4)0.0439 (5)0.0448 (5)0.0100 (4)0.0190 (4)0.0205 (4)
O40.0659 (7)0.0272 (5)0.0597 (7)0.0043 (4)0.0346 (6)0.0017 (4)
O50.0340 (6)0.0528 (7)0.1128 (11)0.0086 (5)0.0018 (6)0.0128 (7)
Geometric parameters (Å, º) top
C1—O11.3718 (16)C11—N11.3482 (15)
C1—C61.3883 (18)C12—N11.4574 (16)
C1—C21.3922 (17)C12—C131.5073 (18)
C2—C31.376 (2)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.387 (2)C13—N21.4677 (15)
C3—H30.9300C13—H13A0.9700
C4—C51.3823 (18)C13—H13B0.9700
C4—H40.9300C14—N21.4712 (16)
C5—C61.3990 (17)C14—C151.5127 (18)
C5—H50.9300C14—H14A0.9700
C6—C71.4538 (15)C14—H14B0.9700
C7—O31.3439 (15)C15—N11.4632 (15)
C7—C81.3444 (17)C15—H15A0.9700
C8—C91.4338 (18)C15—H15B0.9700
C8—H80.9300C16—N21.4604 (16)
C9—O21.2089 (16)C16—C171.5164 (18)
C9—O11.3774 (15)C16—H16A0.9700
C10—O31.4328 (13)C16—H16B0.9700
C10—C111.5177 (18)C17—O51.2232 (18)
C10—H10A0.9700C17—N31.3226 (19)
C10—H10B0.9700N3—H3A0.8600
C11—O41.2241 (15)N3—H3B0.8600
O1—C1—C6121.80 (11)C13—C12—H12B109.6
O1—C1—C2116.65 (12)H12A—C12—H12B108.1
C6—C1—C2121.54 (12)N2—C13—C12111.22 (10)
C3—C2—C1118.55 (13)N2—C13—H13A109.4
C3—C2—H2120.7C12—C13—H13A109.4
C1—C2—H2120.7N2—C13—H13B109.4
C2—C3—C4121.20 (12)C12—C13—H13B109.4
C2—C3—H3119.4H13A—C13—H13B108.0
C4—C3—H3119.4N2—C14—C15111.67 (10)
C5—C4—C3119.83 (13)N2—C14—H14A109.3
C5—C4—H4120.1C15—C14—H14A109.3
C3—C4—H4120.1N2—C14—H14B109.3
C4—C5—C6120.20 (13)C15—C14—H14B109.3
C4—C5—H5119.9H14A—C14—H14B107.9
C6—C5—H5119.9N1—C15—C14109.84 (10)
C1—C6—C5118.66 (11)N1—C15—H15A109.7
C1—C6—C7117.34 (11)C14—C15—H15A109.7
C5—C6—C7123.99 (11)N1—C15—H15B109.7
O3—C7—C8126.49 (11)C14—C15—H15B109.7
O3—C7—C6113.36 (10)H15A—C15—H15B108.2
C8—C7—C6120.14 (11)N2—C16—C17114.84 (10)
C7—C8—C9121.26 (11)N2—C16—H16A108.6
C7—C8—H8119.4C17—C16—H16A108.6
C9—C8—H8119.4N2—C16—H16B108.6
O2—C9—O1116.18 (12)C17—C16—H16B108.6
O2—C9—C8125.71 (12)H16A—C16—H16B107.5
O1—C9—C8118.11 (11)O5—C17—N3124.21 (13)
O3—C10—C11110.44 (10)O5—C17—C16119.73 (13)
O3—C10—H10A109.6N3—C17—C16116.04 (12)
C11—C10—H10A109.6C11—N1—C12120.29 (10)
O3—C10—H10B109.6C11—N1—C15125.01 (11)
C11—C10—H10B109.6C12—N1—C15111.98 (9)
H10A—C10—H10B108.1C16—N2—C13109.10 (10)
O4—C11—N1122.28 (12)C16—N2—C14109.88 (10)
O4—C11—C10121.53 (11)C13—N2—C14109.94 (9)
N1—C11—C10116.17 (10)C17—N3—H3A120.0
N1—C12—C13110.40 (10)C17—N3—H3B120.0
N1—C12—H12A109.6H3A—N3—H3B120.0
C13—C12—H12A109.6C1—O1—C9121.30 (10)
