research communications
5[tris(pyridylmethyl)azaphosphatrane]: a synthetic mimic of the NiFe hydrogenase active site incorporating a pendant pyridine base
of NiFe(CO)aDepartment of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
*Correspondence e-mail: zthammav@uci.edu
The reaction of Ni(TPAP)(COD) {where TPAP = [(NC5H4)CH2]3P(NC2H4)3N} with Fe(CO)5 resulted in the isolation of the title heterobimetallic NiFe(TPAP)(CO)5 complex di-μ-carbonyl-tricarbonyl[2,8,9-tris(pyridin-2-ylmethyl)-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane]ironnickel, [FeNi(C24H30N7P)(CO)5]. Characterization of the complex by 1H and 31P NMR as well as IR spectroscopy are presented. The structure of NiFe(TPAP)(CO)5 reveals three terminally bound CO molecules on Fe0, two bridging CO molecules between Ni0 and Fe0, and TPAP coordinated to Ni0. The Ni—Fe bond length is 2.4828 (4) Å, similar to that of the reduced form of the active site of NiFe hydrogenase (∼2.5 Å). Additionally, a proximal pendant base from one of the non-coordinating pyridine groups of TPAP is also present. Although involvement of a pendant base has been cited in the mechanism of NiFe hydrogenase, this moiety has yet to be incorporated in a structurally characterized synthetic mimic with key structural motifs (terminally bound CO or CN ligands on Fe). Thus, the title complex NiFe(TPAP)(CO)5 is an unique synthetic model for NiFe hydrogenase. In the crystal, the complex molecules are linked by C—H⋯O hydrogen bonds, forming undulating layers parallel to (100). Within the layers, there are offset π–π [intercentroid distance = 3.2739 (5) Å] and C—H⋯π interactions present. The layers are linked by further C—H⋯π interactions, forming a supramolecular framework.
Keywords: crystal structure; NiFe hydrogenase; biomimic; TPAP; hydrogen bonding; offset π–π interactions; C—H⋯π interactions; supramolecular framework.
CCDC reference: 1901532
1. Chemical context
Rare and expensive metals such as Pt are often used to catalyze the production and oxidation (for utilization in fuel cells) of H2. Because of this, the production and utilization of H2 for clean energy applications has motivated scientists to produce efficient and cheap H2 evolution catalysts. In nature, hydrogenase enzymes catalyze the reversible production and oxidation of H2 with the metals, Ni and Fe (Lacasse & Zamble, 2016). Inspired by nature, this work aimed to structurally mimic the active site of the NiFe hydrogenase enzyme (Kaur-Ghumaan & Stein, 2014). NiFe hydrogenase contains an NiFe active center, where Fe is coordinated with three different types of ligand (C≡O, C≡N, and a sulfur atom) while Ni is coordinated by four cysteine residues. The C≡O, C≡N and the sulfur-atom ligands play a role in maintaining the of FeII and stabilizing the changes of the Ni ion during the catalytic cycle (Behnke & Shafaat, 2016). In our previous work, the transannular interaction of bridgehead N and P atoms in the tri(pyridylmethyl)azaphosphatrane (TPAP) ligand was investigated for the stabilization of metal ions in different oxidation states (Thammavongsy et al., 2018). A recent study by Johnson and co-workers found that the transannular interaction in azaphosphatranes plays a potential role in Pd cross-coupling reactions, where the event `is promoted due to electron donation to the metal center from transannulation' (Matthews et al., 2018). The transannular interaction in TPAP could play a similar role in stabilizing the Ni ion. Additionally, a study by Armstrong and collaborators found a conserved arginine residue was vital for catalysis in NiFe hydrogenase (Evans et al., 2016). They propose the guanidine base of arginine participates in activation of H2. As a result of this conserved motif, incorporation of pendant bases into the ligand design of synthetic models of NiFe hydrogenase is important, but has been rarely observed in reported synthetic models of NiFe hydrogenase (as opposed to those of FeFe hydrogenase). In the title complex, NiFe(TPAP)(CO)5, whose synthesis is illustrated in the reaction scheme below, the TPAP ligand features a pendant pyridine base, providing a close structural mimic of the NiFe hydrogenase enzyme.
2. Structural commentary
The title heterobimetallic NiFe(TPAP)(CO)5 complex (Fig. 1), displays two bridging CO molecules between the Ni and Fe metal centers. Selected bond lengths and bond angles are given in Table 1. The Fe0 center shows a five-coordinate pseudo square-pyramidal geometry comprising three terminally bound CO and two bridging CO molecules. The τ5 value of the Fe0 atom is 0.40, where τ = 0 represents an ideal square pyramidal and 1 represents an ideal trigonal–bipyramidal geometry (Addison et al., 1984). The Ni0 center is also coordinated by the two bridging CO molecules and the TPAP ligand, where the two nitrogens from two pyridines and the phosphorus of the azaphosphatrane are coordinated. The Ni0 ion displays a five-coordinated square-pyramidal geometry with a τ5 value of 0.06. The bond lengths of the CO molecules bridging between the Ni and Fe ions are 1.1821 (16) and 1.1754 (17) Å for O1—C25 and O2—C26, respectively. These bond lengths are longer than the terminally bound CO molecules on Fe, which are 1.1509 (17), 1.148 (2) and 1.1531 (19) Å for O3—C27, O4—C28 and O5—C29, respectively. The shorter bond distances in the bridging CO molecules is indicative of π-back-bonding from the two metal centers to the bridging CO ligands. The Ni—Fe bond length is 2.4828 (4) Å, similar to the Ni—Fe bond length (∼2.5 Å) in the reduced state of NiFe hydrogenase (Garcin et al., 1999). The distance between atoms P1 and N1 in TPAP is 3.2518 (13) Å, consistent with a fully relaxed, pro-form of azaphosphatrane (Verkade, 1993). One pyridine group from TPAP is uncoordinated to the Ni or Fe metals. Atom N5 of the non-coordinating pyridine is not facing directly towards the metal ions, resulting in an approximate distance of 5.61 and 5.93 Å from Ni and Fe, respectively. In comparison, the arginine side chain lies less than ∼4.5 Å from both the Ni and Fe in NiFe hydrogenase (Evans et al., 2016).
|
3. Supramolecular features
In the crystal, complex molecules are linked by C—H⋯O hydrogen bonds and C—H⋯π interactions, forming undulating layers parallel to the bc plane (Table 2 and Fig. 2). Within the layers there are offset π–π interactions present involving inversion-related N6/C14–C18 pyridine rings (centroid Cg7): Cg7⋯Cg7ii = 3.6631 (9) Å, interplanar distance = 3.2739 (5) Å, offset = 1.643 Å, symmetry code: (ii) −x + 2, −y + 2, −z + 1 (Fig. 3). The layers are linked by further C—H⋯π interactions, forming a supramolecular framework (Table 2 and Fig. 3).
4. Database survey
A search was performed to compare previously published structures of molecular NiFe bimetallic complexes that are potential biological mimics of NiFe hydrogenase. Specifically, the search was for molecular NiFe that contained three terminally bound CO or CN ligands to Fe and any bridging ligand(s) between the Ni and Fe metal ions. This search was limited to these features because of their importance in the active site of NiFe hydrogenase. A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016), gave 32 hits with these attributes. Only 12 structures have Ni—Fe bond lengths relatively close (within 0.2 Å) to those of the reduced form of NiFe hydrogenase (∼2.5 Å). However, the NiFe complexes of these 12 structures [CSD refcodes: FANHEK, FANHEK01, FANGUZ, FANHAG, FANHIO and FANHUA (Song et al., 2017), LAZWEP (Zhu et al., 2005), SUQQOL (Barton et al., 2009), UCUXOH and UCUXUN (Carroll et al., 2011), UQAJAZ (Manor & Rauchfuss, 2013) and YOKWIE (Walther et al., 1995); see Table S1 in the supporting information] do not feature a pendant base, which has been demonstrated by Armstrong and collaborators to play a key role in the function of NiFe hydrogenase (Evans et al., 2016). Structural models of NiFe hydrogenase that incorporate a pendant base but lack the three terminally bound CO or CN ligands of the NiFe hydrogenase active site can be found here [CSD refcodes: EJUSEJ and EJUSUZ (Sun et al., 2016), FOTKOP (Tanino et al., 2009) and QEKLAT (Liaw et al., 2000); see Table S2 in the supporting information].
5. Synthesis and crystallization
The synthesis of NiFe(TPAP)(CO)5 is summarized in the reaction scheme. As it is air- and moisture-sensitive, all solvents (except for C6D6) were first purged with argon and dried using a solvent purification system. Iron0 pentacarbonyl was purchased from Sigma–Aldrich and used without further purification. Ni(TPAP)(COD) was synthesized according to an established procedure (Thammavongsy et al., 2018). 1H and 31P NMR spectra were recorded on a Bruker AVANCE 600 MHz and were referenced to the residual protio solvent peak (except for 31P, which was referenced to the absolute frequency of 0 ppm in the 1H dimension according to the Xi scale). Infrared (IR) absorption of the solid NiFe(TPAP)(CO)5 was taken on a Thermo Scientific Nicolet iS5 spectrophotometer with an iD5 ATR attachment. Elemental analyses were performed on a PerkinElmer 2400 Series II CHNS elemental analyzer.
In a and lead to the formation of pink block-like crystals of the title complex (52% yield).
a solution of TPAP (61.2 mg, 0.136 mmol) in 3 ml of tetrahydrofuran was added to a solution of bis(1,5-cyclooctadiene)nickel(0) (37.4 mg, 0.136 mmol) in tetrahydrofuran. The solution immediately turned dark forest green and was stirred for 1 h at room temperature. To this solution, iron(0) pentacarbonyl (26.6 mg, 0.136 mmol) in 3 ml of tetrahydrofuran was added. The solution turned dark orange–brown and was stirred for 1 h. The solvent was removed under vacuum and re-dissolved in diethyl ether. The re-dissolved product was filtered through a glass disposable Pasteur pipette packed with a 25 mm glass microfiber filter and celite (3 cm). The method of crystallization is illustrated in Fig. 4The compound is diamagnetic and was characterized by 1H NMR (C6D6, 600 MHz): 2.45–2.58 (m, 12H, NCH2CH2N), 4.09 (s, 6H, PyrCH2), 6.58 (t, 3H, Pyr), 6.96 (t, 3H, Pyr), 7.09 (t, 3H, Pyr), 8.93 (m, 3H, Pyr). 31P{1H} NMR (C6D6, 242.94 MHz): 118.6. IR (C=O): 1745, 1770, 1919 and 2001 cm−1. Elemental Analysis for C29H30FeN7NiO5P: C, 49.61; H, 4.31; N, 13.96; found: C, 49.52; H, 4.28; N, 13.63.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 1901532
https://doi.org/10.1107/S2056989019003256/su5488sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003256/su5488Isup2.hkl
CSD searches. DOI: https://doi.org/10.1107/S2056989019003256/su5488sup3.pdf
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[FeNi(C24H30N7P)(CO)5] | F(000) = 1448 |
Mr = 702.13 | Dx = 1.539 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5584 (15) Å | Cell parameters from 9822 reflections |
b = 12.9709 (17) Å | θ = 2.4–28.9° |
c = 20.761 (3) Å | µ = 1.20 mm−1 |
β = 103.1611 (16)° | T = 88 K |
V = 3030.8 (7) Å3 | Block, pink |
Z = 4 | 0.35 × 0.34 × 0.23 mm |
Bruker SMART APEX II CCD diffractometer | 6933 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
φ and ω scans | θmax = 29.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −15→15 |
Tmin = 0.654, Tmax = 0.746 | k = −16→16 |
34054 measured reflections | l = −26→26 |
7655 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0306P)2 + 1.444P] where P = (Fo2 + 2Fc2)/3 |
7655 reflections | (Δ/σ)max = 0.003 |
397 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. A pink crystal of approximate dimensions 0.230 x 0.342 x 0.354 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (30 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/c that was later determined to be correct. The structure was solved by dual space methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. Least-squares analysis yielded wR2 = 0.0645 and Goof = 1.039 for 397 variables refined against 7655 data, R1 = 0.0249 for those 6933 data with I > 2sigma(I). |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.78813 (2) | 0.75961 (2) | 0.57899 (2) | 0.01039 (5) | |
Fe1 | 0.83674 (2) | 0.81265 (2) | 0.69699 (2) | 0.01367 (5) | |
P1 | 0.63890 (3) | 0.74995 (2) | 0.48985 (2) | 0.01053 (7) | |
O1 | 0.71929 (9) | 0.96779 (7) | 0.59941 (5) | 0.0198 (2) | |
O2 | 0.67948 (9) | 0.62971 (8) | 0.66169 (5) | 0.0228 (2) | |
O3 | 1.05737 (9) | 0.92707 (9) | 0.69826 (5) | 0.0265 (2) | |
O4 | 0.96879 (14) | 0.67309 (10) | 0.79969 (6) | 0.0465 (4) | |
O5 | 0.70191 (11) | 0.93903 (10) | 0.77117 (6) | 0.0365 (3) | |
N1 | 0.44398 (10) | 0.72704 (9) | 0.35041 (6) | 0.0179 (2) | |
N2 | 0.49806 (10) | 0.76746 (8) | 0.49634 (6) | 0.0138 (2) | |
N3 | 0.65867 (9) | 0.83531 (8) | 0.43151 (5) | 0.0128 (2) | |
N4 | 0.64069 (9) | 0.63299 (8) | 0.45488 (5) | 0.0127 (2) | |
N5 | 0.33082 (10) | 0.68828 (9) | 0.61849 (6) | 0.0190 (2) | |
N6 | 0.90719 (9) | 0.82868 (8) | 0.52801 (5) | 0.0114 (2) | |
N7 | 0.86169 (10) | 0.61084 (8) | 0.56854 (5) | 0.0132 (2) | |
C1 | 0.35566 (12) | 0.76163 (11) | 0.38478 (7) | 0.0207 (3) | |
H1A | 0.313191 | 0.700888 | 0.396825 | 0.025* | |
H1B | 0.296821 | 0.805098 | 0.354545 | 0.025* | |
C2 | 0.40834 (11) | 0.82334 (10) | 0.44759 (7) | 0.0169 (3) | |
H2A | 0.444677 | 0.887102 | 0.434913 | 0.020* | |
H2B | 0.343065 | 0.844000 | 0.468557 | 0.020* | |
C3 | 0.51347 (12) | 0.80175 (10) | 0.32364 (7) | 0.0180 (3) | |
H3A | 0.476938 | 0.870659 | 0.324344 | 0.022* | |
H3B | 0.510531 | 0.784077 | 0.276907 | 0.022* | |
C4 | 0.64332 (12) | 0.80724 (10) | 0.36131 (6) | 0.0154 (2) | |
H4A | 0.681047 | 0.739374 | 0.358493 | 0.018* | |
H4B | 0.685152 | 0.858596 | 0.339599 | 0.018* | |
C5 | 0.47613 (12) | 0.61929 (10) | 0.35048 (7) | 0.0178 (3) | |
H5A | 0.529927 | 0.609888 | 0.320029 | 0.021* | |
H5B | 0.403319 | 0.578709 | 0.332705 | 0.021* | |
C6 | 0.53703 (11) | 0.57515 (10) | 0.41838 (7) | 0.0155 (2) | |
H6A | 0.477702 | 0.571735 | 0.446001 | 0.019* | |
H6B | 0.562387 | 0.503673 | 0.412068 | 0.019* | |
C7 | 0.45393 (12) | 0.69685 (10) | 0.53978 (7) | 0.0159 (3) | |
H7A | 0.518926 | 0.649071 | 0.559918 | 0.019* | |
H7B | 0.389244 | 0.655052 | 0.512545 | 0.019* | |
C8 | 0.40765 (12) | 0.74722 (10) | 0.59474 (7) | 0.0157 (3) | |
C9 | 0.44373 (12) | 0.84452 (11) | 0.61977 (7) | 0.0192 (3) | |
H9 | 0.498761 | 0.883663 | 0.602136 | 0.023* | |
C10 | 0.39748 (13) | 0.88323 (12) | 0.67119 (7) | 0.0231 (3) | |
H10 | 0.420615 | 0.949320 | 0.689334 | 0.028* | |
C11 | 0.31717 (13) | 0.82395 (12) | 0.69555 (7) | 0.0235 (3) | |
H11 | 0.283070 | 0.848991 | 0.730052 | 0.028* | |
C12 | 0.28788 (13) | 0.72720 (13) | 0.66827 (7) | 0.0234 (3) | |
H12 | 0.234358 | 0.686080 | 0.685815 | 0.028* | |
C13 | 0.74239 (11) | 0.92003 (9) | 0.45473 (6) | 0.0124 (2) | |
H13A | 0.721877 | 0.952193 | 0.493917 | 0.015* | |
H13B | 0.732539 | 0.973095 | 0.419624 | 0.015* | |
C14 | 0.87150 (11) | 0.88702 (9) | 0.47288 (6) | 0.0114 (2) | |
C15 | 0.95007 (11) | 0.91641 (9) | 0.43428 (6) | 0.0137 (2) | |
H15 | 0.922438 | 0.955186 | 0.394968 | 0.016* | |
C16 | 1.06887 (12) | 0.88868 (10) | 0.45363 (7) | 0.0159 (2) | |
H16 | 1.123360 | 0.907402 | 0.427608 | 0.019* | |
C17 | 1.10652 (11) | 0.83317 (10) | 0.51164 (7) | 0.0153 (2) | |
H17 | 1.187851 | 0.815395 | 0.527082 | 0.018* | |
C18 | 1.02295 (11) | 0.80406 (10) | 0.54675 (6) | 0.0134 (2) | |
H18 | 1.048898 | 0.764760 | 0.585996 | 0.016* | |
C19 | 0.75915 (11) | 0.59715 (10) | 0.45125 (6) | 0.0140 (2) | |
H19A | 0.804308 | 0.656203 | 0.439275 | 0.017* | |
H19B | 0.750656 | 0.545493 | 0.415367 | 0.017* | |
C20 | 0.83023 (11) | 0.54968 (10) | 0.51464 (6) | 0.0128 (2) | |
C21 | 0.86477 (11) | 0.44644 (10) | 0.51565 (7) | 0.0157 (2) | |
H21 | 0.839128 | 0.404559 | 0.477526 | 0.019* | |
C22 | 0.93683 (12) | 0.40518 (10) | 0.57267 (7) | 0.0186 (3) | |
H22 | 0.960609 | 0.334938 | 0.574257 | 0.022* | |
C23 | 0.97318 (12) | 0.46874 (10) | 0.62711 (7) | 0.0189 (3) | |
H23 | 1.024363 | 0.443586 | 0.666413 | 0.023* | |
C24 | 0.93330 (12) | 0.56995 (10) | 0.62305 (7) | 0.0172 (3) | |
H24 | 0.957788 | 0.612864 | 0.660774 | 0.021* | |
C25 | 0.75950 (11) | 0.88650 (10) | 0.61819 (6) | 0.0144 (2) | |
C26 | 0.73686 (12) | 0.70277 (10) | 0.65656 (7) | 0.0166 (3) | |
C27 | 0.97118 (12) | 0.88218 (10) | 0.69752 (6) | 0.0168 (3) | |
C28 | 0.91548 (15) | 0.72597 (12) | 0.75931 (7) | 0.0258 (3) | |
C29 | 0.75277 (13) | 0.88608 (12) | 0.74254 (7) | 0.0223 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01101 (8) | 0.00995 (8) | 0.01015 (8) | 0.00006 (5) | 0.00225 (6) | 0.00090 (5) |
Fe1 | 0.01742 (10) | 0.01384 (9) | 0.01018 (9) | −0.00202 (7) | 0.00400 (7) | 0.00039 (6) |
P1 | 0.00903 (15) | 0.00987 (14) | 0.01244 (15) | −0.00003 (10) | 0.00189 (11) | 0.00160 (11) |
O1 | 0.0256 (5) | 0.0146 (4) | 0.0196 (5) | 0.0043 (4) | 0.0062 (4) | 0.0003 (4) |
O2 | 0.0267 (5) | 0.0211 (5) | 0.0213 (5) | −0.0078 (4) | 0.0066 (4) | 0.0037 (4) |
O3 | 0.0194 (5) | 0.0317 (6) | 0.0281 (6) | −0.0041 (4) | 0.0045 (4) | 0.0057 (5) |
O4 | 0.0709 (10) | 0.0367 (7) | 0.0242 (6) | 0.0018 (7) | −0.0055 (6) | 0.0153 (5) |
O5 | 0.0357 (7) | 0.0463 (7) | 0.0336 (6) | 0.0003 (6) | 0.0205 (5) | −0.0122 (6) |
N1 | 0.0166 (6) | 0.0152 (5) | 0.0202 (6) | −0.0025 (4) | 0.0009 (5) | 0.0033 (4) |
N2 | 0.0096 (5) | 0.0132 (5) | 0.0187 (5) | 0.0009 (4) | 0.0035 (4) | 0.0049 (4) |
N3 | 0.0122 (5) | 0.0135 (5) | 0.0118 (5) | −0.0035 (4) | 0.0006 (4) | 0.0016 (4) |
N4 | 0.0105 (5) | 0.0114 (5) | 0.0147 (5) | 0.0006 (4) | −0.0001 (4) | −0.0006 (4) |
N5 | 0.0132 (5) | 0.0264 (6) | 0.0169 (6) | −0.0024 (4) | 0.0021 (4) | 0.0032 (5) |
N6 | 0.0120 (5) | 0.0109 (5) | 0.0115 (5) | −0.0010 (4) | 0.0027 (4) | −0.0003 (4) |
N7 | 0.0136 (5) | 0.0119 (5) | 0.0133 (5) | 0.0006 (4) | 0.0013 (4) | 0.0015 (4) |
C1 | 0.0116 (6) | 0.0223 (7) | 0.0254 (7) | −0.0005 (5) | −0.0016 (5) | 0.0061 (5) |
C2 | 0.0112 (6) | 0.0166 (6) | 0.0227 (7) | 0.0034 (5) | 0.0032 (5) | 0.0051 (5) |
C3 | 0.0179 (7) | 0.0174 (6) | 0.0153 (6) | −0.0043 (5) | −0.0033 (5) | 0.0042 (5) |
C4 | 0.0162 (6) | 0.0167 (6) | 0.0121 (6) | −0.0026 (5) | 0.0007 (5) | 0.0024 (5) |
C5 | 0.0174 (6) | 0.0163 (6) | 0.0167 (6) | −0.0044 (5) | −0.0023 (5) | 0.0007 (5) |
C6 | 0.0151 (6) | 0.0123 (6) | 0.0175 (6) | −0.0035 (5) | 0.0000 (5) | 0.0002 (5) |
C7 | 0.0129 (6) | 0.0138 (6) | 0.0216 (7) | −0.0012 (5) | 0.0055 (5) | 0.0032 (5) |
C8 | 0.0098 (6) | 0.0190 (6) | 0.0173 (6) | 0.0023 (5) | 0.0011 (5) | 0.0045 (5) |
C9 | 0.0152 (6) | 0.0184 (6) | 0.0230 (7) | 0.0026 (5) | 0.0021 (5) | 0.0031 (5) |
C10 | 0.0229 (7) | 0.0224 (7) | 0.0206 (7) | 0.0081 (6) | −0.0023 (6) | −0.0001 (5) |
C11 | 0.0176 (7) | 0.0382 (8) | 0.0130 (6) | 0.0097 (6) | 0.0002 (5) | 0.0006 (6) |
C12 | 0.0138 (6) | 0.0393 (8) | 0.0163 (7) | −0.0006 (6) | 0.0016 (5) | 0.0049 (6) |
C13 | 0.0112 (6) | 0.0106 (5) | 0.0142 (6) | −0.0012 (4) | 0.0009 (4) | 0.0027 (4) |
C14 | 0.0122 (6) | 0.0096 (5) | 0.0117 (6) | −0.0024 (4) | 0.0014 (4) | −0.0014 (4) |
C15 | 0.0166 (6) | 0.0126 (5) | 0.0122 (6) | −0.0028 (5) | 0.0039 (5) | 0.0000 (4) |
C16 | 0.0162 (6) | 0.0158 (6) | 0.0182 (6) | −0.0042 (5) | 0.0090 (5) | −0.0028 (5) |
C17 | 0.0108 (6) | 0.0150 (6) | 0.0203 (6) | −0.0001 (5) | 0.0037 (5) | −0.0028 (5) |
C18 | 0.0129 (6) | 0.0130 (6) | 0.0139 (6) | 0.0007 (4) | 0.0019 (5) | −0.0003 (4) |
C19 | 0.0138 (6) | 0.0150 (6) | 0.0129 (6) | 0.0028 (5) | 0.0023 (5) | 0.0002 (5) |
C20 | 0.0109 (6) | 0.0141 (6) | 0.0136 (6) | 0.0003 (4) | 0.0032 (4) | 0.0007 (5) |
C21 | 0.0142 (6) | 0.0146 (6) | 0.0178 (6) | 0.0004 (5) | 0.0025 (5) | −0.0024 (5) |
C22 | 0.0191 (7) | 0.0132 (6) | 0.0231 (7) | 0.0037 (5) | 0.0038 (5) | 0.0022 (5) |
C23 | 0.0198 (7) | 0.0179 (6) | 0.0168 (6) | 0.0051 (5) | −0.0003 (5) | 0.0047 (5) |
C24 | 0.0197 (7) | 0.0161 (6) | 0.0138 (6) | 0.0019 (5) | −0.0004 (5) | 0.0003 (5) |
C25 | 0.0144 (6) | 0.0160 (6) | 0.0142 (6) | −0.0019 (5) | 0.0059 (5) | −0.0005 (5) |
C26 | 0.0167 (6) | 0.0179 (6) | 0.0155 (6) | −0.0002 (5) | 0.0044 (5) | 0.0013 (5) |
C27 | 0.0202 (7) | 0.0180 (6) | 0.0119 (6) | 0.0037 (5) | 0.0027 (5) | 0.0028 (5) |
C28 | 0.0376 (9) | 0.0222 (7) | 0.0160 (7) | −0.0068 (6) | 0.0026 (6) | 0.0020 (6) |
C29 | 0.0233 (7) | 0.0274 (7) | 0.0177 (7) | −0.0060 (6) | 0.0079 (6) | −0.0021 (6) |
Ni1—Fe1 | 2.4828 (4) | C3—H3B | 0.9900 |
Ni1—C25 | 1.8983 (13) | C4—H4A | 0.9900 |
Ni1—C26 | 1.9805 (13) | C4—H4B | 0.9900 |
Ni1—N6 | 2.1167 (11) | C5—C6 | 1.5358 (18) |
Ni1—N7 | 2.1394 (11) | C5—H5A | 0.9900 |
Ni1—P1 | 2.2276 (4) | C5—H5B | 0.9900 |
Fe1—C29 | 1.7781 (15) | C6—H6A | 0.9900 |
Fe1—C27 | 1.7946 (14) | C6—H6B | 0.9900 |
Fe1—C28 | 1.7971 (16) | C7—C8 | 1.5143 (19) |
Fe1—C26 | 1.9046 (14) | C7—H7A | 0.9900 |
Fe1—C25 | 1.9304 (13) | C7—H7B | 0.9900 |
P1—N2 | 1.6792 (12) | C8—C9 | 1.3921 (19) |
P1—N4 | 1.6841 (11) | C9—C10 | 1.392 (2) |
P1—N3 | 1.6944 (11) | C9—H9 | 0.9500 |
P1—N1 | 3.2518 (13) | C10—C11 | 1.386 (2) |
O1—C25 | 1.1821 (16) | C10—H10 | 0.9500 |
O2—C26 | 1.1754 (17) | C11—C12 | 1.387 (2) |
O3—C27 | 1.1509 (17) | C11—H11 | 0.9500 |
O4—C28 | 1.148 (2) | C12—H12 | 0.9500 |
O5—C29 | 1.1531 (19) | C13—C14 | 1.5153 (17) |
N1—C1 | 1.4438 (19) | C13—H13A | 0.9900 |
N1—C5 | 1.4461 (17) | C13—H13B | 0.9900 |
N1—C3 | 1.4479 (17) | C14—C15 | 1.3941 (17) |
N2—C7 | 1.4566 (16) | C15—C16 | 1.3875 (19) |
N2—C2 | 1.4653 (17) | C15—H15 | 0.9500 |
N3—C13 | 1.4711 (16) | C16—C17 | 1.3855 (19) |
N3—C4 | 1.4731 (16) | C16—H16 | 0.9500 |
N4—C19 | 1.4640 (16) | C17—C18 | 1.3882 (18) |
N4—C6 | 1.4693 (16) | C17—H17 | 0.9500 |
N5—C12 | 1.343 (2) | C18—H18 | 0.9500 |
N5—C8 | 1.3474 (17) | C19—C20 | 1.5146 (17) |
N6—C18 | 1.3441 (16) | C19—H19A | 0.9900 |
N6—C14 | 1.3556 (16) | C19—H19B | 0.9900 |
N7—C24 | 1.3492 (17) | C20—C21 | 1.3962 (17) |
N7—C20 | 1.3522 (16) | C21—C22 | 1.3902 (19) |
C1—C2 | 1.533 (2) | C21—H21 | 0.9500 |
C1—H1A | 0.9900 | C22—C23 | 1.385 (2) |
C1—H1B | 0.9900 | C22—H22 | 0.9500 |
C2—H2A | 0.9900 | C23—C24 | 1.3875 (18) |
C2—H2B | 0.9900 | C23—H23 | 0.9500 |
C3—C4 | 1.5280 (18) | C24—H24 | 0.9500 |
C3—H3A | 0.9900 | ||
C28—Fe1—C25 | 168.88 (6) | N3—C4—H4B | 108.8 |
C27—Fe1—C26 | 144.68 (6) | C3—C4—H4B | 108.8 |
C26—Ni1—N6 | 155.94 (5) | H4A—C4—H4B | 107.7 |
C25—Ni1—N7 | 159.65 (5) | N1—C5—C6 | 115.16 (11) |
Ni1—C25—Fe1 | 80.85 (5) | N1—C5—H5A | 108.5 |
Fe1—C26—Ni1 | 79.42 (5) | C6—C5—H5A | 108.5 |
C25—Ni1—C26 | 81.98 (6) | N1—C5—H5B | 108.5 |
C25—Ni1—N6 | 92.52 (5) | C6—C5—H5B | 108.5 |
C26—Ni1—N7 | 86.91 (5) | H5A—C5—H5B | 107.5 |
N6—Ni1—N7 | 90.71 (4) | N4—C6—C5 | 115.63 (10) |
C25—Ni1—P1 | 103.14 (4) | N4—C6—H6A | 108.4 |
C26—Ni1—P1 | 109.64 (4) | C5—C6—H6A | 108.4 |
N6—Ni1—P1 | 94.41 (3) | N4—C6—H6B | 108.4 |
N7—Ni1—P1 | 96.63 (3) | C5—C6—H6B | 108.4 |
C25—Ni1—Fe1 | 50.14 (4) | H6A—C6—H6B | 107.4 |
C26—Ni1—Fe1 | 48.94 (4) | N2—C7—C8 | 115.39 (11) |
N6—Ni1—Fe1 | 110.45 (3) | N2—C7—H7A | 108.4 |
N7—Ni1—Fe1 | 110.13 (3) | C8—C7—H7A | 108.4 |
P1—Ni1—Fe1 | 142.544 (13) | N2—C7—H7B | 108.4 |
C29—Fe1—C27 | 107.71 (6) | C8—C7—H7B | 108.4 |
C29—Fe1—C28 | 101.57 (7) | H7A—C7—H7B | 107.5 |
C27—Fe1—C28 | 90.81 (7) | N5—C8—C9 | 122.97 (13) |
C29—Fe1—C26 | 106.61 (6) | N5—C8—C7 | 113.97 (12) |
C28—Fe1—C26 | 90.34 (7) | C9—C8—C7 | 123.04 (12) |
C29—Fe1—C25 | 88.96 (6) | C10—C9—C8 | 118.59 (13) |
C27—Fe1—C25 | 89.34 (6) | C10—C9—H9 | 120.7 |
C26—Fe1—C25 | 83.15 (6) | C8—C9—H9 | 120.7 |
C29—Fe1—Ni1 | 130.16 (5) | C11—C10—C9 | 119.06 (14) |
C27—Fe1—Ni1 | 98.42 (4) | C11—C10—H10 | 120.5 |
C28—Fe1—Ni1 | 120.04 (5) | C9—C10—H10 | 120.5 |
C26—Fe1—Ni1 | 51.64 (4) | C10—C11—C12 | 118.31 (14) |
C25—Fe1—Ni1 | 49.01 (4) | C10—C11—H11 | 120.8 |
N2—P1—N4 | 105.29 (6) | C12—C11—H11 | 120.8 |
N2—P1—N3 | 105.07 (5) | N5—C12—C11 | 123.78 (14) |
N4—P1—N3 | 105.28 (5) | N5—C12—H12 | 118.1 |
N2—P1—Ni1 | 120.47 (4) | C11—C12—H12 | 118.1 |
N4—P1—Ni1 | 109.00 (4) | N3—C13—C14 | 114.05 (10) |
N3—P1—Ni1 | 110.62 (4) | N3—C13—H13A | 108.7 |
N2—P1—N1 | 66.17 (5) | C14—C13—H13A | 108.7 |
N4—P1—N1 | 66.91 (4) | N3—C13—H13B | 108.7 |
N3—P1—N1 | 66.56 (4) | C14—C13—H13B | 108.7 |
Ni1—P1—N1 | 173.31 (3) | H13A—C13—H13B | 107.6 |
C1—N1—C5 | 120.69 (11) | N6—C14—C15 | 121.67 (11) |
C1—N1—C3 | 119.87 (11) | N6—C14—C13 | 117.44 (10) |
C5—N1—C3 | 118.84 (12) | C15—C14—C13 | 120.88 (11) |
C1—N1—P1 | 87.48 (8) | C16—C15—C14 | 119.60 (12) |
C5—N1—P1 | 87.80 (7) | C16—C15—H15 | 120.2 |
C3—N1—P1 | 87.03 (7) | C14—C15—H15 | 120.2 |
C7—N2—C2 | 116.50 (10) | C17—C16—C15 | 118.73 (12) |
C7—N2—P1 | 116.56 (9) | C17—C16—H16 | 120.6 |
C2—N2—P1 | 123.92 (9) | C15—C16—H16 | 120.6 |
C13—N3—C4 | 115.52 (10) | C16—C17—C18 | 118.65 (12) |
C13—N3—P1 | 116.08 (8) | C16—C17—H17 | 120.7 |
C4—N3—P1 | 122.69 (8) | C18—C17—H17 | 120.7 |
C19—N4—C6 | 118.27 (10) | N6—C18—C17 | 123.31 (12) |
C19—N4—P1 | 114.31 (8) | N6—C18—H18 | 118.3 |
C6—N4—P1 | 126.42 (9) | C17—C18—H18 | 118.3 |
C12—N5—C8 | 117.27 (13) | N4—C19—C20 | 114.39 (10) |
C18—N6—C14 | 117.94 (11) | N4—C19—H19A | 108.7 |
C18—N6—Ni1 | 118.19 (8) | C20—C19—H19A | 108.7 |
C14—N6—Ni1 | 123.43 (8) | N4—C19—H19B | 108.7 |
C24—N7—C20 | 117.48 (11) | C20—C19—H19B | 108.7 |
C24—N7—Ni1 | 116.85 (9) | H19A—C19—H19B | 107.6 |
C20—N7—Ni1 | 125.09 (8) | N7—C20—C21 | 121.89 (12) |
N1—C1—C2 | 113.21 (11) | N7—C20—C19 | 118.11 (11) |
N1—C1—H1A | 108.9 | C21—C20—C19 | 119.97 (11) |
C2—C1—H1A | 108.9 | C22—C21—C20 | 119.72 (12) |
N1—C1—H1B | 108.9 | C22—C21—H21 | 120.1 |
C2—C1—H1B | 108.9 | C20—C21—H21 | 120.1 |
H1A—C1—H1B | 107.7 | C23—C22—C21 | 118.52 (12) |
N2—C2—C1 | 114.26 (11) | C23—C22—H22 | 120.7 |
N2—C2—H2A | 108.7 | C21—C22—H22 | 120.7 |
C1—C2—H2A | 108.7 | C22—C23—C24 | 118.61 (12) |
N2—C2—H2B | 108.7 | C22—C23—H23 | 120.7 |
C1—C2—H2B | 108.7 | C24—C23—H23 | 120.7 |
H2A—C2—H2B | 107.6 | N7—C24—C23 | 123.70 (12) |
N1—C3—C4 | 113.62 (11) | N7—C24—H24 | 118.2 |
N1—C3—H3A | 108.8 | C23—C24—H24 | 118.2 |
C4—C3—H3A | 108.8 | O1—C25—Ni1 | 136.54 (11) |
N1—C3—H3B | 108.8 | O1—C25—Fe1 | 142.51 (11) |
C4—C3—H3B | 108.8 | O2—C26—Fe1 | 149.46 (11) |
H3A—C3—H3B | 107.7 | O2—C26—Ni1 | 130.79 (11) |
N3—C4—C3 | 113.63 (11) | O3—C27—Fe1 | 179.54 (13) |
N3—C4—H4A | 108.8 | O4—C28—Fe1 | 177.65 (15) |
C3—C4—H4A | 108.8 | O5—C29—Fe1 | 175.78 (14) |
N4—P1—N2—C7 | 64.08 (11) | N2—C7—C8—C9 | −24.33 (18) |
N3—P1—N2—C7 | 174.98 (9) | N5—C8—C9—C10 | −0.7 (2) |
Ni1—P1—N2—C7 | −59.46 (11) | C7—C8—C9—C10 | −178.84 (13) |
N1—P1—N2—C7 | 119.67 (10) | C8—C9—C10—C11 | −0.1 (2) |
N4—P1—N2—C2 | −95.51 (11) | C9—C10—C11—C12 | 1.2 (2) |
N3—P1—N2—C2 | 15.39 (12) | C8—N5—C12—C11 | 0.7 (2) |
Ni1—P1—N2—C2 | 140.95 (9) | C10—C11—C12—N5 | −1.5 (2) |
N1—P1—N2—C2 | −39.92 (10) | C4—N3—C13—C14 | −82.37 (13) |
N2—P1—N3—C13 | 112.78 (9) | P1—N3—C13—C14 | 71.80 (12) |
N4—P1—N3—C13 | −136.32 (9) | C18—N6—C14—C15 | 3.48 (17) |
Ni1—P1—N3—C13 | −18.71 (10) | Ni1—N6—C14—C15 | −168.78 (9) |
N1—P1—N3—C13 | 167.84 (10) | C18—N6—C14—C13 | −176.16 (11) |
N2—P1—N3—C4 | −95.07 (11) | Ni1—N6—C14—C13 | 11.58 (15) |
N4—P1—N3—C4 | 15.83 (11) | N3—C13—C14—N6 | −70.00 (14) |
Ni1—P1—N3—C4 | 133.44 (9) | N3—C13—C14—C15 | 110.36 (13) |
N1—P1—N3—C4 | −40.01 (9) | N6—C14—C15—C16 | −2.31 (19) |
N2—P1—N4—C19 | −173.60 (9) | C13—C14—C15—C16 | 177.31 (11) |
N3—P1—N4—C19 | 75.66 (10) | C14—C15—C16—C17 | −0.75 (19) |
Ni1—P1—N4—C19 | −43.04 (9) | C15—C16—C17—C18 | 2.47 (19) |
N1—P1—N4—C19 | 131.28 (9) | C14—N6—C18—C17 | −1.67 (18) |
N2—P1—N4—C6 | 18.13 (12) | Ni1—N6—C18—C17 | 171.00 (10) |
N3—P1—N4—C6 | −92.61 (11) | C16—C17—C18—N6 | −1.3 (2) |
Ni1—P1—N4—C6 | 148.69 (10) | C6—N4—C19—C20 | −109.08 (13) |
N1—P1—N4—C6 | −36.99 (10) | P1—N4—C19—C20 | 81.62 (12) |
C5—N1—C1—C2 | 108.47 (14) | C24—N7—C20—C21 | 3.25 (18) |
C3—N1—C1—C2 | −62.59 (16) | Ni1—N7—C20—C21 | −167.68 (9) |
P1—N1—C1—C2 | 22.53 (10) | C24—N7—C20—C19 | −174.58 (11) |
C7—N2—C2—C1 | −82.09 (14) | Ni1—N7—C20—C19 | 14.49 (16) |
P1—N2—C2—C1 | 77.51 (14) | N4—C19—C20—N7 | −64.57 (15) |
N1—C1—C2—N2 | −58.08 (15) | N4—C19—C20—C21 | 117.56 (13) |
C1—N1—C3—C4 | 108.77 (14) | N7—C20—C21—C22 | −2.2 (2) |
C5—N1—C3—C4 | −62.46 (16) | C19—C20—C21—C22 | 175.61 (12) |
P1—N1—C3—C4 | 23.39 (11) | C20—C21—C22—C23 | −0.5 (2) |
C13—N3—C4—C3 | −129.51 (11) | C21—C22—C23—C24 | 1.9 (2) |
P1—N3—C4—C3 | 78.20 (13) | C20—N7—C24—C23 | −1.8 (2) |
N1—C3—C4—N3 | −59.78 (15) | Ni1—N7—C24—C23 | 169.90 (11) |
C1—N1—C5—C6 | −65.16 (16) | C22—C23—C24—N7 | −0.8 (2) |
C3—N1—C5—C6 | 105.99 (14) | C26—Ni1—C25—O1 | −141.55 (16) |
P1—N1—C5—C6 | 20.60 (11) | N6—Ni1—C25—O1 | 61.98 (15) |
C19—N4—C6—C5 | −97.58 (13) | N7—Ni1—C25—O1 | 160.87 (12) |
P1—N4—C6—C5 | 70.27 (15) | P1—Ni1—C25—O1 | −33.15 (15) |
N1—C5—C6—N4 | −52.43 (16) | Fe1—Ni1—C25—O1 | 176.74 (18) |
C2—N2—C7—C8 | −75.67 (15) | C26—Ni1—C25—Fe1 | 41.71 (5) |
P1—N2—C7—C8 | 123.20 (11) | N6—Ni1—C25—Fe1 | −114.76 (4) |
C12—N5—C8—C9 | 0.4 (2) | N7—Ni1—C25—Fe1 | −15.87 (16) |
C12—N5—C8—C7 | 178.71 (12) | P1—Ni1—C25—Fe1 | 150.12 (3) |
N2—C7—C8—N5 | 157.37 (11) |
Cg6 and Cg7 are the centroids of pyridine rings N5/C8–C12 and N6/C14–C18, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7A···O2 | 0.99 | 2.49 | 3.3100 (18) | 140 |
C13—H13A···O1 | 0.99 | 2.21 | 3.1372 (16) | 156 |
C5—H5A···O5i | 0.99 | 2.51 | 3.4713 (19) | 164 |
C15—H15···O3ii | 0.95 | 2.52 | 3.4048 (17) | 156 |
C16—H16···O1ii | 0.95 | 2.59 | 3.4499 (18) | 151 |
C17—H17···Cg6iii | 0.95 | 2.83 | 3.6231 (16) | 142 |
C22—H22···Cg7iv | 0.95 | 2.99 | 3.8527 (15) | 152 |
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+2, −y+2, −z+1; (iii) x+1, y, z; (iv) −x+2, −y+1, −z+1. |
Acknowledgements
We are grateful to the UCI Department of Chemistry, X-ray Crystallography Facility, for use of the Bruker SMART APEXII diffractometer.
Funding information
Funding for this research was provided by: National Science Foundation (award No. 1554744 to JYY).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CrossRef Web of Science Google Scholar
Barton, B. E., Whaley, C. M., Rauchfuss, T. B. & Gray, D. L. (2009). J. Am. Chem. Soc. 131, 6942–6943. CrossRef PubMed CAS Google Scholar
Behnke, S. L. & Shafaat, H. S. (2016). Comments Inorg. Chem. 36, 123–140. CrossRef CAS Google Scholar
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carroll, M. E., Barton, B. E., Gray, D. L., Mack, A. E. & Rauchfuss, T. B. (2011). Inorg. Chem. 50, 9554–9563. CrossRef CAS Google Scholar
Evans, R. M., Brooke, E. J., Wehlin, S. A. M., Nomerotskaia, E., Sargent, F., Carr, S. B., Phillips, S. E. V. & Armstrong, F. A. (2016). Nat. Chem. Biol. 12, 46–50. CrossRef CAS Google Scholar
Garcin, E., Vernede, X., Hatchikian, E. C., Volbeda, A., Frey, M. & Fontecilla-Camps, J. C. (1999). Structure, 7, 557–566. Web of Science CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaur-Ghumaan, S. & Stein, M. (2014). Dalton Trans. 43, 9392–9405. CAS Google Scholar
Lacasse, M. J. & Zamble, D. B. (2016). Biochemistry, 55, 1689–1701. CrossRef CAS Google Scholar
Liaw, W.-F., Chiang, C.-Y., Lee, G.-H., Peng, S.-M., Lai, C.-H. & Darensbourg, M. Y. (2000). Inorg. Chem. 39, 480–484. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Manor, B. C. & Rauchfuss, T. B. (2013). J. Am. Chem. Soc. 135, 11895–11900. CrossRef CAS Google Scholar
Matthews, A. D., Gravalis, G. M., Schley, N. D. & Johnson, M. W. (2018). Organometallics, 37, 3073–3078. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, L.-C., Lu, Y., Zhu, L. & Li, Q.-L. (2017). Organometallics, 36, 750–760. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, P., Yang, D., Li, Y., Zhang, Y., Su, L., Wang, B. & Qu, J. (2016). Organometallics, 35, 751–757. CrossRef CAS Google Scholar
Tanino, S., Li, Z., Ohki, Y. & Tatsumi, K. (2009). Inorg. Chem. 48, 2358–2360. CrossRef CAS Google Scholar
Thammavongsy, Z., Cunningham, D. W., Sutthirat, N., Eisenhart, R. J., Ziller, J. W. & Yang, J. Y. (2018). Dalton Trans. 47, 14101–14110. CrossRef CAS Google Scholar
Verkade, J. G. (1993). Acc. Chem. Res. 26, 483–489. CrossRef CAS Web of Science Google Scholar
Walther, D., Gessler, S. & Sieler, J. (1995). Z. Anorg. Allg. Chem. 621, 635–639. CrossRef CAS Google Scholar
Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280–18285. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.