research communications
g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine derivatives
and Hirshfeld surface analysis of two 5,11-methanobenzo[aArtvin Coruh University, Science-Technology Research and Application Center, Artvin 08000, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Kurupelit, Samsun, Turkey, cCankiri Karatekin University, Faculty of Science, Department of Physics, 18100 Cankiri, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64 Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua
In the title compounds, 9-bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine, C13H13BrN4O (I), and 7-methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine, C18H17N5O2 (II), the triazole ring is inclined to the benzene ring by 85.15 (9) and 76.98 (5)° in compounds I and II, respectively. In II, the pyridine ring is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. In the crystal of I, pairs of N—H⋯N hydrogen bonds link the molecules to form inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π and C—Br⋯π interactions forming layers parallel to the bc plane. In the crystal of II, molecules are linked by N—H⋯N and C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the molecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of I suggests that the most significant contributions to the crystal packing are H⋯H (42.4%) and O⋯H/H⋯O (17.9%) contacts. For compound II, the H⋯H (48.5%), C⋯H/H⋯C (19.6%) and N⋯H/H⋯N (16.9%) interactions are the most important contributions.
1. Chemical context
In organic synthesis, a useful method to develop a chemical complexity from simple starting building blocks is the application of multicomponent reactions (MCRs) (Dömling et al., 2012; Van der Heijden et al., 2013). When aminoazoles having at least two non-equivalent reaction centres are used as building blocks , the method is generally characterized by ambiguous selectivity and different reaction outcomes (Murlykina et al., 2018). According to Sedash et al., Biginelli-like MCRs of 3-amino-1,2,4-triazole with and α-carbonyl CH-acids may generate several types of heterocyclic products (Sedash et al., 2012). The same starting compound with acetone and a 2-hydroxybenzaldehyde derivative under acidic conditions leads to the formation of different products (Gorobets et al., 2010; Kondratiuk et al., 2016; Gümüş et al., 2017; Komykhov et al., 2017).
Continuing our studies on the synthesis and et al., 2018; Gümüş et al., 2017, 2018a,b), two new novel Biginelli-like assemblies of 3-amino-5-methyl-1,2,4-triazole/5-amino-3-(pyridin-4-yl)-1,2,4-triazole with acetone and 5-bromosalicylaldehyde/o-vanillin have been developed to offer easy access to the title compounds, I and II, examples of this new class of heterocycles.
analyses of derivatives of a new type of oxygen-bridged Biginelli compound (Aydemir2. Structural commentary
The molecular structures of compounds I and II are illustrated in Figs. 1 and 2, respectively. The conformations of the two compounds are very similar, as shown by the structural overlap of the two compounds [r.m.s. deviation = 0.005 Å (Mercury; Macrae et al., 2008)], illustrated in Fig. 3. In I, the triazole ring (N2–N4/C11/C12) is inclined to the benzene ring (C1–C6) by 85.12 (12)°, compared to 76.96 (8)° in II. In the central 6-oxa-2,4λ2-diazabicyclo[3.3.1]nonane moiety, ring (N1/N4/C7–C9/C11) has a half-chair conformation in both compounds, while ring O1/C5–C9 has an with atom C8 as the flap, in both compounds. The mean planes of these two rings are almost normal to each other, with a dihedral angle of 86.94 (11)° in I and 88.69 (8)° in II. In compound II, the pyridine ring (N5/C13–C17) is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. The bond lengths and angles in the title compounds are very close to those observed for similar compounds, for example, the pyridin-3-yl analogue of compound II (Gümüş et al., 2018); see also section Database survey.
3. Supramolecular features
In the crystal of I, molecules are linked by a pair of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Table 1 and Fig. 4). The dimers are linked by C—H⋯π and C—Br⋯π interactions forming layers parallel to the bc plane (Table 1 and Fig. 4).
In the crystal of II, molecules are connected via intermolecular N—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Table 2 and Fig. 5). Within the chains there are R22(10), R22(11) and R22(9) ring motifs present (Table 2 and Fig. 5).
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for the triazolo-benzoxadiazocine skeleton yielded 4 hits, namely 7-ethoxy-5-methyl-11,12-dihydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine (HUVCEH; Gorobets et al., 2010), 7-ethoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5H-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine (RETCAX; Aydemir et al., 2018), 7-methoxy-5-methyl-2-phenyl-11,12-dihydro-5H-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine (SILBEX; Gümüş et al., 2018b), with two independent molecules in the and 7-methoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5H-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine (WEXYUM; Gümüş et al., 2018a), also with two independent molecules per asymmetric unit.
The conformations of all four compounds resemble those of compounds I and II, with the dihedral angle between the triazole and benzene rings varying from ca 71.20 to 87.37°, compared to 85.12 (12) and 76.96 (8)° in compounds I and II, respectively.
The geometrical parameters of the four compounds are very similar to each other and to those of compounds I and II. The C9—O1 and C5—O1 bond lengths are 1.456 (3) and 1.375 (3) Å, respectively, in I and 1.441 (2) and 1.385 (2) Å in II, compared to ca 1.445 and 1.374 Å in HUVCEH, 1.444 and 1.390 Å in RETCAX, 1.343/1.436 and 1.381/1.381 Å in SILBEX, and 1.429/1.444 and 1.377/1.380 Å in WEXYUW. In addition, the N3—N4 bond length is 1.388 (3) Å in I and 1.381 (2) Å in II, compared to ca 1.385, 1.389, 1.376/1.382 and 1.379/1.381 Å in HUVCEH, RETCAX, SILBEX and WEXYUW, respectively.
5. Hirshfeld surface analysis
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surfaces mapped over a fixed colour scale of −0.378 (red) to 1.282 Å (blue) for compound I and from −0.259 (red) to 1.216 Å (blue) for compound II. The red spots on the surface indicate the intermolecular contacts involved in the hydrogen bonds. In Fig. 6(a), the identified red spot is attributed to the H⋯N close contacts. Also in Fig. 6(a), the N—H⋯N contacts are shown in the dnorm mapped surface as deep-red depression areas showing the interaction between the neighbouring molecules for compound I. Similarly, the red spots on the surface correspond to C—H⋯O and N—H⋯N hydrogen bonds in compound II (Fig. 6b).
Fig. 7(a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface of compound I represented in normal mode. 2D fingerprint plots provide information about the major and minor percentage contribution of the interatomic contacts in compound I. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint (Zaini et al., 2019). The fingerprint plots (Fig. 7b) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (42.4%). In addition, C⋯H/H⋯C, N⋯H/H⋯N and Br⋯H/H⋯Br contacts contribute 17.9, 14.6 and 14.1%, respectively, to the Hirshfeld surface. Much weaker O⋯H/H⋯O (5.0%), Br⋯N/N⋯Br (2.7%), Br⋯C/C⋯Br (1.8%) and Br⋯Br (1.0%) contacts also occur. In particular, the O⋯H/H⋯O contacts indicate the presence of intermolecular C—H⋯O interactions.
Similarly, for compound II, the H⋯H interactions appear in the middle of the scattered points in the 2D fingerprint plots with a contribution to the overall Hirshfeld surface of 48.5% (Fig. 8b). The contribution from the N⋯H/H⋯N contacts, corresponding to the N—H⋯N interactions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond interaction (16.9%) (Fig. 8d). The whole fingerprint region and all other interactions are displayed in Fig. 8.
Views of the molecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory, for compounds I and II are shown in Figs. 9(a) and 9(b), respectively. In Fig. 9(a), the N—H⋯N hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively. Also, in Figs. 9(a) and 9(b), the N—H⋯N and C—H⋯O contacts in compounds I and II are given in the molecular electrostatic potential mapped surface showing the interaction between neighbouring molecules.
6. Synthesis and crystallization
The synthesis of the title compounds (Fig. 10) has been described by Gümüş et al. (2017). 3-Amino-5-methyl-1,2,4-triazole/3-amino-5-(pyridin-4-yl)-1,2,4-triazole (1.0 mmol), 5-bromosalicylaldehyde (1.0 mmol) for compound I [o-vanillin (1.0 mmol) for compound II], acetone (0.22 ml, 3.0 mmol), and absolute EtOH (2.0 ml) were mixed in a microwave process vial, then a 4 N solution of HCl in dioxane (0.07 ml, 0.3 mmol) was added. The mixtures were irradiated at 423 K for 30 min. The reaction mixtures were cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the products. The precipitates were filtered off, washed with EtOH (1.0 ml) and Et2O (3 × 1.0 ml), and then dried. The compounds were obtained in the form of white solids. They were recrystallized from ethanol yielding colourless prismatic crystals for both compounds I and II.
7. Refinement
Crystal data, data collection and structure . For compound I, the nitrogen-bound H atom was located in a difference Fourier map and refined subject to a restraint of N—H = 0.86 (2) Å, while for compound II, the nitrogen-bound H atom was also located in a difference Fourier map and was freely refined. For both compounds, the C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989019003700/su5490sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003700/su5490Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019003700/su5490IIsup3.hkl
For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C13H13BrN4O | Z = 2 |
Mr = 321.18 | F(000) = 324 |
Triclinic, P1 | Dx = 1.623 Mg m−3 |
a = 6.1446 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7407 (8) Å | Cell parameters from 9169 reflections |
c = 11.6801 (11) Å | θ = 2.4–31.5° |
α = 109.657 (7)° | µ = 3.13 mm−1 |
β = 92.325 (8)° | T = 296 K |
γ = 91.664 (7)° | Prism, colourless |
V = 657.13 (11) Å3 | 0.34 × 0.19 × 0.11 mm |
Stoe IPDS 2 diffractometer | 4242 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2223 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.051 |
rotation method scans | θmax = 31.2°, θmin = 2.4° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −8→8 |
Tmin = 0.477, Tmax = 0.748 | k = −14→13 |
12939 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: mixed |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0513P)2] where P = (Fo2 + 2Fc2)/3 |
4242 reflections | (Δ/σ)max < 0.001 |
178 parameters | Δρmax = 0.28 e Å−3 |
1 restraint | Δρmin = −0.70 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.50800 (8) | −0.00902 (3) | 0.68588 (4) | 0.09386 (19) | |
O1 | 0.1825 (3) | 0.59496 (18) | 0.89977 (14) | 0.0477 (4) | |
N1 | 0.5602 (3) | 0.5822 (2) | 0.66868 (17) | 0.0408 (4) | |
H1A | 0.613 (4) | 0.519 (2) | 0.6116 (19) | 0.041 (7)* | |
N2 | 0.2699 (3) | 0.63495 (19) | 0.54765 (16) | 0.0406 (4) | |
N3 | 0.0498 (3) | 0.7412 (2) | 0.70145 (17) | 0.0452 (4) | |
N4 | 0.2379 (3) | 0.69449 (19) | 0.74411 (16) | 0.0392 (4) | |
C1 | 0.5355 (4) | 0.2973 (3) | 0.7486 (2) | 0.0473 (5) | |
H1 | 0.669578 | 0.280839 | 0.713372 | 0.057* | |
C2 | 0.4059 (5) | 0.1815 (3) | 0.7523 (2) | 0.0532 (6) | |
C3 | 0.2065 (5) | 0.2025 (3) | 0.8038 (2) | 0.0541 (6) | |
H3 | 0.120166 | 0.123167 | 0.805244 | 0.065* | |
C4 | 0.1360 (4) | 0.3423 (3) | 0.8533 (2) | 0.0483 (6) | |
H4 | 0.002492 | 0.357929 | 0.889189 | 0.058* | |
C5 | 0.2649 (4) | 0.4592 (2) | 0.84915 (19) | 0.0414 (5) | |
C6 | 0.4666 (4) | 0.4381 (2) | 0.79711 (19) | 0.0402 (5) | |
C7 | 0.6010 (4) | 0.5663 (2) | 0.7867 (2) | 0.0415 (5) | |
H7 | 0.756370 | 0.552230 | 0.799071 | 0.050* | |
C8 | 0.5347 (4) | 0.7044 (3) | 0.8840 (2) | 0.0465 (5) | |
H8A | 0.576019 | 0.701721 | 0.964269 | 0.056* | |
H8B | 0.607448 | 0.789210 | 0.874330 | 0.056* | |
C9 | 0.2895 (4) | 0.7133 (2) | 0.87046 (19) | 0.0433 (5) | |
C10 | 0.1984 (5) | 0.8514 (3) | 0.9542 (2) | 0.0613 (7) | |
H10A | 0.042029 | 0.844207 | 0.945156 | 0.092* | |
H10B | 0.251676 | 0.933353 | 0.933786 | 0.092* | |
H10C | 0.243425 | 0.864266 | 1.037001 | 0.092* | |
C11 | 0.3650 (4) | 0.6328 (2) | 0.65048 (19) | 0.0355 (4) | |
C12 | 0.0793 (4) | 0.7029 (2) | 0.5845 (2) | 0.0437 (5) | |
C13 | −0.0777 (5) | 0.7335 (3) | 0.4974 (3) | 0.0612 (7) | |
H13A | −0.030509 | 0.821212 | 0.483641 | 0.092* | |
H13B | −0.219248 | 0.745678 | 0.530443 | 0.092* | |
H13C | −0.085106 | 0.653506 | 0.421778 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.1300 (4) | 0.04262 (16) | 0.1075 (3) | 0.01035 (16) | 0.0421 (2) | 0.01877 (15) |
O1 | 0.0489 (10) | 0.0537 (9) | 0.0436 (9) | 0.0088 (7) | 0.0140 (7) | 0.0188 (7) |
N1 | 0.0360 (10) | 0.0454 (9) | 0.0406 (10) | 0.0051 (8) | 0.0096 (8) | 0.0129 (8) |
N2 | 0.0446 (11) | 0.0401 (9) | 0.0375 (9) | 0.0031 (8) | 0.0050 (8) | 0.0134 (7) |
N3 | 0.0408 (11) | 0.0513 (10) | 0.0448 (11) | 0.0092 (8) | 0.0046 (9) | 0.0170 (8) |
N4 | 0.0369 (10) | 0.0436 (9) | 0.0364 (9) | 0.0062 (8) | 0.0065 (8) | 0.0118 (7) |
C1 | 0.0491 (14) | 0.0480 (12) | 0.0449 (13) | 0.0068 (10) | 0.0054 (10) | 0.0152 (10) |
C2 | 0.0699 (18) | 0.0412 (11) | 0.0495 (14) | 0.0020 (11) | 0.0044 (13) | 0.0163 (10) |
C3 | 0.0623 (17) | 0.0528 (13) | 0.0510 (14) | −0.0091 (12) | 0.0021 (12) | 0.0237 (11) |
C4 | 0.0442 (14) | 0.0637 (14) | 0.0422 (12) | −0.0030 (11) | 0.0054 (10) | 0.0249 (11) |
C5 | 0.0450 (13) | 0.0485 (11) | 0.0329 (10) | 0.0042 (10) | 0.0029 (9) | 0.0164 (9) |
C6 | 0.0393 (13) | 0.0452 (11) | 0.0363 (11) | 0.0010 (9) | −0.0012 (9) | 0.0145 (9) |
C7 | 0.0326 (12) | 0.0454 (11) | 0.0458 (12) | 0.0020 (9) | 0.0009 (9) | 0.0147 (9) |
C8 | 0.0479 (14) | 0.0454 (11) | 0.0423 (12) | −0.0034 (10) | −0.0057 (10) | 0.0111 (9) |
C9 | 0.0495 (14) | 0.0434 (11) | 0.0350 (11) | 0.0058 (10) | 0.0063 (10) | 0.0098 (9) |
C10 | 0.0732 (19) | 0.0571 (14) | 0.0457 (14) | 0.0131 (13) | 0.0099 (13) | 0.0051 (11) |
C11 | 0.0351 (12) | 0.0344 (9) | 0.0367 (11) | −0.0019 (8) | 0.0059 (9) | 0.0114 (8) |
C12 | 0.0441 (13) | 0.0452 (11) | 0.0433 (13) | 0.0040 (10) | 0.0045 (10) | 0.0163 (9) |
C13 | 0.0602 (18) | 0.0716 (17) | 0.0561 (15) | 0.0146 (14) | 0.0005 (13) | 0.0267 (13) |
Br1—C2 | 1.892 (2) | C4—C5 | 1.383 (3) |
O1—C5 | 1.375 (3) | C4—H4 | 0.9300 |
O1—C9 | 1.456 (3) | C5—C6 | 1.393 (3) |
N1—C11 | 1.346 (3) | C6—C7 | 1.518 (3) |
N1—C7 | 1.451 (3) | C7—C8 | 1.519 (3) |
N1—H1A | 0.825 (16) | C7—H7 | 0.9800 |
N2—C11 | 1.321 (3) | C8—C9 | 1.517 (4) |
N2—C12 | 1.374 (3) | C8—H8A | 0.9700 |
N3—C12 | 1.311 (3) | C8—H8B | 0.9700 |
N3—N4 | 1.388 (3) | C9—C10 | 1.511 (3) |
N4—C11 | 1.350 (3) | C10—H10A | 0.9600 |
N4—C9 | 1.445 (3) | C10—H10B | 0.9600 |
C1—C2 | 1.375 (4) | C10—H10C | 0.9600 |
C1—C6 | 1.383 (3) | C12—C13 | 1.482 (4) |
C1—H1 | 0.9300 | C13—H13A | 0.9600 |
C2—C3 | 1.377 (4) | C13—H13B | 0.9600 |
C3—C4 | 1.378 (4) | C13—H13C | 0.9600 |
C3—H3 | 0.9300 | ||
C5—O1—C9 | 116.13 (17) | C8—C7—H7 | 109.7 |
C11—N1—C7 | 115.79 (18) | C9—C8—C7 | 108.11 (18) |
C11—N1—H1A | 119.1 (17) | C9—C8—H8A | 110.1 |
C7—N1—H1A | 114.7 (17) | C7—C8—H8A | 110.1 |
C11—N2—C12 | 103.07 (18) | C9—C8—H8B | 110.1 |
C12—N3—N4 | 101.80 (18) | C7—C8—H8B | 110.1 |
C11—N4—N3 | 109.66 (17) | H8A—C8—H8B | 108.4 |
C11—N4—C9 | 125.84 (19) | N4—C9—O1 | 109.02 (17) |
N3—N4—C9 | 124.48 (18) | N4—C9—C10 | 111.4 (2) |
C2—C1—C6 | 120.1 (2) | O1—C9—C10 | 105.3 (2) |
C2—C1—H1 | 119.9 | N4—C9—C8 | 106.70 (19) |
C6—C1—H1 | 119.9 | O1—C9—C8 | 109.36 (18) |
C1—C2—C3 | 121.2 (2) | C10—C9—C8 | 114.9 (2) |
C1—C2—Br1 | 118.6 (2) | C9—C10—H10A | 109.5 |
C3—C2—Br1 | 120.20 (19) | C9—C10—H10B | 109.5 |
C2—C3—C4 | 119.4 (2) | H10A—C10—H10B | 109.5 |
C2—C3—H3 | 120.3 | C9—C10—H10C | 109.5 |
C4—C3—H3 | 120.3 | H10A—C10—H10C | 109.5 |
C3—C4—C5 | 119.7 (2) | H10B—C10—H10C | 109.5 |
C3—C4—H4 | 120.2 | N2—C11—N1 | 128.76 (19) |
C5—C4—H4 | 120.2 | N2—C11—N4 | 110.04 (19) |
O1—C5—C4 | 116.1 (2) | N1—C11—N4 | 121.19 (19) |
O1—C5—C6 | 122.9 (2) | N3—C12—N2 | 115.4 (2) |
C4—C5—C6 | 121.0 (2) | N3—C12—C13 | 122.9 (2) |
C1—C6—C5 | 118.6 (2) | N2—C12—C13 | 121.7 (2) |
C1—C6—C7 | 120.8 (2) | C12—C13—H13A | 109.5 |
C5—C6—C7 | 120.5 (2) | C12—C13—H13B | 109.5 |
N1—C7—C6 | 110.99 (18) | H13A—C13—H13B | 109.5 |
N1—C7—C8 | 108.26 (18) | C12—C13—H13C | 109.5 |
C6—C7—C8 | 108.33 (19) | H13A—C13—H13C | 109.5 |
N1—C7—H7 | 109.7 | H13B—C13—H13C | 109.5 |
C6—C7—H7 | 109.7 | ||
C12—N3—N4—C11 | 0.2 (2) | C11—N4—C9—O1 | −97.7 (2) |
C12—N3—N4—C9 | 178.8 (2) | N3—N4—C9—O1 | 84.0 (2) |
C6—C1—C2—C3 | 0.0 (4) | C11—N4—C9—C10 | 146.5 (2) |
C6—C1—C2—Br1 | −179.53 (18) | N3—N4—C9—C10 | −31.8 (3) |
C1—C2—C3—C4 | −0.4 (4) | C11—N4—C9—C8 | 20.3 (3) |
Br1—C2—C3—C4 | 179.14 (19) | N3—N4—C9—C8 | −158.00 (19) |
C2—C3—C4—C5 | 0.8 (4) | C5—O1—C9—N4 | 70.6 (2) |
C9—O1—C5—C4 | −165.8 (2) | C5—O1—C9—C10 | −169.73 (19) |
C9—O1—C5—C6 | 14.7 (3) | C5—O1—C9—C8 | −45.7 (2) |
C3—C4—C5—O1 | 179.6 (2) | C7—C8—C9—N4 | −51.2 (2) |
C3—C4—C5—C6 | −0.8 (3) | C7—C8—C9—O1 | 66.6 (2) |
C2—C1—C6—C5 | 0.0 (3) | C7—C8—C9—C10 | −175.2 (2) |
C2—C1—C6—C7 | −176.2 (2) | C12—N2—C11—N1 | −178.0 (2) |
O1—C5—C6—C1 | 179.9 (2) | C12—N2—C11—N4 | 0.7 (2) |
C4—C5—C6—C1 | 0.4 (3) | C7—N1—C11—N2 | −167.4 (2) |
O1—C5—C6—C7 | −3.9 (3) | C7—N1—C11—N4 | 14.1 (3) |
C4—C5—C6—C7 | 176.6 (2) | N3—N4—C11—N2 | −0.6 (2) |
C11—N1—C7—C6 | 72.2 (2) | C9—N4—C11—N2 | −179.14 (19) |
C11—N1—C7—C8 | −46.6 (2) | N3—N4—C11—N1 | 178.19 (18) |
C1—C6—C7—N1 | 81.8 (3) | C9—N4—C11—N1 | −0.4 (3) |
C5—C6—C7—N1 | −94.2 (2) | N4—N3—C12—N2 | 0.3 (3) |
C1—C6—C7—C8 | −159.5 (2) | N4—N3—C12—C13 | −178.2 (2) |
C5—C6—C7—C8 | 24.5 (3) | C11—N2—C12—N3 | −0.6 (3) |
N1—C7—C8—C9 | 66.4 (2) | C11—N2—C12—C13 | 177.9 (2) |
C6—C7—C8—C9 | −54.0 (2) |
Cg1 and Cg4 are the centroids of rings N2-N4/C11/C12 and C1-C6. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.83 (2) | 2.13 (2) | 2.949 (3) | 174 (2) |
C8—H8A···Cg4ii | 0.97 | 2.86 | 3.823 (3) | 175 |
C2—Br1···Cg1iii | 1.89 (1) | 3.40 (1) | 4.724 (3) | 124 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x, y−1, z. |
C18H17N5O2 | Dx = 1.421 Mg m−3 |
Mr = 335.36 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 10886 reflections |
a = 11.2814 (6) Å | θ = 1.6–30.1° |
b = 12.6299 (6) Å | µ = 0.10 mm−1 |
c = 22.0008 (15) Å | T = 296 K |
V = 3134.7 (3) Å3 | Prisim, colorless |
Z = 8 | 0.31 × 0.22 × 0.15 mm |
F(000) = 1408 |
Stoe IPDS 2 diffractometer | 4432 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1789 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.086 |
rotation method scans | θmax = 29.7°, θmin = 1.9° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −15→15 |
Tmin = 0.975, Tmax = 0.986 | k = −15→17 |
23575 measured reflections | l = −30→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.80 | w = 1/[σ2(Fo2) + (0.0216P)2] where P = (Fo2 + 2Fc2)/3 |
4432 reflections | (Δ/σ)max = 0.001 |
231 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.14 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.29552 (8) | 1.00618 (8) | 0.68647 (4) | 0.0441 (3) | |
O2 | 0.13197 (9) | 0.92768 (9) | 0.61850 (5) | 0.0507 (3) | |
N1 | 0.28301 (15) | 1.24578 (13) | 0.77525 (6) | 0.0595 (4) | |
H1A | 0.2548 (17) | 1.3017 (16) | 0.7892 (9) | 0.081 (7)* | |
N2 | 0.22677 (12) | 1.14540 (11) | 0.86379 (6) | 0.0491 (3) | |
N3 | 0.29188 (11) | 0.98503 (10) | 0.82932 (5) | 0.0453 (3) | |
N4 | 0.31364 (11) | 1.06389 (11) | 0.78728 (6) | 0.0455 (3) | |
N5 | 0.13813 (13) | 0.89571 (14) | 1.04161 (7) | 0.0604 (4) | |
C1 | 0.13984 (16) | 1.25155 (14) | 0.64423 (8) | 0.0553 (5) | |
H1 | 0.144023 | 1.324469 | 0.649710 | 0.066* | |
C2 | 0.05311 (15) | 1.20940 (16) | 0.60829 (9) | 0.0625 (5) | |
H2 | −0.001899 | 1.253997 | 0.589972 | 0.075* | |
C3 | 0.04590 (14) | 1.10106 (15) | 0.59873 (8) | 0.0531 (5) | |
H3 | −0.013911 | 1.073106 | 0.574462 | 0.064* | |
C4 | 0.12779 (13) | 1.03541 (13) | 0.62538 (7) | 0.0425 (4) | |
C5 | 0.21547 (13) | 1.07829 (12) | 0.66266 (6) | 0.0403 (4) | |
C6 | 0.22189 (14) | 1.18600 (12) | 0.67265 (7) | 0.0437 (4) | |
C7 | 0.31960 (15) | 1.23155 (13) | 0.71187 (7) | 0.0518 (5) | |
H7 | 0.345007 | 1.299766 | 0.695115 | 0.062* | |
C8 | 0.42279 (14) | 1.15486 (13) | 0.71098 (8) | 0.0528 (4) | |
H8A | 0.455901 | 1.150691 | 0.670365 | 0.063* | |
H8B | 0.484397 | 1.178879 | 0.738475 | 0.063* | |
C9 | 0.37794 (13) | 1.04721 (13) | 0.73060 (7) | 0.0436 (4) | |
C10 | 0.47358 (13) | 0.96458 (14) | 0.73722 (7) | 0.0548 (5) | |
H10A | 0.531162 | 0.988226 | 0.766340 | 0.082* | |
H10B | 0.438977 | 0.899338 | 0.750878 | 0.082* | |
H10C | 0.511468 | 0.953579 | 0.698666 | 0.082* | |
C11 | 0.27338 (14) | 1.15751 (13) | 0.80925 (7) | 0.0465 (4) | |
C12 | 0.24111 (13) | 1.03928 (13) | 0.87389 (7) | 0.0439 (4) | |
C13 | 0.20625 (13) | 0.98919 (13) | 0.93123 (7) | 0.0441 (4) | |
C14 | 0.16193 (14) | 1.04894 (15) | 0.97868 (7) | 0.0545 (5) | |
H14 | 0.153807 | 1.121901 | 0.974754 | 0.065* | |
C15 | 0.12990 (15) | 0.99893 (17) | 1.03192 (8) | 0.0610 (5) | |
H15 | 0.100395 | 1.040698 | 1.063278 | 0.073* | |
C16 | 0.18286 (15) | 0.84001 (17) | 0.99569 (8) | 0.0589 (5) | |
H16 | 0.191250 | 0.767376 | 1.001142 | 0.071* | |
C17 | 0.21758 (14) | 0.88170 (13) | 0.94085 (8) | 0.0527 (4) | |
H17 | 0.248277 | 0.838119 | 0.910630 | 0.063* | |
C18 | 0.04328 (16) | 0.87855 (15) | 0.58270 (9) | 0.0687 (6) | |
H18A | 0.054849 | 0.803252 | 0.583059 | 0.103* | |
H18B | 0.048312 | 0.904149 | 0.541693 | 0.103* | |
H18C | −0.033421 | 0.894966 | 0.599078 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0497 (6) | 0.0416 (7) | 0.0411 (6) | 0.0029 (5) | −0.0089 (5) | −0.0003 (5) |
O2 | 0.0551 (7) | 0.0467 (8) | 0.0502 (7) | −0.0023 (6) | −0.0106 (6) | −0.0008 (6) |
N1 | 0.0996 (13) | 0.0358 (10) | 0.0432 (8) | 0.0024 (9) | 0.0045 (8) | −0.0013 (8) |
N2 | 0.0637 (9) | 0.0436 (9) | 0.0399 (8) | −0.0009 (7) | 0.0013 (7) | 0.0009 (7) |
N3 | 0.0543 (8) | 0.0409 (8) | 0.0407 (7) | −0.0029 (7) | −0.0002 (7) | 0.0032 (7) |
N4 | 0.0598 (8) | 0.0372 (8) | 0.0395 (7) | −0.0011 (6) | 0.0015 (6) | 0.0025 (7) |
N5 | 0.0608 (10) | 0.0736 (12) | 0.0466 (9) | −0.0055 (8) | −0.0015 (8) | 0.0085 (9) |
C1 | 0.0714 (11) | 0.0424 (11) | 0.0521 (10) | 0.0062 (10) | 0.0014 (10) | 0.0024 (9) |
C2 | 0.0645 (12) | 0.0555 (13) | 0.0674 (13) | 0.0164 (10) | −0.0051 (11) | 0.0123 (11) |
C3 | 0.0497 (10) | 0.0591 (13) | 0.0506 (11) | 0.0030 (9) | −0.0065 (9) | 0.0065 (10) |
C4 | 0.0467 (9) | 0.0406 (11) | 0.0401 (9) | 0.0008 (8) | 0.0027 (8) | 0.0030 (8) |
C5 | 0.0440 (9) | 0.0399 (10) | 0.0368 (8) | 0.0035 (8) | 0.0021 (7) | 0.0045 (8) |
C6 | 0.0546 (10) | 0.0398 (10) | 0.0367 (9) | −0.0001 (8) | 0.0040 (8) | 0.0047 (8) |
C7 | 0.0702 (11) | 0.0413 (11) | 0.0439 (10) | −0.0078 (9) | 0.0021 (9) | 0.0046 (9) |
C8 | 0.0561 (10) | 0.0547 (11) | 0.0474 (10) | −0.0123 (9) | −0.0010 (8) | 0.0012 (9) |
C9 | 0.0470 (9) | 0.0455 (10) | 0.0383 (9) | −0.0034 (8) | −0.0031 (8) | −0.0013 (8) |
C10 | 0.0514 (10) | 0.0635 (12) | 0.0495 (10) | 0.0068 (9) | −0.0091 (8) | −0.0024 (9) |
C11 | 0.0626 (11) | 0.0357 (10) | 0.0412 (9) | −0.0013 (8) | −0.0047 (8) | −0.0011 (9) |
C12 | 0.0464 (9) | 0.0420 (10) | 0.0433 (9) | −0.0034 (7) | −0.0034 (7) | −0.0004 (8) |
C13 | 0.0437 (8) | 0.0465 (11) | 0.0421 (9) | −0.0062 (8) | −0.0027 (7) | −0.0009 (8) |
C14 | 0.0634 (11) | 0.0524 (12) | 0.0477 (10) | −0.0035 (9) | 0.0001 (8) | −0.0016 (10) |
C15 | 0.0673 (12) | 0.0705 (15) | 0.0451 (11) | −0.0039 (11) | 0.0003 (9) | −0.0036 (11) |
C16 | 0.0628 (11) | 0.0551 (12) | 0.0588 (12) | −0.0040 (10) | −0.0003 (10) | 0.0117 (10) |
C17 | 0.0587 (11) | 0.0476 (11) | 0.0518 (10) | −0.0046 (9) | 0.0050 (9) | 0.0004 (9) |
C18 | 0.0694 (12) | 0.0669 (14) | 0.0697 (13) | −0.0007 (10) | −0.0176 (10) | −0.0199 (11) |
O1—C5 | 1.3854 (16) | C5—C6 | 1.380 (2) |
O1—C9 | 1.4408 (17) | C6—C7 | 1.513 (2) |
O2—C4 | 1.3698 (18) | C7—C8 | 1.514 (2) |
O2—C18 | 1.4165 (18) | C7—H7 | 0.9800 |
N1—C11 | 1.347 (2) | C8—C9 | 1.514 (2) |
N1—C7 | 1.465 (2) | C8—H8A | 0.9700 |
N1—H1A | 0.83 (2) | C8—H8B | 0.9700 |
N2—C11 | 1.3190 (19) | C9—C10 | 1.508 (2) |
N2—C12 | 1.368 (2) | C10—H10A | 0.9600 |
N3—C12 | 1.3263 (18) | C10—H10B | 0.9600 |
N3—N4 | 1.3812 (17) | C10—H10C | 0.9600 |
N4—C11 | 1.3557 (19) | C12—C13 | 1.465 (2) |
N4—C9 | 1.4580 (19) | C13—C17 | 1.380 (2) |
N5—C15 | 1.324 (2) | C13—C14 | 1.382 (2) |
N5—C16 | 1.330 (2) | C14—C15 | 1.379 (2) |
C1—C2 | 1.366 (2) | C14—H14 | 0.9300 |
C1—C6 | 1.390 (2) | C15—H15 | 0.9300 |
C1—H1 | 0.9300 | C16—C17 | 1.374 (2) |
C2—C3 | 1.387 (2) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—H17 | 0.9300 |
C3—C4 | 1.373 (2) | C18—H18A | 0.9600 |
C3—H3 | 0.9300 | C18—H18B | 0.9600 |
C4—C5 | 1.395 (2) | C18—H18C | 0.9600 |
C5—O1—C9 | 116.04 (12) | H8A—C8—H8B | 108.4 |
C4—O2—C18 | 118.18 (13) | O1—C9—N4 | 107.90 (11) |
C11—N1—C7 | 116.73 (15) | O1—C9—C10 | 106.13 (13) |
C11—N1—H1A | 117.7 (14) | N4—C9—C10 | 111.92 (13) |
C7—N1—H1A | 124.2 (14) | O1—C9—C8 | 110.29 (12) |
C11—N2—C12 | 102.37 (14) | N4—C9—C8 | 106.29 (13) |
C12—N3—N4 | 101.50 (12) | C10—C9—C8 | 114.20 (13) |
C11—N4—N3 | 109.31 (12) | C9—C10—H10A | 109.5 |
C11—N4—C9 | 126.70 (13) | C9—C10—H10B | 109.5 |
N3—N4—C9 | 123.85 (13) | H10A—C10—H10B | 109.5 |
C15—N5—C16 | 115.15 (16) | C9—C10—H10C | 109.5 |
C2—C1—C6 | 120.34 (17) | H10A—C10—H10C | 109.5 |
C2—C1—H1 | 119.8 | H10B—C10—H10C | 109.5 |
C6—C1—H1 | 119.8 | N2—C11—N1 | 129.30 (16) |
C1—C2—C3 | 120.96 (17) | N2—C11—N4 | 110.90 (14) |
C1—C2—H2 | 119.5 | N1—C11—N4 | 119.79 (15) |
C3—C2—H2 | 119.5 | N3—C12—N2 | 115.92 (14) |
C4—C3—C2 | 119.44 (17) | N3—C12—C13 | 121.98 (15) |
C4—C3—H3 | 120.3 | N2—C12—C13 | 122.07 (15) |
C2—C3—H3 | 120.3 | C17—C13—C14 | 117.07 (15) |
O2—C4—C3 | 125.16 (15) | C17—C13—C12 | 122.13 (15) |
O2—C4—C5 | 115.23 (14) | C14—C13—C12 | 120.79 (15) |
C3—C4—C5 | 119.61 (15) | C15—C14—C13 | 119.10 (17) |
C6—C5—O1 | 123.62 (14) | C15—C14—H14 | 120.4 |
C6—C5—C4 | 120.92 (14) | C13—C14—H14 | 120.4 |
O1—C5—C4 | 115.43 (13) | N5—C15—C14 | 124.69 (18) |
C5—C6—C1 | 118.71 (15) | N5—C15—H15 | 117.7 |
C5—C6—C7 | 120.25 (14) | C14—C15—H15 | 117.7 |
C1—C6—C7 | 121.00 (15) | N5—C16—C17 | 124.92 (19) |
N1—C7—C6 | 112.58 (14) | N5—C16—H16 | 117.5 |
N1—C7—C8 | 107.90 (14) | C17—C16—H16 | 117.5 |
C6—C7—C8 | 108.02 (14) | C16—C17—C13 | 119.04 (17) |
N1—C7—H7 | 109.4 | C16—C17—H17 | 120.5 |
C6—C7—H7 | 109.4 | C13—C17—H17 | 120.5 |
C8—C7—H7 | 109.4 | O2—C18—H18A | 109.5 |
C9—C8—C7 | 108.29 (13) | O2—C18—H18B | 109.5 |
C9—C8—H8A | 110.0 | H18A—C18—H18B | 109.5 |
C7—C8—H8A | 110.0 | O2—C18—H18C | 109.5 |
C9—C8—H8B | 110.0 | H18A—C18—H18C | 109.5 |
C7—C8—H8B | 110.0 | H18B—C18—H18C | 109.5 |
C12—N3—N4—C11 | −0.82 (15) | N3—N4—C9—O1 | 83.17 (16) |
C12—N3—N4—C9 | 175.09 (13) | C11—N4—C9—C10 | 141.94 (15) |
C6—C1—C2—C3 | −0.9 (3) | N3—N4—C9—C10 | −33.24 (19) |
C1—C2—C3—C4 | −0.6 (3) | C11—N4—C9—C8 | 16.63 (19) |
C18—O2—C4—C3 | −2.0 (2) | N3—N4—C9—C8 | −158.54 (13) |
C18—O2—C4—C5 | 178.11 (13) | C7—C8—C9—O1 | 65.73 (16) |
C2—C3—C4—O2 | −178.52 (15) | C7—C8—C9—N4 | −50.97 (16) |
C2—C3—C4—C5 | 1.3 (2) | C7—C8—C9—C10 | −174.87 (13) |
C9—O1—C5—C6 | 9.08 (19) | C12—N2—C11—N1 | 179.12 (17) |
C9—O1—C5—C4 | −172.98 (12) | C12—N2—C11—N4 | 0.13 (17) |
O2—C4—C5—C6 | 179.17 (14) | C7—N1—C11—N2 | −169.22 (16) |
C3—C4—C5—C6 | −0.7 (2) | C7—N1—C11—N4 | 9.7 (2) |
O2—C4—C5—O1 | 1.17 (19) | N3—N4—C11—N2 | 0.44 (18) |
C3—C4—C5—O1 | −178.69 (13) | C9—N4—C11—N2 | −175.31 (13) |
O1—C5—C6—C1 | 177.12 (13) | N3—N4—C11—N1 | −178.66 (14) |
C4—C5—C6—C1 | −0.7 (2) | C9—N4—C11—N1 | 5.6 (2) |
O1—C5—C6—C7 | −0.5 (2) | N4—N3—C12—N2 | 0.97 (17) |
C4—C5—C6—C7 | −178.34 (13) | N4—N3—C12—C13 | −177.03 (13) |
C2—C1—C6—C5 | 1.5 (2) | C11—N2—C12—N3 | −0.73 (18) |
C2—C1—C6—C7 | 179.10 (15) | C11—N2—C12—C13 | 177.26 (14) |
C11—N1—C7—C6 | 73.9 (2) | N3—C12—C13—C17 | −4.0 (2) |
C11—N1—C7—C8 | −45.3 (2) | N2—C12—C13—C17 | 178.14 (15) |
C5—C6—C7—N1 | −94.62 (18) | N3—C12—C13—C14 | 174.98 (14) |
C1—C6—C7—N1 | 87.80 (19) | N2—C12—C13—C14 | −2.9 (2) |
C5—C6—C7—C8 | 24.4 (2) | C17—C13—C14—C15 | −1.1 (2) |
C1—C6—C7—C8 | −153.16 (15) | C12—C13—C14—C15 | 179.90 (15) |
N1—C7—C8—C9 | 67.08 (17) | C16—N5—C15—C14 | 1.2 (3) |
C6—C7—C8—C9 | −54.88 (16) | C13—C14—C15—N5 | −0.1 (3) |
C5—O1—C9—N4 | 74.33 (15) | C15—N5—C16—C17 | −1.1 (3) |
C5—O1—C9—C10 | −165.55 (12) | N5—C16—C17—C13 | 0.0 (3) |
C5—O1—C9—C8 | −41.36 (16) | C14—C13—C17—C16 | 1.1 (2) |
C11—N4—C9—O1 | −101.66 (17) | C12—C13—C17—C16 | −179.85 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N3i | 0.83 (2) | 2.53 (2) | 3.356 (2) | 169 (2) |
C1—H1···O1i | 0.93 | 2.53 | 3.426 (2) | 163 |
C7—H7···O2i | 0.98 | 2.35 | 3.264 (2) | 155 |
Symmetry code: (i) −x+1/2, y+1/2, z. |
Acknowledgements
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund) and the Council of Higher Education of Turkey, Mevlana Exchange Program (MEV-2016-027).
References
Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370. CrossRef IUCr Journals Google Scholar
Dömling, A., Wang, W. & Wang, K. (2012). Chem. Rev. 112, 3083–3135. PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267. Google Scholar
Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018a). J. Mol. Struct. 1168, 280–290. Google Scholar
Gümüş, M. K., Kansız, S., Dege, N. & Kalibabchuk, V. A. (2018b). Acta Cryst. E74, 1211–1214. CrossRef IUCr Journals Google Scholar
Heijden, G. van der, Ruijter, E. & Orru, R. V. A. (2013). Synlett, 24, 666–685. Google Scholar
Komykhov, S. A., Bondarenko, A. A., Musatov, V. I., Diachkov, M. V., Gorobets, N. Y. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 378–380. CrossRef CAS Google Scholar
Kondratiuk, M., Gorobets, N. Y., Sedash, Y. V., Gümüş, M. K. & Desenko, S. M. (2016). Molbank, 2016, M898. CrossRef Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Murlykina, M. V., Morozova, A. D., Zviagin, I. M., Sakhno, Y. I., Desenko, S. M. & Chebanov, V. A. (2018). Frontiers Chem. 6, article 527. CrossRef Google Scholar
Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.