N1—C12—H12B109.6C7—O3—C10119.29 (9)
O1—C1—C2—C3179.85 (11)N2—C16—C17—O5155.82 (15)
C6—C1—C2—C30.22 (19)N2—C16—C17—N325.9 (2)
C1—C2—C3—C40.4 (2)O4—C11—N1—C124.18 (19)
C2—C3—C4—C50.2 (2)C10—C11—N1—C12177.62 (10)
C3—C4—C5—C60.8 (2)O4—C11—N1—C15163.96 (13)
O1—C1—C6—C5179.20 (11)C10—C11—N1—C1517.84 (18)
C2—C1—C6—C50.42 (18)C13—C12—N1—C11105.42 (13)
O1—C1—C6—C70.25 (18)C13—C12—N1—C1556.81 (14)
C2—C1—C6—C7179.87 (11)C14—C15—N1—C11105.06 (14)
C4—C5—C6—C10.93 (19)C14—C15—N1—C1256.17 (14)
C4—C5—C6—C7179.66 (12)C17—C16—N2—C13163.63 (12)
C1—C6—C7—O3178.34 (10)C17—C16—N2—C1475.77 (15)
C5—C6—C7—O31.09 (17)C12—C13—N2—C16177.13 (11)
C1—C6—C7—C80.84 (18)C12—C13—N2—C1456.57 (14)
C5—C6—C7—C8179.74 (12)C15—C14—N2—C16176.60 (10)
O3—C7—C8—C9176.93 (12)C15—C14—N2—C1356.50 (13)
C6—C7—C8—C92.1 (2)C6—C1—O1—C90.03 (18)
C7—C8—C9—O2176.98 (14)C2—C1—O1—C9179.66 (12)
C7—C8—C9—O12.3 (2)O2—C9—O1—C1178.15 (12)
O3—C10—C11—O421.02 (17)C8—C9—O1—C11.20 (19)
O3—C10—C11—N1157.19 (10)C8—C7—O3—C106.90 (19)
N1—C12—C13—N256.80 (14)C6—C7—O3—C10172.21 (10)
N2—C14—C15—N156.02 (13)C11—C10—O3—C794.52 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3B···N20.862.412.7716 (15)106
C12—H12A···O40.972.352.7473 (15)104
N3—H3A···O4i0.862.052.8886 (15)166
C8—H8···O2ii0.932.563.3953 (16)150
C10—H10A···O5iii0.972.493.4506 (18)173
C10—H10B···O2ii0.972.423.3346 (16)157
C14—H14A···O2ii0.972.543.4012 (17)148
C14—H14B···Cg1i0.972.803.614 (2)142
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y, z.
N-(2,4-Dimethoxybenzyl)-2-[(2-oxo-2H-chromen-4-yl)oxy]acetamide (II) top
Crystal data top
C20H19NO6F(000) = 388
Mr = 369.36Dx = 1.367 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.2779 (2) ÅCell parameters from 2630 reflections
b = 8.5759 (3) Åθ = 1.4–25.0°
c = 14.4099 (5) ŵ = 0.10 mm1
β = 93.796 (5)°T = 296 K
V = 897.41 (5) Å3Block, colourless
Z = 20.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1623 reflections with I > 2σ(I)
ω and φ scansRint = 0.088
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 25.0°, θmin = 1.4°
Tmin = 0.763, Tmax = 0.852h = 88
4058 measured reflectionsk = 99
2630 independent reflectionsl = 1716
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.243 w = 1/[σ2(Fo2) + (0.1336P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2630 reflectionsΔρmax = 0.28 e Å3
247 parametersΔρmin = 0.29 e Å3
1 restraintExtinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.7608 (13)0.3941 (14)0.8943 (6)0.063 (3)
C10.9935 (12)0.5490 (11)0.8258 (6)0.053 (2)
C21.1588 (13)0.6195 (14)0.8397 (7)0.064 (3)
H21.2250840.6129660.8970370.077*
C31.2277 (13)0.7016 (13)0.7673 (7)0.067 (3)
H31.3405900.7521290.7756800.080*
C41.1281 (13)0.7085 (14)0.6818 (7)0.065 (3)
H41.1759850.7623530.6328090.078*
C50.9635 (12)0.6383 (12)0.6689 (6)0.056 (3)
H50.8981570.6454090.6113980.067*
C60.8876 (11)0.5536 (11)0.7417 (6)0.048 (2)
C70.7177 (12)0.4769 (10)0.7354 (5)0.047 (2)
C80.6529 (13)0.3977 (13)0.8075 (7)0.060 (3)
H80.5402830.3463130.8007820.072*
C100.4698 (11)0.3848 (12)0.6345 (6)0.052 (2)
H10A0.3656670.4321620.6623420.062*
H10B0.4935670.2845830.6640290.062*
C110.4238 (11)0.3613 (11)0.5313 (6)0.046 (2)
C120.4617 (11)0.4368 (12)0.3725 (6)0.053 (2)
H12A0.4611930.3260300.3587460.064*
H12B0.5634670.4828540.3419840.064*
C130.2869 (10)0.5056 (10)0.3312 (5)0.043 (2)
C140.1620 (12)0.5896 (12)0.3804 (7)0.059 (3)
H140.1909160.6091860.4431360.071*
C150.0013 (12)0.6448 (14)0.3410 (7)0.062 (3)
H150.0819690.6996140.3763880.074*
C160.0442 (11)0.6175 (12)0.2473 (6)0.052 (2)
C170.0765 (11)0.5380 (11)0.1954 (6)0.052 (2)
H170.0487940.5232110.1320440.062*
C180.2389 (11)0.4798 (11)0.2368 (6)0.048 (2)
C190.3259 (14)0.3671 (17)0.0943 (6)0.080 (4)
H19A0.2124420.3100130.0865800.120*
H19B0.4234740.3064600.0708190.120*
H19C0.3139720.4636160.0606350.120*
C200.2598 (13)0.6447 (17)0.1157 (7)0.085 (4)
H20A0.1628950.6798470.0787170.127*
H20B0.3715430.6991580.0971800.127*
H20C0.2780340.5347450.1066680.127*
N10.4962 (10)0.4564 (9)0.4721 (5)0.051 (2)
H10.5652010.5317870.4929090.061*
O10.9285 (9)0.4669 (9)0.9009 (4)0.068 (2)
O20.7213 (10)0.3219 (10)0.9634 (5)0.084 (3)
O30.6246 (8)0.4805 (7)0.6494 (4)0.0562 (18)
O40.3165 (8)0.2542 (8)0.5078 (4)0.0560 (18)
O50.3671 (8)0.3989 (9)0.1907 (4)0.0641 (19)
O60.2109 (8)0.6749 (9)0.2111 (5)0.072 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.079 (6)0.082 (8)0.028 (5)0.001 (6)0.004 (4)0.001 (5)
C10.074 (6)0.060 (6)0.025 (5)0.007 (5)0.004 (4)0.000 (4)
C20.065 (6)0.087 (9)0.039 (5)0.006 (6)0.009 (4)0.004 (6)
C30.063 (6)0.079 (8)0.056 (7)0.010 (6)0.011 (5)0.002 (6)
C40.073 (6)0.080 (8)0.042 (6)0.006 (6)0.002 (4)0.007 (6)
C50.057 (5)0.066 (7)0.042 (5)0.008 (5)0.008 (4)0.009 (5)
C60.053 (5)0.058 (6)0.029 (5)0.002 (4)0.007 (4)0.001 (4)
C70.071 (5)0.049 (6)0.018 (4)0.002 (5)0.008 (4)0.003 (4)
C80.068 (6)0.075 (7)0.036 (5)0.007 (5)0.003 (4)0.004 (5)
C100.059 (5)0.065 (7)0.031 (5)0.012 (5)0.007 (4)0.003 (5)
C110.057 (5)0.046 (5)0.033 (5)0.004 (5)0.007 (4)0.004 (5)
C120.056 (5)0.063 (6)0.040 (5)0.000 (5)0.002 (4)0.006 (5)
C130.049 (4)0.048 (6)0.032 (4)0.003 (4)0.001 (3)0.001 (4)
C140.059 (5)0.072 (7)0.048 (6)0.006 (5)0.000 (4)0.006 (5)
C150.063 (5)0.077 (7)0.046 (5)0.012 (5)0.007 (4)0.021 (6)
C160.043 (4)0.073 (7)0.041 (5)0.011 (5)0.005 (4)0.001 (5)
C170.055 (5)0.066 (6)0.035 (5)0.011 (5)0.000 (4)0.001 (5)
C180.049 (4)0.053 (6)0.042 (5)0.004 (4)0.009 (4)0.003 (5)
C190.082 (7)0.130 (11)0.029 (5)0.008 (7)0.005 (4)0.006 (7)
C200.067 (6)0.137 (11)0.048 (6)0.033 (7)0.012 (5)0.014 (7)
N10.065 (4)0.046 (5)0.041 (4)0.010 (4)0.009 (3)0.001 (4)
O10.080 (4)0.090 (5)0.033 (4)0.009 (4)0.009 (3)0.007 (4)
O20.105 (6)0.115 (7)0.030 (4)0.014 (5)0.001 (3)0.012 (4)
O30.070 (4)0.068 (4)0.029 (3)0.017 (3)0.012 (3)0.007 (3)
O40.070 (4)0.060 (4)0.038 (4)0.012 (3)0.006 (3)0.002 (3)
O50.067 (4)0.090 (5)0.035 (4)0.015 (4)0.002 (3)0.002 (4)
O60.065 (4)0.102 (6)0.048 (4)0.026 (4)0.003 (3)0.011 (4)
Geometric parameters (Å, º) top
C9—O21.223 (11)C12—N11.451 (11)
C9—O11.369 (11)C12—C131.490 (11)
C9—C81.433 (12)C12—H12A0.9700
C1—C21.350 (13)C12—H12B0.9700
C1—C61.394 (11)C13—C141.391 (12)
C1—O11.399 (11)C13—C181.400 (11)
C2—C31.381 (14)C14—C151.367 (12)
C2—H20.9300C14—H140.9300
C3—C41.389 (12)C15—C161.386 (12)
C3—H30.9300C15—H150.9300
C4—C51.343 (13)C16—C171.372 (12)
C4—H40.9300C16—O61.379 (10)
C5—C61.417 (12)C17—C181.382 (11)
C5—H50.9300C17—H170.9300
C6—C71.398 (12)C18—O51.369 (10)
C7—C81.352 (12)C19—O51.428 (11)
C7—O31.373 (9)C19—H19A0.9600
C8—H80.9300C19—H19B0.9600
C10—O31.399 (10)C19—H19C0.9600
C10—C111.516 (11)C20—O61.421 (11)
C10—H10A0.9700C20—H20A0.9600
C10—H10B0.9700C20—H20B0.9600
C11—O41.239 (10)C20—H20C0.9600
C11—N11.315 (11)N1—H10.8600
O2—C9—O1115.5 (8)C13—C12—H12B108.3
O2—C9—C8125.3 (10)H12A—C12—H12B107.4
O1—C9—C8119.0 (9)C14—C13—C18116.6 (7)
C2—C1—C6123.5 (9)C14—C13—C12124.8 (8)
C2—C1—O1117.0 (7)C18—C13—C12118.5 (7)
C6—C1—O1119.4 (8)C15—C14—C13123.2 (9)
C1—C2—C3118.7 (8)C15—C14—H14118.4
C1—C2—H2120.6C13—C14—H14118.4
C3—C2—H2120.6C14—C15—C16118.7 (8)
C2—C3—C4119.9 (9)C14—C15—H15120.7
C2—C3—H3120.0C16—C15—H15120.7
C4—C3—H3120.0C17—C16—O6123.4 (7)
C5—C4—C3120.8 (10)C17—C16—C15120.3 (8)
C5—C4—H4119.6O6—C16—C15116.4 (7)
C3—C4—H4119.6C16—C17—C18120.3 (8)
C4—C5—C6121.1 (8)C16—C17—H17119.9
C4—C5—H5119.5C18—C17—H17119.9
C6—C5—H5119.5O5—C18—C17124.4 (8)
C1—C6—C7118.6 (8)O5—C18—C13114.6 (7)
C1—C6—C5116.0 (8)C17—C18—C13120.9 (8)
C7—C6—C5125.4 (7)O5—C19—H19A109.5
C8—C7—O3121.9 (8)O5—C19—H19B109.5
C8—C7—C6122.6 (7)H19A—C19—H19B109.5
O3—C7—C6115.4 (7)O5—C19—H19C109.5
C7—C8—C9118.9 (9)H19A—C19—H19C109.5
C7—C8—H8120.6H19B—C19—H19C109.5
C9—C8—H8120.6O6—C20—H20A109.5
O3—C10—C11110.6 (7)O6—C20—H20B109.5
O3—C10—H10A109.5H20A—C20—H20B109.5
C11—C10—H10A109.5O6—C20—H20C109.5
O3—C10—H10B109.5H20A—C20—H20C109.5
C11—C10—H10B109.5H20B—C20—H20C109.5
H10A—C10—H10B108.1C11—N1—C12121.3 (7)
O4—C11—N1123.7 (7)C11—N1—H1119.4
O4—C11—C10117.5 (8)C12—N1—H1119.4
N1—C11—C10118.8 (8)C9—O1—C1121.4 (7)
N1—C12—C13115.9 (8)C7—O3—C10118.0 (6)
N1—C12—H12A108.3C18—O5—C19117.5 (7)
C13—C12—H12A108.3C16—O6—C20117.3 (7)
N1—C12—H12B108.3
C6—C1—C2—C30.3 (16)C13—C14—C15—C160.7 (17)
O1—C1—C2—C3179.9 (9)C14—C15—C16—C170.7 (16)
C1—C2—C3—C40.9 (17)C14—C15—C16—O6179.7 (10)
C2—C3—C4—C51.1 (17)O6—C16—C17—C18178.1 (9)
C3—C4—C5—C60.8 (17)C15—C16—C17—C182.2 (15)
C2—C1—C6—C7179.6 (10)C16—C17—C18—O5179.9 (9)
O1—C1—C6—C70.8 (13)C16—C17—C18—C132.5 (15)
C2—C1—C6—C50.0 (14)C14—C13—C18—O5179.0 (8)
O1—C1—C6—C5179.6 (9)C12—C13—C18—O53.5 (12)
C4—C5—C6—C10.3 (15)C14—C13—C18—C171.1 (13)
C4—C5—C6—C7179.8 (10)C12—C13—C18—C17178.6 (9)
C1—C6—C7—C80.6 (14)O4—C11—N1—C123.4 (13)
C5—C6—C7—C8179.9 (10)C10—C11—N1—C12178.1 (8)
C1—C6—C7—O3177.3 (8)C13—C12—N1—C1183.3 (11)
C5—C6—C7—O33.2 (14)O2—C9—O1—C1177.8 (9)
O3—C7—C8—C9177.7 (9)C8—C9—O1—C12.3 (15)
C6—C7—C8—C91.1 (14)C2—C1—O1—C9178.7 (10)
O2—C9—C8—C7177.0 (11)C6—C1—O1—C91.7 (13)
O1—C9—C8—C72.0 (15)C8—C7—O3—C107.3 (12)
O3—C10—C11—O4164.9 (8)C6—C7—O3—C10169.5 (8)
O3—C10—C11—N116.4 (11)C11—C10—O3—C7160.9 (7)
N1—C12—C13—C142.3 (14)C17—C18—O5—C192.8 (13)
N1—C12—C13—C18175.0 (8)C13—C18—O5—C19179.4 (10)
C18—C13—C14—C150.5 (15)C17—C16—O6—C201.9 (14)
C12—C13—C14—C15176.8 (10)C15—C16—O6—C20178.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.312.669 (2)105
C14—H14···N10.932.592.923 (2)101
N1—H1···O4i0.862.092.900 (2)156
C3—H3···O5ii0.932.493.419 (2)175
C5—H5···O4i0.932.433.307 (2)157
C15—H15···O4iii0.932.513.399 (2)160
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y+1/2, z+1; (iii) x, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to the SAIF, IIT Madras, for the data collection.

References

First citationAbou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012). Acta Cryst. E68, o3438–o3439.  CrossRef CAS IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017a). Acta Cryst. E73, 453–455.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017b). Acta Cryst. E73, 774–776.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126.  CrossRef IUCr Journals Google Scholar
First citationBlack, D. St C., Craig, D. C. & McConnell, D. B. (1997). Tetrahedron Lett. 38, 4287–4290.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Acta Cryst. C47, 202–204.  CrossRef CAS IUCr Journals Google Scholar
First citationGnanaguru, K., Ramasubbu, N., Venkatesan, K. & Ramamurthy, V. (1985). J. Org. Chem. 50, 2337–2346.  CrossRef CAS Web of Science Google Scholar
First citationGomes, L. R., Low, J. N., Cagide, F., Gaspar, A., Reis, J. & Borges, F. (2013). Acta Cryst. B69, 294–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGovindhan, M., Subramanian, K., Chennakesava Rao, K., Easwaramoorthi, K., Senthilkumar, P. & Perumal, P. T. (2015). Med. Chem. Res. 24, 4181–4190.  CrossRef CAS Google Scholar
First citationGovindhan, M., Subramanian, K., Sridharan, S., ChennakesavaRao, K. & Easwaramoothi, K. (2015). Int. J. ChemTech Res. 8, 1897–1904.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoltz, E., Albrecht, U. & Langer, P. (2007). Tetrahedron, 63, 3293–3301.  Web of Science CrossRef CAS Google Scholar
First citationJi, W., Zhang, S., Filonenko, G. A., Li, G., Sasaki, T., Feng, C. & Zhang, Y. (2017). Chem. Commun. 53, 4702–4705.  CrossRef CAS Google Scholar
First citationKato, K. (1970). Acta Cryst. B26, 2022–2029.  CrossRef IUCr Journals Web of Science Google Scholar
First citationKubrak, T., Podgórski, R. & Stompor, M. (2017). Eur. J. Clin. Exp. Med. 15, 169–175.  CrossRef Google Scholar
First citationKumar, K. A., Renuka, N., Pavithra, G. & Kumar, G. V. (2015). J. Chem. Pharma. Res. 7, 67–81.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMorin, M. S. T., Toumieux, S., Compain, P., Peyrat, S. & Kalinowska-Tluscik, J. (2007). Tetrahedron Lett. 48, 8531–8535.  Web of Science CrossRef CAS Google Scholar
First citationParveen, M., Ali, A., Malla, A., Silva, P. & Ramos Silva, M. (2011). Chem. Pap. 65, 735–738.  CrossRef CAS Google Scholar
First citationRamasubbu, N., Row, T. N. G., Venkatesan, K., Ramamurthy, V. & Rao, C. N. R. (1982). J. Chem. Soc. Chem. Commun. pp. 178.  Google Scholar
First citationRambabu, D., Mulakayala, N., Ismail, Ravi Kumar, K., Pavan Kumar, G., Mulakayala, C., Kumar, C. S., Kalle, A. M., Basaveswara Rao, M. V., Oruganti, S. & Pal, M. (2012). Bioorg. Med. Chem. Lett. 22, 6745–6749.  CrossRef CAS Google Scholar
First citationReis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2013). Acta Cryst. C69, 1527–1533.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSakamoto, M., Unosawa, A., Kobaru, S., Fujita, K., Mino, T. & Fujita, T. (2007). Chem. Commun. pp. 3586–3588.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrikrishna, D., Godugu, C. & Dubey, P. K. (2018). Mini Rev. Med. Chem. 18, 113–141.  CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  CrossRef IUCr Journals Google Scholar
First citationThailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVenugopala, K. N., Rashmi, V. & Odhav, B. (2013). BioMed Res. Intl, Article ID 963248, 14 pages, https://dx.doi.org/10.1155/2013/963248Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Zhou, C., Wang, B., Zhou, Y., Xu, K., Jia, S. & Zhao, F. (2014). Propellants, Explosives, Pyrotech. 39, 809–814.  Google Scholar
First citationZhuo, J.-B., Zhu, X., Lin, C.-X., Bai, S., Xie, L.-L. & Yuan, Y.-F. (2014). J. Organomet. Chem. 770, 85–93.  CrossRef CAS Google Scholar
First citationZiki, E., Sosso, S., Mansilla-Koblavi, F., Djandé, A. & Kakou-Yao, R. (2017). Acta Cryst. E73, 45–47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZiki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds