research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of NiFe(CO)5[tris­(pyridyl­meth­yl)aza­phosphatrane]: a synthetic mimic of the NiFe hydrogenase active site incorporating a pendant pyridine base

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California, Irvine, Natural Sciences II, Irvine, CA 92697, USA
*Correspondence e-mail: zthammav@uci.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 March 2019; accepted 6 March 2019; online 11 March 2019)

The reaction of Ni(TPAP)(COD) {where TPAP = [(NC5H4)CH2]3P(NC2H4)3N} with Fe(CO)5 resulted in the isolation of the title heterobimetallic NiFe(TPAP)(CO)5 complex di-μ-carbonyl-tricarbon­yl[2,8,9-tris­(pyridin-2-yl­meth­yl)-2,5,8,9-tetra­aza-1-phosphabi­cyclo­[3.3.3]undeca­ne]ironnickel, [FeNi(C24H30N7P)(CO)5]. Characterization of the complex by 1H and 31P NMR as well as IR spectroscopy are presented. The structure of NiFe(TPAP)(CO)5 reveals three terminally bound CO mol­ecules on Fe0, two bridging CO mol­ecules between Ni0 and Fe0, and TPAP coordinated to Ni0. The Ni—Fe bond length is 2.4828 (4) Å, similar to that of the reduced form of the active site of NiFe hydrogenase (∼2.5 Å). Additionally, a proximal pendant base from one of the non-coordinating pyridine groups of TPAP is also present. Although involvement of a pendant base has been cited in the mechanism of NiFe hydrogenase, this moiety has yet to be incorporated in a structurally characterized synthetic mimic with key structural motifs (terminally bound CO or CN ligands on Fe). Thus, the title complex NiFe(TPAP)(CO)5 is an unique synthetic model for NiFe hydrogenase. In the crystal, the complex mol­ecules are linked by C—H⋯O hydrogen bonds, forming undulating layers parallel to (100). Within the layers, there are offset ππ [inter­centroid distance = 3.2739 (5) Å] and C—H⋯π inter­actions present. The layers are linked by further C—H⋯π inter­actions, forming a supra­molecular framework.

1. Chemical context

Rare and expensive metals such as Pt are often used to catalyze the production and oxidation (for utilization in fuel cells) of H2. Because of this, the production and utilization of H2 for clean energy applications has motivated scientists to produce efficient and cheap H2 evolution catalysts. In nature, hydrogenase enzymes catalyze the reversible production and oxidation of H2 with the metals, Ni and Fe (Lacasse & Zamble, 2016[Lacasse, M. J. & Zamble, D. B. (2016). Biochemistry, 55, 1689-1701.]). Inspired by nature, this work aimed to structurally mimic the active site of the NiFe hydrogenase enzyme (Kaur-Ghumaan & Stein, 2014[Kaur-Ghumaan, S. & Stein, M. (2014). Dalton Trans. 43, 9392-9405.]). NiFe hydrogenase contains an NiFe active center, where Fe is coordinated with three different types of ligand (C≡O, C≡N, and a sulfur atom) while Ni is coordinated by four cysteine residues. The C≡O, C≡N and the sulfur-atom ligands play a role in maintaining the oxidation state of FeII and stabilizing the oxidation state changes of the Ni ion during the catalytic cycle (Behnke & Shafaat, 2016[Behnke, S. L. & Shafaat, H. S. (2016). Comments Inorg. Chem. 36, 123-140.]). In our previous work, the transannular inter­action of bridgehead N and P atoms in the tri(pyridyl­meth­yl)aza­phosphatrane (TPAP) ligand was investigated for the stabilization of metal ions in different oxidation states (Thammavongsy et al., 2018[Thammavongsy, Z., Cunningham, D. W., Sutthirat, N., Eisenhart, R. J., Ziller, J. W. & Yang, J. Y. (2018). Dalton Trans. 47, 14101-14110.]). A recent study by Johnson and co-workers found that the transannular inter­action in aza­phosphatranes plays a potential role in Pd cross-coupling reactions, where the oxidative addition event `is promoted due to electron donation to the metal center from transannulation' (Matthews et al., 2018[Matthews, A. D., Gravalis, G. M., Schley, N. D. & Johnson, M. W. (2018). Organometallics, 37, 3073-3078.]). The transannular inter­action in TPAP could play a similar role in stabilizing the Ni ion. Additionally, a study by Armstrong and collaborators found a conserved arginine residue was vital for catalysis in NiFe hydrogenase (Evans et al., 2016[Evans, R. M., Brooke, E. J., Wehlin, S. A. M., Nomerotskaia, E., Sargent, F., Carr, S. B., Phillips, S. E. V. & Armstrong, F. A. (2016). Nat. Chem. Biol. 12, 46-50.]). They propose the guanidine base of arginine participates in activation of H2. As a result of this conserved motif, incorporation of pendant bases into the ligand design of synthetic models of NiFe hydrogenase is important, but has been rarely observed in reported synthetic models of NiFe hydrogenase (as opposed to those of FeFe hydrogenase). In the title complex, NiFe(TPAP)(CO)5, whose synthesis is illustrated in the reaction scheme below, the TPAP ligand features a pendant pyridine base, providing a close structural mimic of the NiFe hydrogenase enzyme.

[Scheme 1]

2. Structural commentary

The title heterobimetallic NiFe(TPAP)(CO)5 complex (Fig. 1[link]), displays two bridging CO mol­ecules between the Ni and Fe metal centers. Selected bond lengths and bond angles are given in Table 1[link]. The Fe0 center shows a five-coordinate pseudo square-pyramidal geometry comprising three terminally bound CO and two bridging CO mol­ecules. The τ5 value of the Fe0 atom is 0.40, where τ = 0 represents an ideal square pyramidal and 1 represents an ideal trigonal–bipyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Ni0 center is also coord­inated by the two bridging CO mol­ecules and the TPAP ligand, where the two nitro­gens from two pyridines and the phosphorus of the aza­phosphatrane are coordinated. The Ni0 ion displays a five-coordinated square-pyramidal geometry with a τ5 value of 0.06. The bond lengths of the CO mol­ecules bridging between the Ni and Fe ions are 1.1821 (16) and 1.1754 (17) Å for O1—C25 and O2—C26, respectively. These bond lengths are longer than the terminally bound CO mol­ecules on Fe, which are 1.1509 (17), 1.148 (2) and 1.1531 (19) Å for O3—C27, O4—C28 and O5—C29, respectively. The shorter bond distances in the bridging CO mol­ecules is indicative of π-back-bonding from the two metal centers to the bridging CO ligands. The Ni—Fe bond length is 2.4828 (4) Å, similar to the Ni—Fe bond length (∼2.5 Å) in the reduced state of NiFe hydrogenase (Garcin et al., 1999[Garcin, E., Vernede, X., Hatchikian, E. C., Volbeda, A., Frey, M. & Fontecilla-Camps, J. C. (1999). Structure, 7, 557-566.]). The distance between atoms P1 and N1 in TPAP is 3.2518 (13) Å, consistent with a fully relaxed, pro-form of aza­phosphatrane (Verkade, 1993[Verkade, J. G. (1993). Acc. Chem. Res. 26, 483-489.]). One pyridine group from TPAP is uncoordinated to the Ni or Fe metals. Atom N5 of the non-coordinating pyridine is not facing directly towards the metal ions, resulting in an approximate distance of 5.61 and 5.93 Å from Ni and Fe, respectively. In comparison, the argin­ine side chain lies less than ∼4.5 Å from both the Ni and Fe in NiFe hydrogenase (Evans et al., 2016[Evans, R. M., Brooke, E. J., Wehlin, S. A. M., Nomerotskaia, E., Sargent, F., Carr, S. B., Phillips, S. E. V. & Armstrong, F. A. (2016). Nat. Chem. Biol. 12, 46-50.]).

Table 1
Selected geometric parameters (Å, °)

Ni1—Fe1 2.4828 (4) Ni1—N6 2.1167 (11)
Ni1—C25 1.8983 (13) Ni1—N7 2.1394 (11)
Ni1—C26 1.9805 (13) Ni1—P1 2.2276 (4)
       
C28—Fe1—C25 168.88 (6) C25—Ni1—N7 159.65 (5)
C27—Fe1—C26 144.68 (6) Ni1—C25—Fe1 80.85 (5)
C26—Ni1—N6 155.94 (5) Fe1—C26—Ni1 79.42 (5)
[Figure 1]
Figure 1
The mol­ecular structure of complex NiFe(TPAP)(CO)5, with atom labelling. The displacement ellipsoids are drawn at the 50% probability level. For clarity, the hydrogen atoms have been omitted. [All the atoms must be labelled]

3. Supra­molecular features

In the crystal, complex mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming undulating layers parallel to the bc plane (Table 2[link] and Fig. 2[link]). Within the layers there are offset ππ inter­actions present involving inversion-related N6/C14–C18 pyridine rings (centroid Cg7): Cg7⋯Cg7ii = 3.6631 (9) Å, inter­planar distance = 3.2739 (5) Å, offset = 1.643 Å, symmetry code: (ii) −x + 2, −y + 2, −z + 1 (Fig. 3[link]). The layers are linked by further C—H⋯π inter­actions, forming a supra­molecular framework (Table 2[link] and Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg6 and Cg7 are the centroids of pyridine rings N5/C8–C12 and N6/C14–C18, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O2 0.99 2.49 3.3100 (18) 140
C13—H13A⋯O1 0.99 2.21 3.1372 (16) 156
C5—H5A⋯O5i 0.99 2.51 3.4713 (19) 164
C15—H15⋯O3ii 0.95 2.52 3.4048 (17) 156
C16—H16⋯O1ii 0.95 2.59 3.4499 (18) 151
C17—H17⋯Cg6iii 0.95 2.83 3.6231 (16) 142
C22—H22⋯Cg7iv 0.95 2.99 3.8527 (15) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+2, -z+1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of complex NiFe(TPAP)(CO)5. The hydrogen bonds are shown as cyan dashed lines and the ππ inter­actions as red arrows (Table 2[link]). Only the H atoms (grey and red balls) involved in these inter­actions have been included. The pyridine rings involved in offset ππ inter­actions are shown in red.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of complex NiFe(TPAP)(CO)5. The hydrogen bonds are shown as cyan dashed lines and the C—H⋯π inter­actions as blue arrows (Table 2[link]). Only the H atoms (grey and red balls) involved in these inter­actions have been included. The pyridine rings involved in offset ππ inter­actions are shown in red.

4. Database survey

A search was performed to compare previously published structures of mol­ecular NiFe bimetallic complexes that are potential biological mimics of NiFe hydrogenase. Specifically, the search was for mol­ecular NiFe that contained three terminally bound CO or CN ligands to Fe and any bridging ligand(s) between the Ni and Fe metal ions. This search was limited to these features because of their importance in the active site of NiFe hydrogenase. A search of the Cambridge Structural Database (CSD, Version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), gave 32 hits with these attributes. Only 12 structures have Ni—Fe bond lengths relatively close (within 0.2 Å) to those of the reduced form of NiFe hydrogenase (∼2.5 Å). However, the NiFe complexes of these 12 structures [CSD refcodes: FANHEK, FANHEK01, FANGUZ, FANHAG, FANHIO and FANHUA (Song et al., 2017[Song, L.-C., Lu, Y., Zhu, L. & Li, Q.-L. (2017). Organometallics, 36, 750-760.]), LAZWEP (Zhu et al., 2005[Zhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280-18285.]), SUQQOL (Barton et al., 2009[Barton, B. E., Whaley, C. M., Rauchfuss, T. B. & Gray, D. L. (2009). J. Am. Chem. Soc. 131, 6942-6943.]), UCUXOH and UCUXUN (Carroll et al., 2011[Carroll, M. E., Barton, B. E., Gray, D. L., Mack, A. E. & Rauchfuss, T. B. (2011). Inorg. Chem. 50, 9554-9563.]), UQAJAZ (Manor & Rauchfuss, 2013[Manor, B. C. & Rauchfuss, T. B. (2013). J. Am. Chem. Soc. 135, 11895-11900.]) and YOKWIE (Walther et al., 1995[Walther, D., Gessler, S. & Sieler, J. (1995). Z. Anorg. Allg. Chem. 621, 635-639.]); see Table S1 in the supporting information] do not feature a pendant base, which has been demonstrated by Armstrong and collaborators to play a key role in the function of NiFe hydrogenase (Evans et al., 2016[Evans, R. M., Brooke, E. J., Wehlin, S. A. M., Nomerotskaia, E., Sargent, F., Carr, S. B., Phillips, S. E. V. & Armstrong, F. A. (2016). Nat. Chem. Biol. 12, 46-50.]). Structural models of NiFe hydrogenase that incorporate a pendant base but lack the three terminally bound CO or CN ligands of the NiFe hydrogenase active site can be found here [CSD refcodes: EJUSEJ and EJUSUZ (Sun et al., 2016[Sun, P., Yang, D., Li, Y., Zhang, Y., Su, L., Wang, B. & Qu, J. (2016). Organometallics, 35, 751-757.]), FOTKOP (Tanino et al., 2009[Tanino, S., Li, Z., Ohki, Y. & Tatsumi, K. (2009). Inorg. Chem. 48, 2358-2360.]) and QEKLAT (Liaw et al., 2000[Liaw, W.-F., Chiang, C.-Y., Lee, G.-H., Peng, S.-M., Lai, C.-H. & Darensbourg, M. Y. (2000). Inorg. Chem. 39, 480-484.]); see Table S2 in the supporting information].

5. Synthesis and crystallization

The synthesis of NiFe(TPAP)(CO)5 is summarized in the reaction scheme. As it is air- and moisture-sensitive, all solvents (except for C6D6) were first purged with argon and dried using a solvent purification system. Iron0 penta­carbonyl was purchased from Sigma–Aldrich and used without further purification. Ni(TPAP)(COD) was synthesized according to an established procedure (Thammavongsy et al., 2018[Thammavongsy, Z., Cunningham, D. W., Sutthirat, N., Eisenhart, R. J., Ziller, J. W. & Yang, J. Y. (2018). Dalton Trans. 47, 14101-14110.]). 1H and 31P NMR spectra were recorded on a Bruker AVANCE 600 MHz and were referenced to the residual protio solvent peak (except for 31P, which was referenced to the absolute frequency of 0 ppm in the 1H dimension according to the Xi scale). Infrared (IR) absorption of the solid NiFe(TPAP)(CO)5 was taken on a Thermo Scientific Nicolet iS5 spectrophotometer with an iD5 ATR attachment. Elemental analyses were performed on a PerkinElmer 2400 Series II CHNS elemental analyzer.

In a glove box, a solution of TPAP (61.2 mg, 0.136 mmol) in 3 ml of tetra­hydro­furan was added to a solution of bis­(1,5-cyclo­octa­diene)nickel(0) (37.4 mg, 0.136 mmol) in tetra­hydro­furan. The solution immediately turned dark forest green and was stirred for 1 h at room temperature. To this solution, iron(0) penta­carbonyl (26.6 mg, 0.136 mmol) in 3 ml of tetra­hydro­furan was added. The solution turned dark orange–brown and was stirred for 1 h. The solvent was removed under vacuum and re-dissolved in diethyl ether. The re-dissolved product was filtered through a glass disposable Pasteur pipette packed with a 25 mm glass microfiber filter and celite (3 cm). The method of crystallization is illustrated in Fig. 4[link] and lead to the formation of pink block-like crystals of the title complex (52% yield).

[Figure 4]
Figure 4
Method of crystallization for NiFe(TPAP)(CO)5.

The compound is diamagnetic and was characterized by 1H NMR (C6D6, 600 MHz): 2.45–2.58 (m, 12H, NCH2CH2N), 4.09 (s, 6H, PyrCH2), 6.58 (t, 3H, Pyr), 6.96 (t, 3H, Pyr), 7.09 (t, 3H, Pyr), 8.93 (m, 3H, Pyr). 31P{1H} NMR (C6D6, 242.94 MHz): 118.6. IR (C=O): 1745, 1770, 1919 and 2001 cm−1. Elemental Analysis for C29H30FeN7NiO5P: C, 49.61; H, 4.31; N, 13.96; found: C, 49.52; H, 4.28; N, 13.63.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms were fixed geometrically and allowed to ride on their parent atoms: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [FeNi(C24H30N7P)(CO)5]
Mr 702.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 88
a, b, c (Å) 11.5584 (15), 12.9709 (17), 20.761 (3)
β (°) 103.1611 (16)
V3) 3030.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.20
Crystal size (mm) 0.35 × 0.34 × 0.23
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.654, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 34054, 7655, 6933
Rint 0.026
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.04
No. of reflections 7655
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Di-µ-carbonyl-tricarbonyl[2,8,9-tris(pyridin-2-ylmethyl)-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane]ironnickel top
Crystal data top
[FeNi(C24H30N7P)(CO)5]F(000) = 1448
Mr = 702.13Dx = 1.539 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5584 (15) ÅCell parameters from 9822 reflections
b = 12.9709 (17) Åθ = 2.4–28.9°
c = 20.761 (3) ŵ = 1.20 mm1
β = 103.1611 (16)°T = 88 K
V = 3030.8 (7) Å3Block, pink
Z = 40.35 × 0.34 × 0.23 mm
Data collection top
Bruker SMART APEX II CCD
diffractometer
6933 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
φ and ω scansθmax = 29.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1515
Tmin = 0.654, Tmax = 0.746k = 1616
34054 measured reflectionsl = 2626
7655 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0306P)2 + 1.444P]
where P = (Fo2 + 2Fc2)/3
7655 reflections(Δ/σ)max = 0.003
397 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A pink crystal of approximate dimensions 0.230 x 0.342 x 0.354 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2 program package was used to determine the unit-cell parameters and for data collection (30 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P21/c that was later determined to be correct.

The structure was solved by dual space methods and refined on F2 by full-matrix least-squares techniques. The analytical scattering factors for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.0645 and Goof = 1.039 for 397 variables refined against 7655 data, R1 = 0.0249 for those 6933 data with I > 2sigma(I).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.78813 (2)0.75961 (2)0.57899 (2)0.01039 (5)
Fe10.83674 (2)0.81265 (2)0.69699 (2)0.01367 (5)
P10.63890 (3)0.74995 (2)0.48985 (2)0.01053 (7)
O10.71929 (9)0.96779 (7)0.59941 (5)0.0198 (2)
O20.67948 (9)0.62971 (8)0.66169 (5)0.0228 (2)
O31.05737 (9)0.92707 (9)0.69826 (5)0.0265 (2)
O40.96879 (14)0.67309 (10)0.79969 (6)0.0465 (4)
O50.70191 (11)0.93903 (10)0.77117 (6)0.0365 (3)
N10.44398 (10)0.72704 (9)0.35041 (6)0.0179 (2)
N20.49806 (10)0.76746 (8)0.49634 (6)0.0138 (2)
N30.65867 (9)0.83531 (8)0.43151 (5)0.0128 (2)
N40.64069 (9)0.63299 (8)0.45488 (5)0.0127 (2)
N50.33082 (10)0.68828 (9)0.61849 (6)0.0190 (2)
N60.90719 (9)0.82868 (8)0.52801 (5)0.0114 (2)
N70.86169 (10)0.61084 (8)0.56854 (5)0.0132 (2)
C10.35566 (12)0.76163 (11)0.38478 (7)0.0207 (3)
H1A0.3131910.7008880.3968250.025*
H1B0.2968210.8050980.3545450.025*
C20.40834 (11)0.82334 (10)0.44759 (7)0.0169 (3)
H2A0.4446770.8871020.4349130.020*
H2B0.3430650.8440000.4685570.020*
C30.51347 (12)0.80175 (10)0.32364 (7)0.0180 (3)
H3A0.4769380.8706590.3243440.022*
H3B0.5105310.7840770.2769070.022*
C40.64332 (12)0.80724 (10)0.36131 (6)0.0154 (2)
H4A0.6810470.7393740.3584930.018*
H4B0.6851520.8585960.3395990.018*
C50.47613 (12)0.61929 (10)0.35048 (7)0.0178 (3)
H5A0.5299270.6098880.3200290.021*
H5B0.4033190.5787090.3327050.021*
C60.53703 (11)0.57515 (10)0.41838 (7)0.0155 (2)
H6A0.4777020.5717350.4460010.019*
H6B0.5623870.5036730.4120680.019*
C70.45393 (12)0.69685 (10)0.53978 (7)0.0159 (3)
H7A0.5189260.6490710.5599180.019*
H7B0.3892440.6550520.5125450.019*
C80.40765 (12)0.74722 (10)0.59474 (7)0.0157 (3)
C90.44373 (12)0.84452 (11)0.61977 (7)0.0192 (3)
H90.4987610.8836630.6021360.023*
C100.39748 (13)0.88323 (12)0.67119 (7)0.0231 (3)
H100.4206150.9493200.6893340.028*
C110.31717 (13)0.82395 (12)0.69555 (7)0.0235 (3)
H110.2830700.8489910.7300520.028*
C120.28788 (13)0.72720 (13)0.66827 (7)0.0234 (3)
H120.2343580.6860800.6858150.028*
C130.74239 (11)0.92003 (9)0.45473 (6)0.0124 (2)
H13A0.7218770.9521930.4939170.015*
H13B0.7325390.9730950.4196240.015*
C140.87150 (11)0.88702 (9)0.47288 (6)0.0114 (2)
C150.95007 (11)0.91641 (9)0.43428 (6)0.0137 (2)
H150.9224380.9551860.3949680.016*
C161.06887 (12)0.88868 (10)0.45363 (7)0.0159 (2)
H161.1233600.9074020.4276080.019*
C171.10652 (11)0.83317 (10)0.51164 (7)0.0153 (2)
H171.1878510.8153950.5270820.018*
C181.02295 (11)0.80406 (10)0.54675 (6)0.0134 (2)
H181.0488980.7647600.5859960.016*
C190.75915 (11)0.59715 (10)0.45125 (6)0.0140 (2)
H19A0.8043080.6562030.4392750.017*
H19B0.7506560.5454930.4153670.017*
C200.83023 (11)0.54968 (10)0.51464 (6)0.0128 (2)
C210.86477 (11)0.44644 (10)0.51565 (7)0.0157 (2)
H210.8391280.4045590.4775260.019*
C220.93683 (12)0.40518 (10)0.57267 (7)0.0186 (3)
H220.9606090.3349380.5742570.022*
C230.97318 (12)0.46874 (10)0.62711 (7)0.0189 (3)
H231.0243630.4435860.6664130.023*
C240.93330 (12)0.56995 (10)0.62305 (7)0.0172 (3)
H240.9577880.6128640.6607740.021*
C250.75950 (11)0.88650 (10)0.61819 (6)0.0144 (2)
C260.73686 (12)0.70277 (10)0.65656 (7)0.0166 (3)
C270.97118 (12)0.88218 (10)0.69752 (6)0.0168 (3)
C280.91548 (15)0.72597 (12)0.75931 (7)0.0258 (3)
C290.75277 (13)0.88608 (12)0.74254 (7)0.0223 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01101 (8)0.00995 (8)0.01015 (8)0.00006 (5)0.00225 (6)0.00090 (5)
Fe10.01742 (10)0.01384 (9)0.01018 (9)0.00202 (7)0.00400 (7)0.00039 (6)
P10.00903 (15)0.00987 (14)0.01244 (15)0.00003 (10)0.00189 (11)0.00160 (11)
O10.0256 (5)0.0146 (4)0.0196 (5)0.0043 (4)0.0062 (4)0.0003 (4)
O20.0267 (5)0.0211 (5)0.0213 (5)0.0078 (4)0.0066 (4)0.0037 (4)
O30.0194 (5)0.0317 (6)0.0281 (6)0.0041 (4)0.0045 (4)0.0057 (5)
O40.0709 (10)0.0367 (7)0.0242 (6)0.0018 (7)0.0055 (6)0.0153 (5)
O50.0357 (7)0.0463 (7)0.0336 (6)0.0003 (6)0.0205 (5)0.0122 (6)
N10.0166 (6)0.0152 (5)0.0202 (6)0.0025 (4)0.0009 (5)0.0033 (4)
N20.0096 (5)0.0132 (5)0.0187 (5)0.0009 (4)0.0035 (4)0.0049 (4)
N30.0122 (5)0.0135 (5)0.0118 (5)0.0035 (4)0.0006 (4)0.0016 (4)
N40.0105 (5)0.0114 (5)0.0147 (5)0.0006 (4)0.0001 (4)0.0006 (4)
N50.0132 (5)0.0264 (6)0.0169 (6)0.0024 (4)0.0021 (4)0.0032 (5)
N60.0120 (5)0.0109 (5)0.0115 (5)0.0010 (4)0.0027 (4)0.0003 (4)
N70.0136 (5)0.0119 (5)0.0133 (5)0.0006 (4)0.0013 (4)0.0015 (4)
C10.0116 (6)0.0223 (7)0.0254 (7)0.0005 (5)0.0016 (5)0.0061 (5)
C20.0112 (6)0.0166 (6)0.0227 (7)0.0034 (5)0.0032 (5)0.0051 (5)
C30.0179 (7)0.0174 (6)0.0153 (6)0.0043 (5)0.0033 (5)0.0042 (5)
C40.0162 (6)0.0167 (6)0.0121 (6)0.0026 (5)0.0007 (5)0.0024 (5)
C50.0174 (6)0.0163 (6)0.0167 (6)0.0044 (5)0.0023 (5)0.0007 (5)
C60.0151 (6)0.0123 (6)0.0175 (6)0.0035 (5)0.0000 (5)0.0002 (5)
C70.0129 (6)0.0138 (6)0.0216 (7)0.0012 (5)0.0055 (5)0.0032 (5)
C80.0098 (6)0.0190 (6)0.0173 (6)0.0023 (5)0.0011 (5)0.0045 (5)
C90.0152 (6)0.0184 (6)0.0230 (7)0.0026 (5)0.0021 (5)0.0031 (5)
C100.0229 (7)0.0224 (7)0.0206 (7)0.0081 (6)0.0023 (6)0.0001 (5)
C110.0176 (7)0.0382 (8)0.0130 (6)0.0097 (6)0.0002 (5)0.0006 (6)
C120.0138 (6)0.0393 (8)0.0163 (7)0.0006 (6)0.0016 (5)0.0049 (6)
C130.0112 (6)0.0106 (5)0.0142 (6)0.0012 (4)0.0009 (4)0.0027 (4)
C140.0122 (6)0.0096 (5)0.0117 (6)0.0024 (4)0.0014 (4)0.0014 (4)
C150.0166 (6)0.0126 (5)0.0122 (6)0.0028 (5)0.0039 (5)0.0000 (4)
C160.0162 (6)0.0158 (6)0.0182 (6)0.0042 (5)0.0090 (5)0.0028 (5)
C170.0108 (6)0.0150 (6)0.0203 (6)0.0001 (5)0.0037 (5)0.0028 (5)
C180.0129 (6)0.0130 (6)0.0139 (6)0.0007 (4)0.0019 (5)0.0003 (4)
C190.0138 (6)0.0150 (6)0.0129 (6)0.0028 (5)0.0023 (5)0.0002 (5)
C200.0109 (6)0.0141 (6)0.0136 (6)0.0003 (4)0.0032 (4)0.0007 (5)
C210.0142 (6)0.0146 (6)0.0178 (6)0.0004 (5)0.0025 (5)0.0024 (5)
C220.0191 (7)0.0132 (6)0.0231 (7)0.0037 (5)0.0038 (5)0.0022 (5)
C230.0198 (7)0.0179 (6)0.0168 (6)0.0051 (5)0.0003 (5)0.0047 (5)
C240.0197 (7)0.0161 (6)0.0138 (6)0.0019 (5)0.0004 (5)0.0003 (5)
C250.0144 (6)0.0160 (6)0.0142 (6)0.0019 (5)0.0059 (5)0.0005 (5)
C260.0167 (6)0.0179 (6)0.0155 (6)0.0002 (5)0.0044 (5)0.0013 (5)
C270.0202 (7)0.0180 (6)0.0119 (6)0.0037 (5)0.0027 (5)0.0028 (5)
C280.0376 (9)0.0222 (7)0.0160 (7)0.0068 (6)0.0026 (6)0.0020 (6)
C290.0233 (7)0.0274 (7)0.0177 (7)0.0060 (6)0.0079 (6)0.0021 (6)
Geometric parameters (Å, º) top
Ni1—Fe12.4828 (4)C3—H3B0.9900
Ni1—C251.8983 (13)C4—H4A0.9900
Ni1—C261.9805 (13)C4—H4B0.9900
Ni1—N62.1167 (11)C5—C61.5358 (18)
Ni1—N72.1394 (11)C5—H5A0.9900
Ni1—P12.2276 (4)C5—H5B0.9900
Fe1—C291.7781 (15)C6—H6A0.9900
Fe1—C271.7946 (14)C6—H6B0.9900
Fe1—C281.7971 (16)C7—C81.5143 (19)
Fe1—C261.9046 (14)C7—H7A0.9900
Fe1—C251.9304 (13)C7—H7B0.9900
P1—N21.6792 (12)C8—C91.3921 (19)
P1—N41.6841 (11)C9—C101.392 (2)
P1—N31.6944 (11)C9—H90.9500
P1—N13.2518 (13)C10—C111.386 (2)
O1—C251.1821 (16)C10—H100.9500
O2—C261.1754 (17)C11—C121.387 (2)
O3—C271.1509 (17)C11—H110.9500
O4—C281.148 (2)C12—H120.9500
O5—C291.1531 (19)C13—C141.5153 (17)
N1—C11.4438 (19)C13—H13A0.9900
N1—C51.4461 (17)C13—H13B0.9900
N1—C31.4479 (17)C14—C151.3941 (17)
N2—C71.4566 (16)C15—C161.3875 (19)
N2—C21.4653 (17)C15—H150.9500
N3—C131.4711 (16)C16—C171.3855 (19)
N3—C41.4731 (16)C16—H160.9500
N4—C191.4640 (16)C17—C181.3882 (18)
N4—C61.4693 (16)C17—H170.9500
N5—C121.343 (2)C18—H180.9500
N5—C81.3474 (17)C19—C201.5146 (17)
N6—C181.3441 (16)C19—H19A0.9900
N6—C141.3556 (16)C19—H19B0.9900
N7—C241.3492 (17)C20—C211.3962 (17)
N7—C201.3522 (16)C21—C221.3902 (19)
C1—C21.533 (2)C21—H210.9500
C1—H1A0.9900C22—C231.385 (2)
C1—H1B0.9900C22—H220.9500
C2—H2A0.9900C23—C241.3875 (18)
C2—H2B0.9900C23—H230.9500
C3—C41.5280 (18)C24—H240.9500
C3—H3A0.9900
C28—Fe1—C25168.88 (6)N3—C4—H4B108.8
C27—Fe1—C26144.68 (6)C3—C4—H4B108.8
C26—Ni1—N6155.94 (5)H4A—C4—H4B107.7
C25—Ni1—N7159.65 (5)N1—C5—C6115.16 (11)
Ni1—C25—Fe180.85 (5)N1—C5—H5A108.5
Fe1—C26—Ni179.42 (5)C6—C5—H5A108.5
C25—Ni1—C2681.98 (6)N1—C5—H5B108.5
C25—Ni1—N692.52 (5)C6—C5—H5B108.5
C26—Ni1—N786.91 (5)H5A—C5—H5B107.5
N6—Ni1—N790.71 (4)N4—C6—C5115.63 (10)
C25—Ni1—P1103.14 (4)N4—C6—H6A108.4
C26—Ni1—P1109.64 (4)C5—C6—H6A108.4
N6—Ni1—P194.41 (3)N4—C6—H6B108.4
N7—Ni1—P196.63 (3)C5—C6—H6B108.4
C25—Ni1—Fe150.14 (4)H6A—C6—H6B107.4
C26—Ni1—Fe148.94 (4)N2—C7—C8115.39 (11)
N6—Ni1—Fe1110.45 (3)N2—C7—H7A108.4
N7—Ni1—Fe1110.13 (3)C8—C7—H7A108.4
P1—Ni1—Fe1142.544 (13)N2—C7—H7B108.4
C29—Fe1—C27107.71 (6)C8—C7—H7B108.4
C29—Fe1—C28101.57 (7)H7A—C7—H7B107.5
C27—Fe1—C2890.81 (7)N5—C8—C9122.97 (13)
C29—Fe1—C26106.61 (6)N5—C8—C7113.97 (12)
C28—Fe1—C2690.34 (7)C9—C8—C7123.04 (12)
C29—Fe1—C2588.96 (6)C10—C9—C8118.59 (13)
C27—Fe1—C2589.34 (6)C10—C9—H9120.7
C26—Fe1—C2583.15 (6)C8—C9—H9120.7
C29—Fe1—Ni1130.16 (5)C11—C10—C9119.06 (14)
C27—Fe1—Ni198.42 (4)C11—C10—H10120.5
C28—Fe1—Ni1120.04 (5)C9—C10—H10120.5
C26—Fe1—Ni151.64 (4)C10—C11—C12118.31 (14)
C25—Fe1—Ni149.01 (4)C10—C11—H11120.8
N2—P1—N4105.29 (6)C12—C11—H11120.8
N2—P1—N3105.07 (5)N5—C12—C11123.78 (14)
N4—P1—N3105.28 (5)N5—C12—H12118.1
N2—P1—Ni1120.47 (4)C11—C12—H12118.1
N4—P1—Ni1109.00 (4)N3—C13—C14114.05 (10)
N3—P1—Ni1110.62 (4)N3—C13—H13A108.7
N2—P1—N166.17 (5)C14—C13—H13A108.7
N4—P1—N166.91 (4)N3—C13—H13B108.7
N3—P1—N166.56 (4)C14—C13—H13B108.7
Ni1—P1—N1173.31 (3)H13A—C13—H13B107.6
C1—N1—C5120.69 (11)N6—C14—C15121.67 (11)
C1—N1—C3119.87 (11)N6—C14—C13117.44 (10)
C5—N1—C3118.84 (12)C15—C14—C13120.88 (11)
C1—N1—P187.48 (8)C16—C15—C14119.60 (12)
C5—N1—P187.80 (7)C16—C15—H15120.2
C3—N1—P187.03 (7)C14—C15—H15120.2
C7—N2—C2116.50 (10)C17—C16—C15118.73 (12)
C7—N2—P1116.56 (9)C17—C16—H16120.6
C2—N2—P1123.92 (9)C15—C16—H16120.6
C13—N3—C4115.52 (10)C16—C17—C18118.65 (12)
C13—N3—P1116.08 (8)C16—C17—H17120.7
C4—N3—P1122.69 (8)C18—C17—H17120.7
C19—N4—C6118.27 (10)N6—C18—C17123.31 (12)
C19—N4—P1114.31 (8)N6—C18—H18118.3
C6—N4—P1126.42 (9)C17—C18—H18118.3
C12—N5—C8117.27 (13)N4—C19—C20114.39 (10)
C18—N6—C14117.94 (11)N4—C19—H19A108.7
C18—N6—Ni1118.19 (8)C20—C19—H19A108.7
C14—N6—Ni1123.43 (8)N4—C19—H19B108.7
C24—N7—C20117.48 (11)C20—C19—H19B108.7
C24—N7—Ni1116.85 (9)H19A—C19—H19B107.6
C20—N7—Ni1125.09 (8)N7—C20—C21121.89 (12)
N1—C1—C2113.21 (11)N7—C20—C19118.11 (11)
N1—C1—H1A108.9C21—C20—C19119.97 (11)
C2—C1—H1A108.9C22—C21—C20119.72 (12)
N1—C1—H1B108.9C22—C21—H21120.1
C2—C1—H1B108.9C20—C21—H21120.1
H1A—C1—H1B107.7C23—C22—C21118.52 (12)
N2—C2—C1114.26 (11)C23—C22—H22120.7
N2—C2—H2A108.7C21—C22—H22120.7
C1—C2—H2A108.7C22—C23—C24118.61 (12)
N2—C2—H2B108.7C22—C23—H23120.7
C1—C2—H2B108.7C24—C23—H23120.7
H2A—C2—H2B107.6N7—C24—C23123.70 (12)
N1—C3—C4113.62 (11)N7—C24—H24118.2
N1—C3—H3A108.8C23—C24—H24118.2
C4—C3—H3A108.8O1—C25—Ni1136.54 (11)
N1—C3—H3B108.8O1—C25—Fe1142.51 (11)
C4—C3—H3B108.8O2—C26—Fe1149.46 (11)
H3A—C3—H3B107.7O2—C26—Ni1130.79 (11)
N3—C4—C3113.63 (11)O3—C27—Fe1179.54 (13)
N3—C4—H4A108.8O4—C28—Fe1177.65 (15)
C3—C4—H4A108.8O5—C29—Fe1175.78 (14)
N4—P1—N2—C764.08 (11)N2—C7—C8—C924.33 (18)
N3—P1—N2—C7174.98 (9)N5—C8—C9—C100.7 (2)
Ni1—P1—N2—C759.46 (11)C7—C8—C9—C10178.84 (13)
N1—P1—N2—C7119.67 (10)C8—C9—C10—C110.1 (2)
N4—P1—N2—C295.51 (11)C9—C10—C11—C121.2 (2)
N3—P1—N2—C215.39 (12)C8—N5—C12—C110.7 (2)
Ni1—P1—N2—C2140.95 (9)C10—C11—C12—N51.5 (2)
N1—P1—N2—C239.92 (10)C4—N3—C13—C1482.37 (13)
N2—P1—N3—C13112.78 (9)P1—N3—C13—C1471.80 (12)
N4—P1—N3—C13136.32 (9)C18—N6—C14—C153.48 (17)
Ni1—P1—N3—C1318.71 (10)Ni1—N6—C14—C15168.78 (9)
N1—P1—N3—C13167.84 (10)C18—N6—C14—C13176.16 (11)
N2—P1—N3—C495.07 (11)Ni1—N6—C14—C1311.58 (15)
N4—P1—N3—C415.83 (11)N3—C13—C14—N670.00 (14)
Ni1—P1—N3—C4133.44 (9)N3—C13—C14—C15110.36 (13)
N1—P1—N3—C440.01 (9)N6—C14—C15—C162.31 (19)
N2—P1—N4—C19173.60 (9)C13—C14—C15—C16177.31 (11)
N3—P1—N4—C1975.66 (10)C14—C15—C16—C170.75 (19)
Ni1—P1—N4—C1943.04 (9)C15—C16—C17—C182.47 (19)
N1—P1—N4—C19131.28 (9)C14—N6—C18—C171.67 (18)
N2—P1—N4—C618.13 (12)Ni1—N6—C18—C17171.00 (10)
N3—P1—N4—C692.61 (11)C16—C17—C18—N61.3 (2)
Ni1—P1—N4—C6148.69 (10)C6—N4—C19—C20109.08 (13)
N1—P1—N4—C636.99 (10)P1—N4—C19—C2081.62 (12)
C5—N1—C1—C2108.47 (14)C24—N7—C20—C213.25 (18)
C3—N1—C1—C262.59 (16)Ni1—N7—C20—C21167.68 (9)
P1—N1—C1—C222.53 (10)C24—N7—C20—C19174.58 (11)
C7—N2—C2—C182.09 (14)Ni1—N7—C20—C1914.49 (16)
P1—N2—C2—C177.51 (14)N4—C19—C20—N764.57 (15)
N1—C1—C2—N258.08 (15)N4—C19—C20—C21117.56 (13)
C1—N1—C3—C4108.77 (14)N7—C20—C21—C222.2 (2)
C5—N1—C3—C462.46 (16)C19—C20—C21—C22175.61 (12)
P1—N1—C3—C423.39 (11)C20—C21—C22—C230.5 (2)
C13—N3—C4—C3129.51 (11)C21—C22—C23—C241.9 (2)
P1—N3—C4—C378.20 (13)C20—N7—C24—C231.8 (2)
N1—C3—C4—N359.78 (15)Ni1—N7—C24—C23169.90 (11)
C1—N1—C5—C665.16 (16)C22—C23—C24—N70.8 (2)
C3—N1—C5—C6105.99 (14)C26—Ni1—C25—O1141.55 (16)
P1—N1—C5—C620.60 (11)N6—Ni1—C25—O161.98 (15)
C19—N4—C6—C597.58 (13)N7—Ni1—C25—O1160.87 (12)
P1—N4—C6—C570.27 (15)P1—Ni1—C25—O133.15 (15)
N1—C5—C6—N452.43 (16)Fe1—Ni1—C25—O1176.74 (18)
C2—N2—C7—C875.67 (15)C26—Ni1—C25—Fe141.71 (5)
P1—N2—C7—C8123.20 (11)N6—Ni1—C25—Fe1114.76 (4)
C12—N5—C8—C90.4 (2)N7—Ni1—C25—Fe115.87 (16)
C12—N5—C8—C7178.71 (12)P1—Ni1—C25—Fe1150.12 (3)
N2—C7—C8—N5157.37 (11)
Hydrogen-bond geometry (Å, º) top
Cg6 and Cg7 are the centroids of pyridine rings N5/C8–C12 and N6/C14–C18, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···O20.992.493.3100 (18)140
C13—H13A···O10.992.213.1372 (16)156
C5—H5A···O5i0.992.513.4713 (19)164
C15—H15···O3ii0.952.523.4048 (17)156
C16—H16···O1ii0.952.593.4499 (18)151
C17—H17···Cg6iii0.952.833.6231 (16)142
C22—H22···Cg7iv0.952.993.8527 (15)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+2, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1.
 

Acknowledgements

We are grateful to the UCI Department of Chemistry, X-ray Crystallography Facility, for use of the Bruker SMART APEXII diffractometer.

Funding information

Funding for this research was provided by: National Science Foundation (award No. 1554744 to JYY).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CrossRef Web of Science Google Scholar
First citationBarton, B. E., Whaley, C. M., Rauchfuss, T. B. & Gray, D. L. (2009). J. Am. Chem. Soc. 131, 6942–6943.  CrossRef PubMed CAS Google Scholar
First citationBehnke, S. L. & Shafaat, H. S. (2016). Comments Inorg. Chem. 36, 123–140.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, M. E., Barton, B. E., Gray, D. L., Mack, A. E. & Rauchfuss, T. B. (2011). Inorg. Chem. 50, 9554–9563.  CrossRef CAS Google Scholar
First citationEvans, R. M., Brooke, E. J., Wehlin, S. A. M., Nomerotskaia, E., Sargent, F., Carr, S. B., Phillips, S. E. V. & Armstrong, F. A. (2016). Nat. Chem. Biol. 12, 46–50.  CrossRef CAS Google Scholar
First citationGarcin, E., Vernede, X., Hatchikian, E. C., Volbeda, A., Frey, M. & Fontecilla-Camps, J. C. (1999). Structure, 7, 557–566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaur-Ghumaan, S. & Stein, M. (2014). Dalton Trans. 43, 9392–9405.  CAS Google Scholar
First citationLacasse, M. J. & Zamble, D. B. (2016). Biochemistry, 55, 1689–1701.  CrossRef CAS Google Scholar
First citationLiaw, W.-F., Chiang, C.-Y., Lee, G.-H., Peng, S.-M., Lai, C.-H. & Darensbourg, M. Y. (2000). Inorg. Chem. 39, 480–484.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManor, B. C. & Rauchfuss, T. B. (2013). J. Am. Chem. Soc. 135, 11895–11900.  CrossRef CAS Google Scholar
First citationMatthews, A. D., Gravalis, G. M., Schley, N. D. & Johnson, M. W. (2018). Organometallics, 37, 3073–3078.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, L.-C., Lu, Y., Zhu, L. & Li, Q.-L. (2017). Organometallics, 36, 750–760.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, P., Yang, D., Li, Y., Zhang, Y., Su, L., Wang, B. & Qu, J. (2016). Organometallics, 35, 751–757.  CrossRef CAS Google Scholar
First citationTanino, S., Li, Z., Ohki, Y. & Tatsumi, K. (2009). Inorg. Chem. 48, 2358–2360.  CrossRef CAS Google Scholar
First citationThammavongsy, Z., Cunningham, D. W., Sutthirat, N., Eisenhart, R. J., Ziller, J. W. & Yang, J. Y. (2018). Dalton Trans. 47, 14101–14110.  CrossRef CAS Google Scholar
First citationVerkade, J. G. (1993). Acc. Chem. Res. 26, 483–489.  CrossRef CAS Web of Science Google Scholar
First citationWalther, D., Gessler, S. & Sieler, J. (1995). Z. Anorg. Allg. Chem. 621, 635–639.  CrossRef CAS Google Scholar
First citationZhu, W., Marr, A. C., Wang, Q., Neese, F., Spencer, D. J. E., Blake, A. J., Cooke, P. A., Wilson, C. & Schröder, M. (2005). Proc. Natl Acad. Sci. USA, 102, 18280–18285.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds