research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of two 5,11-methano­benzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxa­diazo­cine derivatives

CROSSMARK_Color_square_no_text.svg

aArtvin Coruh University, Science-Technology Research and Application Center, Artvin 08000, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139 Kurupelit, Samsun, Turkey, cCankiri Karatekin University, Faculty of Science, Department of Physics, 18100 Cankiri, Turkey, and dTaras Shevchenko National University of Kyiv, Department of Chemistry, 64 Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sevgi.kansiz85@gmail.com, ifritsky@univ.kiev.ua

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 March 2019; accepted 16 March 2019; online 26 March 2019)

In the title compounds, 9-bromo-2,5-dimethyl-11,12-di­hydro-5H-5,11-methano­benzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxa­diazo­cine, C13H13BrN4O (I), and 7-meth­oxy-5-methyl-2-(pyridin-4-yl)-11,12-di­hydro-5H-5,11-methano­benzo[g][1,2,4]tri­azolo[1,5-c][1,3,5]oxa­diazo­cine, C18H17N5O2 (II), the triazole ring is inclined to the benzene ring by 85.15 (9) and 76.98 (5)° in compounds I and II, respectively. In II, the pyridine ring is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. In the crystal of I, pairs of N—H⋯N hydrogen bonds link the mol­ecules to form inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯π and C—Br⋯π inter­actions forming layers parallel to the bc plane. In the crystal of II, mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds forming chains propagating along the b-axis direction. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the mol­ecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of I suggests that the most significant contributions to the crystal packing are H⋯H (42.4%) and O⋯H/H⋯O (17.9%) contacts. For compound II, the H⋯H (48.5%), C⋯H/H⋯C (19.6%) and N⋯H/H⋯N (16.9%) inter­actions are the most important contributions.

1. Chemical context

In organic synthesis, a useful method to develop a chemical complexity from simple starting building blocks is the application of multicomponent reactions (MCRs) (Dömling et al., 2012[Dömling, A., Wang, W. & Wang, K. (2012). Chem. Rev. 112, 3083-3135.]; Van der Heijden et al., 2013[Heijden, G. van der, Ruijter, E. & Orru, R. V. A. (2013). Synlett, 24, 666-685.]). When amino­azoles having at least two non-equivalent reaction centres are used as building blocks , the method is generally characterized by ambiguous selectivity and different reaction outcomes (Murlykina et al., 2018[Murlykina, M. V., Morozova, A. D., Zviagin, I. M., Sakhno, Y. I., Desenko, S. M. & Chebanov, V. A. (2018). Frontiers Chem. 6, article 527.]). According to Sedash et al., Biginelli-like MCRs of 3-amino-1,2,4-triazole with aldehydes and α-carbonyl CH-acids may generate several types of heterocyclic products (Sedash et al., 2012[Sedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719-6728.]). The same starting compound with acetone and a 2-hy­droxy­benzaldehyde derivative under acidic conditions leads to the formation of different products (Gorobets et al., 2010[Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095-2098.]; Kondratiuk et al., 2016[Kondratiuk, M., Gorobets, N. Y., Sedash, Y. V., Gümüş, M. K. & Desenko, S. M. (2016). Molbank, 2016, M898.]; Gümüş et al., 2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.]; Komykhov et al., 2017[Komykhov, S. A., Bondarenko, A. A., Musatov, V. I., Diachkov, M. V., Gorobets, N. Y. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 378-380.]).

Continuing our studies on the synthesis and crystal structure analyses of derivatives of a new type of oxygen-bridged Biginelli compound (Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]; Gümüş et al., 2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.], 2018a[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018a). J. Mol. Struct. 1168, 280-290.],b[Gümüş, M. K., Kansız, S., Dege, N. & Kalibabchuk, V. A. (2018b). Acta Cryst. E74, 1211-1214.]), two new novel Biginelli-like assemblies of 3-amino-5-methyl-1,2,4-triazole/5-amino-3-(pyridin-4-yl)-1,2,4-triazole with acetone and 5-bromo­salicyl­aldehyde/o-vanillin have been developed to offer easy access to the title compounds, I and II, examples of this new class of heterocycles.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds I and II are illustrated in Figs. 1[link] and 2[link], respectively. The conformations of the two compounds are very similar, as shown by the structural overlap of the two compounds [r.m.s. deviation = 0.005 Å (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.])], illustrated in Fig. 3[link]. In I, the triazole ring (N2–N4/C11/C12) is inclined to the benzene ring (C1–C6) by 85.12 (12)°, compared to 76.96 (8)° in II. In the central 6-oxa-2,4λ2-di­aza­bicyclo­[3.3.1]nonane moiety, ring (N1/N4/C7–C9/C11) has a half-chair conformation in both compounds, while ring O1/C5–C9 has an envelope conformation, with atom C8 as the flap, in both compounds. The mean planes of these two rings are almost normal to each other, with a dihedral angle of 86.94 (11)° in I and 88.69 (8)° in II. In compound II, the pyridine ring (N5/C13–C17) is almost coplanar with the triazole ring, having a dihedral angle of 4.19 (8)°. The bond lengths and angles in the title compounds are very close to those observed for similar compounds, for example, the pyridin-3-yl analogue of compound II (Gümüş et al., 2018[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018a). J. Mol. Struct. 1168, 280-290.]); see also section Database survey.

[Figure 1]
Figure 1
The mol­ecular structure of compound I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound II, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
A view of the structural overlap of mol­ecules I and II (in red), having an r.m.s. deviation of 0.005 Å (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

3. Supra­molecular features

In the crystal of I, mol­ecules are linked by a pair of N—H⋯N hydrogen bonds, forming inversion dimers with an R22(8) ring motif (Table 1[link] and Fig. 4[link]). The dimers are linked by C—H⋯π and C—Br⋯π inter­actions forming layers parallel to the bc plane (Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg4 are the centroids of rings N2–N4/C11/C12 and C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.83 (2) 2.13 (2) 2.949 (3) 174 (2)
C8—H8ACg4ii 0.97 2.86 3.823 (3) 175
C2—Br1⋯Cg1iii 1.89 (1) 3.40 (1) 4.724 (3) 124 (1)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x, y-1, z.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound I. Dashed lines denote the inter­molecular N—H⋯N hydrogen bonds, forming an inversion dimer with an R22(8) ring motif (Table 1[link]). C—H⋯π and C—Br⋯π inter­actions are shown as blue arrows (Table 1[link]).

In the crystal of II, mol­ecules are connected via inter­molecular N—H⋯N and C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction (Table 2[link] and Fig. 5[link]). Within the chains there are R22(10), R22(11) and R22(9) ring motifs present (Table 2[link] and Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N3i 0.83 (2) 2.53 (2) 3.356 (2) 169 (2)
C1—H1⋯O1i 0.93 2.53 3.426 (2) 163
C7—H7⋯O2i 0.98 2.35 3.264 (2) 155
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of compound II. Dashed lines denote inter­molecular hydrogen bonds (Table 2[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the triazolo-benzoxa­diazo­cine skeleton yielded 4 hits, namely 7-eth­oxy-5-methyl-11,12-di­hydro-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (HUVCEH; Gorobets et al., 2010[Gorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095-2098.]), 7-eth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5H-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (RETCAX; Aydemir et al., 2018[Aydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367-370.]), 7-meth­oxy-5-methyl-2-phenyl-11,12-di­hydro-5H-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (SILBEX; Gümüş et al., 2018b[Gümüş, M. K., Kansız, S., Dege, N. & Kalibabchuk, V. A. (2018b). Acta Cryst. E74, 1211-1214.]), with two independent mol­ecules in the asymmetric unit, and 7-meth­oxy-5-methyl-2-(pyridin-3-yl)-11,12-di­hydro-5H-5,11-methano­[1,2,4]triazolo[1,5-c][1,3,5]benzoxa­diazo­cine (WEX­YUM; Gümüş et al., 2018a[Gümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018a). J. Mol. Struct. 1168, 280-290.]), also with two independent mol­ecules per asymmetric unit.

The conformations of all four compounds resemble those of compounds I and II, with the dihedral angle between the triazole and benzene rings varying from ca 71.20 to 87.37°, compared to 85.12 (12) and 76.96 (8)° in compounds I and II, respectively.

The geometrical parameters of the four compounds are very similar to each other and to those of compounds I and II. The C9—O1 and C5—O1 bond lengths are 1.456 (3) and 1.375 (3) Å, respectively, in I and 1.441 (2) and 1.385 (2) Å in II, compared to ca 1.445 and 1.374 Å in HUVCEH, 1.444 and 1.390 Å in RETCAX, 1.343/1.436 and 1.381/1.381 Å in SILBEX, and 1.429/1.444 and 1.377/1.380 Å in WEXYUW. In addition, the N3—N4 bond length is 1.388 (3) Å in I and 1.381 (2) Å in II, compared to ca 1.385, 1.389, 1.376/1.382 and 1.379/1.381 Å in HUVCEH, RETCAX, SILBEX and WEXYUW, respectively.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional (2D) fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional (3D) dnorm surfaces mapped over a fixed colour scale of −0.378 (red) to 1.282 Å (blue) for compound I and from −0.259 (red) to 1.216 Å (blue) for compound II. The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. In Fig. 6[link](a), the identified red spot is attributed to the H⋯N close contacts. Also in Fig. 6[link](a), the N—H⋯N contacts are shown in the dnorm mapped surface as deep-red depression areas showing the inter­action between the neighbouring mol­ecules for compound I. Similarly, the red spots on the surface correspond to C—H⋯O and N—H⋯N hydrogen bonds in compound II[link] (Fig. 6[link]b).

[Figure 6]
Figure 6
dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of (a) compound I and (b) compound II.

Fig. 7[link](a) shows the 2D fingerprint plot of the sum of the contacts contributing to the Hirshfeld surface of compound I represented in normal mode. 2D fingerprint plots provide information about the major and minor percentage contribution of the inter­atomic contacts in compound I. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint (Zaini et al., 2019[Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58-63.]). The fingerprint plots (Fig. 7[link]b) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (42.4%). In addition, C⋯H/H⋯C, N⋯H/H⋯N and Br⋯H/H⋯Br contacts contribute 17.9, 14.6 and 14.1%, respectively, to the Hirshfeld surface. Much weaker O⋯H/H⋯O (5.0%), Br⋯N/N⋯Br (2.7%), Br⋯C/C⋯Br (1.8%) and Br⋯Br (1.0%) contacts also occur. In particular, the O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯O inter­actions.

[Figure 7]
Figure 7
2D fingerprint plots for compound I, with a dnorm view and the relative contributions of the atom pairs to the Hirshfeld surface.

Similarly, for compound II, the H⋯H inter­actions appear in the middle of the scattered points in the 2D fingerprint plots with a contribution to the overall Hirshfeld surface of 48.5% (Fig. 8[link]b). The contribution from the N⋯H/H⋯N contacts, corresponding to the N—H⋯N inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bond inter­action (16.9%) (Fig. 8[link]d). The whole fingerprint region and all other inter­actions are displayed in Fig. 8[link].

[Figure 8]
Figure 8
2D fingerprint plots for compound II, with a dnorm view and the relative contributions of the atom pairs to the Hirshfeld surface.

Views of the mol­ecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the STO-3G basis set at the Hartree–Fock level of theory, for compounds I and II are shown in Figs. 9[link](a) and 9(b), respectively. In Fig. 9[link](a), the N—H⋯N hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively. Also, in Figs. 9[link](a) and 9(b), the N—H⋯N and C—H⋯O contacts in compounds I and II are given in the mol­ecular electrostatic potential mapped surface showing the inter­action between neighbouring mol­ecules.

[Figure 9]
Figure 9
The view of the three-dimensional Hirshfeld surface of (a) compound I and (b) compound II, plotted over the electrostatic potential surface.

6. Synthesis and crystallization

The synthesis of the title compounds (Fig. 10[link]) has been described by Gümüş et al. (2017[Gümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261-1267.]). 3-Amino-5-methyl-1,2,4-triazole/3-amino-5-(pyridin-4-yl)-1,2,4-triazole (1.0 mmol), 5-bromo­salicyl­aldehyde (1.0 mmol) for compound I [o-vanillin (1.0 mmol) for compound II], acetone (0.22 ml, 3.0 mmol), and absolute EtOH (2.0 ml) were mixed in a microwave process vial, then a 4 N solution of HCl in dioxane (0.07 ml, 0.3 mmol) was added. The mixtures were irradiated at 423 K for 30 min. The reaction mixtures were cooled by an air flow and stirred for 24 h at room temperature for complete precipitation of the products. The precipitates were filtered off, washed with EtOH (1.0 ml) and Et2O (3 × 1.0 ml), and then dried. The compounds were obtained in the form of white solids. They were recrystallized from ethanol yielding colourless prismatic crystals for both compounds I and II.

[Figure 10]
Figure 10
The synthesis of (a) compound I and (b) compound II.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For compound I, the nitro­gen-bound H atom was located in a difference Fourier map and refined subject to a restraint of N—H = 0.86 (2) Å, while for compound II, the nitro­gen-bound H atom was also located in a difference Fourier map and was freely refined. For both compounds, the C-bound H atoms were positioned geom­etrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C13H13BrN4O C18H17N5O2
Mr 321.18 335.36
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pbca
Temperature (K) 296 296
a, b, c (Å) 6.1446 (6), 9.7407 (8), 11.6801 (11) 11.2814 (6), 12.6299 (6), 22.0008 (15)
α, β, γ (°) 109.657 (7), 92.325 (8), 91.664 (7) 90, 90, 90
V3) 657.13 (11) 3134.7 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.13 0.10
Crystal size (mm) 0.34 × 0.19 × 0.11 0.31 × 0.22 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]) Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.477, 0.748 0.975, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 12939, 4242, 2223 23575, 4432, 1789
Rint 0.051 0.086
(sin θ/λ)max−1) 0.729 0.698
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 0.98 0.039, 0.073, 0.80
No. of reflections 4242 4432
No. of parameters 178 231
No. of restraints 1 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.70 0.16, −0.14
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

9-Bromo-2,5-dimethyl-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (I) top
Crystal data top
C13H13BrN4OZ = 2
Mr = 321.18F(000) = 324
Triclinic, P1Dx = 1.623 Mg m3
a = 6.1446 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7407 (8) ÅCell parameters from 9169 reflections
c = 11.6801 (11) Åθ = 2.4–31.5°
α = 109.657 (7)°µ = 3.13 mm1
β = 92.325 (8)°T = 296 K
γ = 91.664 (7)°Prism, colourless
V = 657.13 (11) Å30.34 × 0.19 × 0.11 mm
Data collection top
Stoe IPDS 2
diffractometer
4242 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2223 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.051
rotation method scansθmax = 31.2°, θmin = 2.4°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.477, Tmax = 0.748k = 1413
12939 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
4242 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50800 (8)0.00902 (3)0.68588 (4)0.09386 (19)
O10.1825 (3)0.59496 (18)0.89977 (14)0.0477 (4)
N10.5602 (3)0.5822 (2)0.66868 (17)0.0408 (4)
H1A0.613 (4)0.519 (2)0.6116 (19)0.041 (7)*
N20.2699 (3)0.63495 (19)0.54765 (16)0.0406 (4)
N30.0498 (3)0.7412 (2)0.70145 (17)0.0452 (4)
N40.2379 (3)0.69449 (19)0.74411 (16)0.0392 (4)
C10.5355 (4)0.2973 (3)0.7486 (2)0.0473 (5)
H10.6695780.2808390.7133720.057*
C20.4059 (5)0.1815 (3)0.7523 (2)0.0532 (6)
C30.2065 (5)0.2025 (3)0.8038 (2)0.0541 (6)
H30.1201660.1231670.8052440.065*
C40.1360 (4)0.3423 (3)0.8533 (2)0.0483 (6)
H40.0024920.3579290.8891890.058*
C50.2649 (4)0.4592 (2)0.84915 (19)0.0414 (5)
C60.4666 (4)0.4381 (2)0.79711 (19)0.0402 (5)
C70.6010 (4)0.5663 (2)0.7867 (2)0.0415 (5)
H70.7563700.5522300.7990710.050*
C80.5347 (4)0.7044 (3)0.8840 (2)0.0465 (5)
H8A0.5760190.7017210.9642690.056*
H8B0.6074480.7892100.8743300.056*
C90.2895 (4)0.7133 (2)0.87046 (19)0.0433 (5)
C100.1984 (5)0.8514 (3)0.9542 (2)0.0613 (7)
H10A0.0420290.8442070.9451560.092*
H10B0.2516760.9333530.9337860.092*
H10C0.2434250.8642661.0370010.092*
C110.3650 (4)0.6328 (2)0.65048 (19)0.0355 (4)
C120.0793 (4)0.7029 (2)0.5845 (2)0.0437 (5)
C130.0777 (5)0.7335 (3)0.4974 (3)0.0612 (7)
H13A0.0305090.8212120.4836410.092*
H13B0.2192480.7456780.5304430.092*
H13C0.0851060.6535060.4217780.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1300 (4)0.04262 (16)0.1075 (3)0.01035 (16)0.0421 (2)0.01877 (15)
O10.0489 (10)0.0537 (9)0.0436 (9)0.0088 (7)0.0140 (7)0.0188 (7)
N10.0360 (10)0.0454 (9)0.0406 (10)0.0051 (8)0.0096 (8)0.0129 (8)
N20.0446 (11)0.0401 (9)0.0375 (9)0.0031 (8)0.0050 (8)0.0134 (7)
N30.0408 (11)0.0513 (10)0.0448 (11)0.0092 (8)0.0046 (9)0.0170 (8)
N40.0369 (10)0.0436 (9)0.0364 (9)0.0062 (8)0.0065 (8)0.0118 (7)
C10.0491 (14)0.0480 (12)0.0449 (13)0.0068 (10)0.0054 (10)0.0152 (10)
C20.0699 (18)0.0412 (11)0.0495 (14)0.0020 (11)0.0044 (13)0.0163 (10)
C30.0623 (17)0.0528 (13)0.0510 (14)0.0091 (12)0.0021 (12)0.0237 (11)
C40.0442 (14)0.0637 (14)0.0422 (12)0.0030 (11)0.0054 (10)0.0249 (11)
C50.0450 (13)0.0485 (11)0.0329 (10)0.0042 (10)0.0029 (9)0.0164 (9)
C60.0393 (13)0.0452 (11)0.0363 (11)0.0010 (9)0.0012 (9)0.0145 (9)
C70.0326 (12)0.0454 (11)0.0458 (12)0.0020 (9)0.0009 (9)0.0147 (9)
C80.0479 (14)0.0454 (11)0.0423 (12)0.0034 (10)0.0057 (10)0.0111 (9)
C90.0495 (14)0.0434 (11)0.0350 (11)0.0058 (10)0.0063 (10)0.0098 (9)
C100.0732 (19)0.0571 (14)0.0457 (14)0.0131 (13)0.0099 (13)0.0051 (11)
C110.0351 (12)0.0344 (9)0.0367 (11)0.0019 (8)0.0059 (9)0.0114 (8)
C120.0441 (13)0.0452 (11)0.0433 (13)0.0040 (10)0.0045 (10)0.0163 (9)
C130.0602 (18)0.0716 (17)0.0561 (15)0.0146 (14)0.0005 (13)0.0267 (13)
Geometric parameters (Å, º) top
Br1—C21.892 (2)C4—C51.383 (3)
O1—C51.375 (3)C4—H40.9300
O1—C91.456 (3)C5—C61.393 (3)
N1—C111.346 (3)C6—C71.518 (3)
N1—C71.451 (3)C7—C81.519 (3)
N1—H1A0.825 (16)C7—H70.9800
N2—C111.321 (3)C8—C91.517 (4)
N2—C121.374 (3)C8—H8A0.9700
N3—C121.311 (3)C8—H8B0.9700
N3—N41.388 (3)C9—C101.511 (3)
N4—C111.350 (3)C10—H10A0.9600
N4—C91.445 (3)C10—H10B0.9600
C1—C21.375 (4)C10—H10C0.9600
C1—C61.383 (3)C12—C131.482 (4)
C1—H10.9300C13—H13A0.9600
C2—C31.377 (4)C13—H13B0.9600
C3—C41.378 (4)C13—H13C0.9600
C3—H30.9300
C5—O1—C9116.13 (17)C8—C7—H7109.7
C11—N1—C7115.79 (18)C9—C8—C7108.11 (18)
C11—N1—H1A119.1 (17)C9—C8—H8A110.1
C7—N1—H1A114.7 (17)C7—C8—H8A110.1
C11—N2—C12103.07 (18)C9—C8—H8B110.1
C12—N3—N4101.80 (18)C7—C8—H8B110.1
C11—N4—N3109.66 (17)H8A—C8—H8B108.4
C11—N4—C9125.84 (19)N4—C9—O1109.02 (17)
N3—N4—C9124.48 (18)N4—C9—C10111.4 (2)
C2—C1—C6120.1 (2)O1—C9—C10105.3 (2)
C2—C1—H1119.9N4—C9—C8106.70 (19)
C6—C1—H1119.9O1—C9—C8109.36 (18)
C1—C2—C3121.2 (2)C10—C9—C8114.9 (2)
C1—C2—Br1118.6 (2)C9—C10—H10A109.5
C3—C2—Br1120.20 (19)C9—C10—H10B109.5
C2—C3—C4119.4 (2)H10A—C10—H10B109.5
C2—C3—H3120.3C9—C10—H10C109.5
C4—C3—H3120.3H10A—C10—H10C109.5
C3—C4—C5119.7 (2)H10B—C10—H10C109.5
C3—C4—H4120.2N2—C11—N1128.76 (19)
C5—C4—H4120.2N2—C11—N4110.04 (19)
O1—C5—C4116.1 (2)N1—C11—N4121.19 (19)
O1—C5—C6122.9 (2)N3—C12—N2115.4 (2)
C4—C5—C6121.0 (2)N3—C12—C13122.9 (2)
C1—C6—C5118.6 (2)N2—C12—C13121.7 (2)
C1—C6—C7120.8 (2)C12—C13—H13A109.5
C5—C6—C7120.5 (2)C12—C13—H13B109.5
N1—C7—C6110.99 (18)H13A—C13—H13B109.5
N1—C7—C8108.26 (18)C12—C13—H13C109.5
C6—C7—C8108.33 (19)H13A—C13—H13C109.5
N1—C7—H7109.7H13B—C13—H13C109.5
C6—C7—H7109.7
C12—N3—N4—C110.2 (2)C11—N4—C9—O197.7 (2)
C12—N3—N4—C9178.8 (2)N3—N4—C9—O184.0 (2)
C6—C1—C2—C30.0 (4)C11—N4—C9—C10146.5 (2)
C6—C1—C2—Br1179.53 (18)N3—N4—C9—C1031.8 (3)
C1—C2—C3—C40.4 (4)C11—N4—C9—C820.3 (3)
Br1—C2—C3—C4179.14 (19)N3—N4—C9—C8158.00 (19)
C2—C3—C4—C50.8 (4)C5—O1—C9—N470.6 (2)
C9—O1—C5—C4165.8 (2)C5—O1—C9—C10169.73 (19)
C9—O1—C5—C614.7 (3)C5—O1—C9—C845.7 (2)
C3—C4—C5—O1179.6 (2)C7—C8—C9—N451.2 (2)
C3—C4—C5—C60.8 (3)C7—C8—C9—O166.6 (2)
C2—C1—C6—C50.0 (3)C7—C8—C9—C10175.2 (2)
C2—C1—C6—C7176.2 (2)C12—N2—C11—N1178.0 (2)
O1—C5—C6—C1179.9 (2)C12—N2—C11—N40.7 (2)
C4—C5—C6—C10.4 (3)C7—N1—C11—N2167.4 (2)
O1—C5—C6—C73.9 (3)C7—N1—C11—N414.1 (3)
C4—C5—C6—C7176.6 (2)N3—N4—C11—N20.6 (2)
C11—N1—C7—C672.2 (2)C9—N4—C11—N2179.14 (19)
C11—N1—C7—C846.6 (2)N3—N4—C11—N1178.19 (18)
C1—C6—C7—N181.8 (3)C9—N4—C11—N10.4 (3)
C5—C6—C7—N194.2 (2)N4—N3—C12—N20.3 (3)
C1—C6—C7—C8159.5 (2)N4—N3—C12—C13178.2 (2)
C5—C6—C7—C824.5 (3)C11—N2—C12—N30.6 (3)
N1—C7—C8—C966.4 (2)C11—N2—C12—C13177.9 (2)
C6—C7—C8—C954.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of rings N2-N4/C11/C12 and C1-C6.
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.83 (2)2.13 (2)2.949 (3)174 (2)
C8—H8A···Cg4ii0.972.863.823 (3)175
C2—Br1···Cg1iii1.89 (1)3.40 (1)4.724 (3)124 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x, y1, z.
7-Methoxy-5-methyl-2-(pyridin-4-yl)-11,12-dihydro-5H-5,11-methanobenzo[g][1,2,4]triazolo[1,5-c][1,3,5]oxadiazocine (II) top
Crystal data top
C18H17N5O2Dx = 1.421 Mg m3
Mr = 335.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 10886 reflections
a = 11.2814 (6) Åθ = 1.6–30.1°
b = 12.6299 (6) ŵ = 0.10 mm1
c = 22.0008 (15) ÅT = 296 K
V = 3134.7 (3) Å3Prisim, colorless
Z = 80.31 × 0.22 × 0.15 mm
F(000) = 1408
Data collection top
Stoe IPDS 2
diffractometer
4432 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1789 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.086
rotation method scansθmax = 29.7°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1515
Tmin = 0.975, Tmax = 0.986k = 1517
23575 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.80 w = 1/[σ2(Fo2) + (0.0216P)2]
where P = (Fo2 + 2Fc2)/3
4432 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29552 (8)1.00618 (8)0.68647 (4)0.0441 (3)
O20.13197 (9)0.92768 (9)0.61850 (5)0.0507 (3)
N10.28301 (15)1.24578 (13)0.77525 (6)0.0595 (4)
H1A0.2548 (17)1.3017 (16)0.7892 (9)0.081 (7)*
N20.22677 (12)1.14540 (11)0.86379 (6)0.0491 (3)
N30.29188 (11)0.98503 (10)0.82932 (5)0.0453 (3)
N40.31364 (11)1.06389 (11)0.78728 (6)0.0455 (3)
N50.13813 (13)0.89571 (14)1.04161 (7)0.0604 (4)
C10.13984 (16)1.25155 (14)0.64423 (8)0.0553 (5)
H10.1440231.3244690.6497100.066*
C20.05311 (15)1.20940 (16)0.60829 (9)0.0625 (5)
H20.0018991.2539970.5899720.075*
C30.04590 (14)1.10106 (15)0.59873 (8)0.0531 (5)
H30.0139111.0731060.5744620.064*
C40.12779 (13)1.03541 (13)0.62538 (7)0.0425 (4)
C50.21547 (13)1.07829 (12)0.66266 (6)0.0403 (4)
C60.22189 (14)1.18600 (12)0.67265 (7)0.0437 (4)
C70.31960 (15)1.23155 (13)0.71187 (7)0.0518 (5)
H70.3450071.2997660.6951150.062*
C80.42279 (14)1.15486 (13)0.71098 (8)0.0528 (4)
H8A0.4559011.1506910.6703650.063*
H8B0.4843971.1788790.7384750.063*
C90.37794 (13)1.04721 (13)0.73060 (7)0.0436 (4)
C100.47358 (13)0.96458 (14)0.73722 (7)0.0548 (5)
H10A0.5311620.9882260.7663400.082*
H10B0.4389770.8993380.7508780.082*
H10C0.5114680.9535790.6986660.082*
C110.27338 (14)1.15751 (13)0.80925 (7)0.0465 (4)
C120.24111 (13)1.03928 (13)0.87389 (7)0.0439 (4)
C130.20625 (13)0.98919 (13)0.93123 (7)0.0441 (4)
C140.16193 (14)1.04894 (15)0.97868 (7)0.0545 (5)
H140.1538071.1219010.9747540.065*
C150.12990 (15)0.99893 (17)1.03192 (8)0.0610 (5)
H150.1003951.0406981.0632780.073*
C160.18286 (15)0.84001 (17)0.99569 (8)0.0589 (5)
H160.1912500.7673761.0011420.071*
C170.21758 (14)0.88170 (13)0.94085 (8)0.0527 (4)
H170.2482770.8381190.9106300.063*
C180.04328 (16)0.87855 (15)0.58270 (9)0.0687 (6)
H18A0.0548490.8032520.5830590.103*
H18B0.0483120.9041490.5416930.103*
H18C0.0334210.8949660.5990780.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0497 (6)0.0416 (7)0.0411 (6)0.0029 (5)0.0089 (5)0.0003 (5)
O20.0551 (7)0.0467 (8)0.0502 (7)0.0023 (6)0.0106 (6)0.0008 (6)
N10.0996 (13)0.0358 (10)0.0432 (8)0.0024 (9)0.0045 (8)0.0013 (8)
N20.0637 (9)0.0436 (9)0.0399 (8)0.0009 (7)0.0013 (7)0.0009 (7)
N30.0543 (8)0.0409 (8)0.0407 (7)0.0029 (7)0.0002 (7)0.0032 (7)
N40.0598 (8)0.0372 (8)0.0395 (7)0.0011 (6)0.0015 (6)0.0025 (7)
N50.0608 (10)0.0736 (12)0.0466 (9)0.0055 (8)0.0015 (8)0.0085 (9)
C10.0714 (11)0.0424 (11)0.0521 (10)0.0062 (10)0.0014 (10)0.0024 (9)
C20.0645 (12)0.0555 (13)0.0674 (13)0.0164 (10)0.0051 (11)0.0123 (11)
C30.0497 (10)0.0591 (13)0.0506 (11)0.0030 (9)0.0065 (9)0.0065 (10)
C40.0467 (9)0.0406 (11)0.0401 (9)0.0008 (8)0.0027 (8)0.0030 (8)
C50.0440 (9)0.0399 (10)0.0368 (8)0.0035 (8)0.0021 (7)0.0045 (8)
C60.0546 (10)0.0398 (10)0.0367 (9)0.0001 (8)0.0040 (8)0.0047 (8)
C70.0702 (11)0.0413 (11)0.0439 (10)0.0078 (9)0.0021 (9)0.0046 (9)
C80.0561 (10)0.0547 (11)0.0474 (10)0.0123 (9)0.0010 (8)0.0012 (9)
C90.0470 (9)0.0455 (10)0.0383 (9)0.0034 (8)0.0031 (8)0.0013 (8)
C100.0514 (10)0.0635 (12)0.0495 (10)0.0068 (9)0.0091 (8)0.0024 (9)
C110.0626 (11)0.0357 (10)0.0412 (9)0.0013 (8)0.0047 (8)0.0011 (9)
C120.0464 (9)0.0420 (10)0.0433 (9)0.0034 (7)0.0034 (7)0.0004 (8)
C130.0437 (8)0.0465 (11)0.0421 (9)0.0062 (8)0.0027 (7)0.0009 (8)
C140.0634 (11)0.0524 (12)0.0477 (10)0.0035 (9)0.0001 (8)0.0016 (10)
C150.0673 (12)0.0705 (15)0.0451 (11)0.0039 (11)0.0003 (9)0.0036 (11)
C160.0628 (11)0.0551 (12)0.0588 (12)0.0040 (10)0.0003 (10)0.0117 (10)
C170.0587 (11)0.0476 (11)0.0518 (10)0.0046 (9)0.0050 (9)0.0004 (9)
C180.0694 (12)0.0669 (14)0.0697 (13)0.0007 (10)0.0176 (10)0.0199 (11)
Geometric parameters (Å, º) top
O1—C51.3854 (16)C5—C61.380 (2)
O1—C91.4408 (17)C6—C71.513 (2)
O2—C41.3698 (18)C7—C81.514 (2)
O2—C181.4165 (18)C7—H70.9800
N1—C111.347 (2)C8—C91.514 (2)
N1—C71.465 (2)C8—H8A0.9700
N1—H1A0.83 (2)C8—H8B0.9700
N2—C111.3190 (19)C9—C101.508 (2)
N2—C121.368 (2)C10—H10A0.9600
N3—C121.3263 (18)C10—H10B0.9600
N3—N41.3812 (17)C10—H10C0.9600
N4—C111.3557 (19)C12—C131.465 (2)
N4—C91.4580 (19)C13—C171.380 (2)
N5—C151.324 (2)C13—C141.382 (2)
N5—C161.330 (2)C14—C151.379 (2)
C1—C21.366 (2)C14—H140.9300
C1—C61.390 (2)C15—H150.9300
C1—H10.9300C16—C171.374 (2)
C2—C31.387 (2)C16—H160.9300
C2—H20.9300C17—H170.9300
C3—C41.373 (2)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.395 (2)C18—H18C0.9600
C5—O1—C9116.04 (12)H8A—C8—H8B108.4
C4—O2—C18118.18 (13)O1—C9—N4107.90 (11)
C11—N1—C7116.73 (15)O1—C9—C10106.13 (13)
C11—N1—H1A117.7 (14)N4—C9—C10111.92 (13)
C7—N1—H1A124.2 (14)O1—C9—C8110.29 (12)
C11—N2—C12102.37 (14)N4—C9—C8106.29 (13)
C12—N3—N4101.50 (12)C10—C9—C8114.20 (13)
C11—N4—N3109.31 (12)C9—C10—H10A109.5
C11—N4—C9126.70 (13)C9—C10—H10B109.5
N3—N4—C9123.85 (13)H10A—C10—H10B109.5
C15—N5—C16115.15 (16)C9—C10—H10C109.5
C2—C1—C6120.34 (17)H10A—C10—H10C109.5
C2—C1—H1119.8H10B—C10—H10C109.5
C6—C1—H1119.8N2—C11—N1129.30 (16)
C1—C2—C3120.96 (17)N2—C11—N4110.90 (14)
C1—C2—H2119.5N1—C11—N4119.79 (15)
C3—C2—H2119.5N3—C12—N2115.92 (14)
C4—C3—C2119.44 (17)N3—C12—C13121.98 (15)
C4—C3—H3120.3N2—C12—C13122.07 (15)
C2—C3—H3120.3C17—C13—C14117.07 (15)
O2—C4—C3125.16 (15)C17—C13—C12122.13 (15)
O2—C4—C5115.23 (14)C14—C13—C12120.79 (15)
C3—C4—C5119.61 (15)C15—C14—C13119.10 (17)
C6—C5—O1123.62 (14)C15—C14—H14120.4
C6—C5—C4120.92 (14)C13—C14—H14120.4
O1—C5—C4115.43 (13)N5—C15—C14124.69 (18)
C5—C6—C1118.71 (15)N5—C15—H15117.7
C5—C6—C7120.25 (14)C14—C15—H15117.7
C1—C6—C7121.00 (15)N5—C16—C17124.92 (19)
N1—C7—C6112.58 (14)N5—C16—H16117.5
N1—C7—C8107.90 (14)C17—C16—H16117.5
C6—C7—C8108.02 (14)C16—C17—C13119.04 (17)
N1—C7—H7109.4C16—C17—H17120.5
C6—C7—H7109.4C13—C17—H17120.5
C8—C7—H7109.4O2—C18—H18A109.5
C9—C8—C7108.29 (13)O2—C18—H18B109.5
C9—C8—H8A110.0H18A—C18—H18B109.5
C7—C8—H8A110.0O2—C18—H18C109.5
C9—C8—H8B110.0H18A—C18—H18C109.5
C7—C8—H8B110.0H18B—C18—H18C109.5
C12—N3—N4—C110.82 (15)N3—N4—C9—O183.17 (16)
C12—N3—N4—C9175.09 (13)C11—N4—C9—C10141.94 (15)
C6—C1—C2—C30.9 (3)N3—N4—C9—C1033.24 (19)
C1—C2—C3—C40.6 (3)C11—N4—C9—C816.63 (19)
C18—O2—C4—C32.0 (2)N3—N4—C9—C8158.54 (13)
C18—O2—C4—C5178.11 (13)C7—C8—C9—O165.73 (16)
C2—C3—C4—O2178.52 (15)C7—C8—C9—N450.97 (16)
C2—C3—C4—C51.3 (2)C7—C8—C9—C10174.87 (13)
C9—O1—C5—C69.08 (19)C12—N2—C11—N1179.12 (17)
C9—O1—C5—C4172.98 (12)C12—N2—C11—N40.13 (17)
O2—C4—C5—C6179.17 (14)C7—N1—C11—N2169.22 (16)
C3—C4—C5—C60.7 (2)C7—N1—C11—N49.7 (2)
O2—C4—C5—O11.17 (19)N3—N4—C11—N20.44 (18)
C3—C4—C5—O1178.69 (13)C9—N4—C11—N2175.31 (13)
O1—C5—C6—C1177.12 (13)N3—N4—C11—N1178.66 (14)
C4—C5—C6—C10.7 (2)C9—N4—C11—N15.6 (2)
O1—C5—C6—C70.5 (2)N4—N3—C12—N20.97 (17)
C4—C5—C6—C7178.34 (13)N4—N3—C12—C13177.03 (13)
C2—C1—C6—C51.5 (2)C11—N2—C12—N30.73 (18)
C2—C1—C6—C7179.10 (15)C11—N2—C12—C13177.26 (14)
C11—N1—C7—C673.9 (2)N3—C12—C13—C174.0 (2)
C11—N1—C7—C845.3 (2)N2—C12—C13—C17178.14 (15)
C5—C6—C7—N194.62 (18)N3—C12—C13—C14174.98 (14)
C1—C6—C7—N187.80 (19)N2—C12—C13—C142.9 (2)
C5—C6—C7—C824.4 (2)C17—C13—C14—C151.1 (2)
C1—C6—C7—C8153.16 (15)C12—C13—C14—C15179.90 (15)
N1—C7—C8—C967.08 (17)C16—N5—C15—C141.2 (3)
C6—C7—C8—C954.88 (16)C13—C14—C15—N50.1 (3)
C5—O1—C9—N474.33 (15)C15—N5—C16—C171.1 (3)
C5—O1—C9—C10165.55 (12)N5—C16—C17—C130.0 (3)
C5—O1—C9—C841.36 (16)C14—C13—C17—C161.1 (2)
C11—N4—C9—O1101.66 (17)C12—C13—C17—C16179.85 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N3i0.83 (2)2.53 (2)3.356 (2)169 (2)
C1—H1···O1i0.932.533.426 (2)163
C7—H7···O2i0.982.353.264 (2)155
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund) and the Council of Higher Education of Turkey, Mevlana Exchange Program (MEV-2016-027).

References

First citationAydemir, E., Kansiz, S., Gumus, M. K., Gorobets, N. Y. & Dege, N. (2018). Acta Cryst. E74, 367–370.  CrossRef IUCr Journals Google Scholar
First citationDömling, A., Wang, W. & Wang, K. (2012). Chem. Rev. 112, 3083–3135.  PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGorobets, N. Y., Sedash, Y. V., Ostras, K. S., Zaremba, O. V., Shishkina, S. V., Baumer, V. N., Shishkin, O. V., Kovalenko, S. M., Desenko, S. M. & Van der Eycken, E. V. (2010). Tetrahedron Lett. 51, 2095–2098.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGümüş, M. K., Gorobets, N. Y., Sedash, Y. V., Chebanov, V. A. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 1261–1267.  Google Scholar
First citationGümüş, M. K., Kansız, S., Aydemir, E., Gorobets, N. Y. & Dege, N. (2018a). J. Mol. Struct. 1168, 280–290.  Google Scholar
First citationGümüş, M. K., Kansız, S., Dege, N. & Kalibabchuk, V. A. (2018b). Acta Cryst. E74, 1211–1214.  CrossRef IUCr Journals Google Scholar
First citationHeijden, G. van der, Ruijter, E. & Orru, R. V. A. (2013). Synlett, 24, 666–685.  Google Scholar
First citationKomykhov, S. A., Bondarenko, A. A., Musatov, V. I., Diachkov, M. V., Gorobets, N. Y. & Desenko, S. M. (2017). Chem. Heterocycl. Compd, 53, 378–380.  CrossRef CAS Google Scholar
First citationKondratiuk, M., Gorobets, N. Y., Sedash, Y. V., Gümüş, M. K. & Desenko, S. M. (2016). Molbank, 2016, M898.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMurlykina, M. V., Morozova, A. D., Zviagin, I. M., Sakhno, Y. I., Desenko, S. M. & Chebanov, V. A. (2018). Frontiers Chem. 6, article 527.  CrossRef Google Scholar
First citationSedash, Y. V., Gorobets, N. Y., Chebanov, V. A., Konovalova, I. S., Shishkin, O. V. & Desenko, S. M. (2012). RSC Adv. 2, 6719–6728.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds