research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­(μ2-tri­phenyl­acetato-κO:κO′)bis­(diiso­butylaluminium)

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, 119991 Moscow, Russian Federation, bG.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation, and cChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 20 February 2019; accepted 9 March 2019; online 15 March 2019)

Single crystals of the title compound, [Al(iBu)2(O2CCPh3)]2 or [Al2(C4H9)4(C20H15O2)2], have been formed in the reaction between tris­(tetra­hydro­furan)­tris­(tri­phenyl­acetato)­neodymium, [Nd(Ph3CCOO)3(THF)3], and triiso­butyl­aluminium, Al(iBu)3, in hexane followed by low-temperature crystallization (243 K) from the reaction mixture. The structure has triclinic (P[\overline{1}]) symmetry at 120 K. The dimeric complex [Al(iBu)2(O2CCPh3-μ-κO:κO′)]2 is located about an inversion centre. The tri­phenyl­acetate ligand displays a μ-κO:κO′-bridging coordination mode, leading to the formation of an octa­gonal Al2O4C2 core. The complex displays HPh⋯CPh inter­molecular inter­actions.

1. Chemical context

Coordination compounds of lanthanides have attracted considerable attention due to their unique properties as co-catalysts in the stereospecific polymerization of conjugated 1,3-dienes (Anwander, 2002[Anwander, R. (2002). in Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974-1013. Weinheim: Wiley-VCH.]; Friebe et al., 2006[Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1-154.]; Fischbach & Anwander, 2006[Fischbach, A. & Anwander, R. (2006). Adv. Polym. Sci. 204, 155-281.]; Fischbach et al., 2006[Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626-1642.]; Kobayashi & Anwander, 2001[Kobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1-307. Berlin, Heidelberg: Springer-Verlag.]; Minyaev et al., 2018a[Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590-598.],b[Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673-682.],c[Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475-1487.]; Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.], 2014[Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219-227.]; Zhang et al., 2010[Zhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137, 49-108.]; Kwag, 2002[Kwag, G. (2002). Macromolecules, 35, 4875-4879.]; Evans et al., 2001[Evans, W. J., Giarikos, D. G. & Ziller, J. W. (2001). Organometallics, 20, 5751-5758.]; Evans & Giarikos, 2004[Evans, W. J. & Giarikos, D. G. (2004). Macromolecules, 37, 5130-5132.]; Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272-1286.], 2019[Roitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A., Ananyev, I. V., Yakovlev, V. A., Kostitsyna, N. N. & Nifant'ev, I. E. (2019). Inorg. Chim. Acta, 487, 153-161.]). The elastomers formed in this process are of fundamental importance with respect to the production of wear-resistant rubbers. Inter­action between organoaluminium and lanthanide complexes usually leads to the formation of Ln–aluminate complexes (e.g. see Fischbach et al., 2006[Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626-1642.]; Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272-1286.], 2019[Roitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A., Ananyev, I. V., Yakovlev, V. A., Kostitsyna, N. N. & Nifant'ev, I. E. (2019). Inorg. Chim. Acta, 487, 153-161.]; Vinogradov et al., 2018[Vinogradov, A. A., Roitershtein, D. M., Minyaev, M. E., Lyssenko, K. A. & Nifant'ev, I. E. (2018). Acta Cryst. E74, 1790-1794.], and references therein), which may be considered as the models for catalytically active species. Sometimes, the second product – an unusual dimeric aluminate complex – forms in this reaction, for instance, when a starting Ln complex contains a bulky tri­phenyl­acetate anion (Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272-1286.]) or S/Se-phenyl carbono­thio/seleno­ate ligands (Evans et al., 2006[Evans, W. J., Miller, K. A. & Ziller, J. W. (2006). Inorg. Chem. 45, 424-429.]). This article describes such a product, which was isolated from a reaction between tris­(tetra­hydro­furan)­tris­(tri­phenyl­acetato)­neodymium, [Nd(Ph3CCOO)3(THF)3], and triiso­butyl­aluminium, Al(iBu)3 or TIBA, in hexane in a 1:5 ratio, followed by low-temperature crystallization (Fig. 1[link]).

[Figure 1]
Figure 1
Synthesis of [Al(iBu)2(μ-O2CCPh3)]2.

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}]. Its asymmetric unit comprises half the dimeric mol­ecule [Al(iBu)2(μ-O2CCPh3)]2 (Fig. 2[link]) located about an inversion centre [symmetry code: (i) −x + 1, −y + 1, −z + 1]. The Al atom adopts a distorted tetra­hedral environment: the O—Al—C and O—Al—O bond angles range from 103.48 (4) (O1—Al—C21) to 108.55 (5)° (O2i—Al—C21), whereas the C21—Al—C25 angle is 125.97 (5)°. The tri­phenyl­acetate ligand exhibits a μ2-κO:κO′-bridging coordination mode. The CPh—CPh [1.3788 (17) Å for C5—C6 to 1.4016 (14) Å for C15—C16], CiBu—CiBu [1.523 (2) Å for C26—C28 to 1.5381 (16) Å for C21—C22], C1—C2 [1.5473 (13) Å] and C1—Cipso [1.5425 (14) Å for C2—C9 to 1.5455 (14) Å for C2—C3] bond lengths inside the ligands are within the expected ranges. The complex has a nearly flat eight-membered Al2O4C2 core, with the greatest deviations from the plane being 0.0548 (6) Å for the O2 and O2i atoms. The bond angles inside the core are 106.84 (4) (O1—Al—O2i), 151.00 (7) (Al—O1—C1), 123.64 (9) (O1—C1—O2) and 156.79 (8)° (C1—O2—Ali), summing to a value of 1076.54° for the entire core, which deviates from a flat octa­gon by 3.46°. The Al—X bond lengths are given in Table 1[link]. 20 known crystal structures of [AlR2(μ-O2CR′)]2 compounds (see §4 below) having the Al2O4C2 core (23 independent core fragments) have Al—X bond lengths varying from ca 1.77 to 1.86 Å (average 1.82 Å) for Al—O, 1.92–2.00 Å (average 1.96 Å) for Al—C and 1.23–1.29 Å (average 1.26 Å) for C—O bonds. The bond lengths in the title complex (Table 1[link]) are close to the average values. It might be noted that the Al—O distances in the studied complex are slightly longer than those in alkoxide/aryl­oxide derivatives (the average value for the Al—O distances is 1.76 Å; 946 complexes, 4423 fragments with terminal or μ2-bridging RO ligands), but shorter than the Al—O distances in complexes with either Al–O=CR2 (1.89 Å; 57 complexes; 103 fragments) or Al—Oether fragments (1.98 Å; 471 complexes, 731 fragments) due to different types of Al—O inter­actions, changing from the ion–ion type in the case of Al—Oalk­yl/ar­yl bonds to the ion–dipole one in the case of Al—O=CR2 or Al—Oether fragments.

[Scheme 1]

Table 1
Selected bond lengths (Å)

Al—O1 1.8269 (8) Al—C25 1.9611 (12)
Al—O2i 1.8212 (8) O1—C1 1.2579 (12)
Al—C21 1.9639 (12) O2—C1 1.2518 (12)
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of [Al(iBu)2(O2CCPh3-μ-κO:κO′)]2. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (i) −x, −y + 1, −z + 1.]

3. Supra­molecular features

The crystal lattice exhibits weak inter­molecular van der Waals contacts between methyl or methyl­ene and aromatic H atoms, with the distances being 2.49 Å for H23A⋯H20 and 2.30 Å for H25A⋯H12. Two inter­molecular inter­actions involving aromatic H atoms with the π-system of a arene group have been found, i.e. 2.89 Å for H6⋯C12 and 2.98 Å for H7⋯C11 (see Table S1 for details). Inter­acting arene rings are located nearly perpendicular to one another, with the corresponding angle between the C3–C8 and C9–C14 planes being 82.83 (3)° (Fig. 3[link]). The last inter­action type is most likely responsible for the orthogonal orientation for two-thirds of the arene groups in the crystal lattice (see Figs. S1–S3 in the supporting information).

[Figure 3]
Figure 3
The inter­molecular HPh⋯CPh inter­actions between neighbouring mol­ecules of [Al(iBu)2(O2CCPh3)]2. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

4. Database survey

According to the Cambridge Structural Database (CSD, Version 5.40 with updates, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are 20 known crystal structures possessing the Al2O4C2 core and having the [AlR2(μ-O2CR′)]2 motif, where R is alkyl or C6F5. Records for crystal structures with other R groups connected to Al via the C atom have not been found in the CSD. 14 complexes have bridging carboxyl­ate ligands, the others have a heteroatom in the α-position (carbamate, seleno­carboxyl­ate and thio­carboxyl­ate ligands).

Complexes of the [AlRR'(μ-O2Car­yl)]2 type are represented by structures with R = R′ = Me and aryl = Ph (CSD refcode DANMUD; Justyniak et al., 2017[Justyniak, I., Prochowicz, D., Tulewicz, A., Bury, W., Goś, P. & Lewiński, J. (2017). Dalton Trans. 46, 669-677.]), aryl = 2,4,6-Ph3C6H2 (IZUROK; Dickie et al., 2004[Dickie, D. A., Choytun, D. D., Jennings, M. C., Jenkins, H. A. & Clyburne, J. A. C. (2004). J. Organomet. Chem. 689, 2186-2191.]), aryl = 2,4,6-iPr3C6H2 (JEFXEY; Fischbach et al., 2006[Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626-1642.]); R = R′ = tert-butyl and aryl = Ph (RITQUG; Bethley et al., 1997[Bethley, C. E., Aitken, C. L., Harlan, C. J., Koide, Y., Bott, S. G. & Barron, A. R. (1997). Organometallics, 16, 329-341.]), aryl = 2-NMe2C6H4 (MIJZEK; Branch et al., 2001[Branch, C. S., Lewinski, J., Justyniak, I., Bott, S. G., Lipkowski, J. & Barron, A. R. (2001). J. Chem. Soc. Dalton Trans. pp. 1253-1258.]), and R = Me, R′ = C(SiMe3)3 and aryl = 4-MeC6H4 (OXUZUD; Kalita et al., 2011[Kalita, L., Pothiraja, R., Saraf, V., Walawalkar, M. G., Butcher, R. J. & Murugavel, R. (2011). J. Organomet. Chem. 696, 3155-3161.]). Two complexes with several Al2O4C2 skeleton fragments, containing 2,2′-O2C–C6H4–C6H4–CO2 di­carboxyl­ate ligands have R = Et (RUJCIJ; two fragments) and R = isobutyl (iBu) (RUJCOP; three fragments) (Ziemkowska et al., 2009[Ziemkowska, W., Cyrański, M. & Kunicki, A. (2009). Inorg. Chem. 48, 7006-7008.]). Three [AlR2(μ-O2CCX3)]2 complexes with a substituted acetate anion possess R = Et and CX3 = CPh3 (RIJVEN; Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272-1286.]; this complex has a very similar structure compared with that described herein but a `less flat' core), and R = tert-butyl, and CX3 = CH2Ph, tert-butyl and CH2OC2H4OCH3 (RITRAN, RITQOA and RITRER; Bethley et al., 1997[Bethley, C. E., Aitken, C. L., Harlan, C. J., Koide, Y., Bott, S. G. & Barron, A. R. (1997). Organometallics, 16, 329-341.]). The other complexes are [Al(iBu)2(μ2-O2CX)]2, with X = –C4H(CH3)2Zr(η5-C5Me5)2 (OBOLIB; Burlakov et al., 2004[Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2004). Organometallics, 23, 4160-4165.]), [Al(C6F5)2(μ-O2CC6F5)]2 (ZIGGON; Ménard et al., 2013[Ménard, G., Gilbert, T. M., Hatnean, J. A., Kraft, A., Krossing, I. & Stephan, D. W. (2013). Organometallics, 32, 4416-4422.]), [AlMe2(μ-O2CEPh)]2 (E = S for YEBKAS and E = Se for YEBKIA; Evans et al., 2006[Evans, W. J., Miller, K. A. & Ziller, J. W. (2006). Inorg. Chem. 45, 424-429.]), [AlR2(μ-O2CNX2)]2, with R = iBu (NACYUN; Kennedy et al., 2010[Kennedy, A. R., Mulvey, R. E., Oliver, D. E. & Robertson, S. D. (2010). Dalton Trans. 39, 6190-6197.]), tert-Bu (OFELIW; Hengesbach et al., 2013[Hengesbach, F., Jin, X., Hepp, A., Wibbeling, B., Würthwein, E.-U. & Uhl, W. (2013). Chem. Eur. J. 19, 13901-13909.]) and Me [XAPKEH (Zijlstra et al., 2017[Zijlstra, H. S., Pahl, J., Penafiel, J. & Harder, S. (2017). Dalton Trans. 46, 3601-3610.]) and ZIQLEQ (Chang et al., 1995[Chang, C.-C., Srinivas, B., Mung-Liang, W., Wen-Ho, C., Chiang, M. Y. & Chung-Sheng, H. (1995). Organometallics, 14, 5150-5159.])].

Based on an analysis of the listed structures, the Al2O4C2 core is quite flexible and its conformation (from flat to chair-like) depends greatly on various inter­actions within the complex, including nonvalence ones. See also related ab initio calculations in the literature (Bethley et al., 1997[Bethley, C. E., Aitken, C. L., Harlan, C. J., Koide, Y., Bott, S. G. & Barron, A. R. (1997). Organometallics, 16, 329-341.]).

5. Synthesis and crystallization

All synthetic manipulations were performed under a purified argon atmosphere, using Schlenk glassware, dry-box techniques and absolute solvents. The C/H elemental analysis was performed with a PerkinElmer 2400 Series II elemental analyzer. Hexane was distilled from Na/K alloy. The complex [Nd(Ph3CCOO)3(THF)3] was prepared according to a previously published method (Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272-1286.]).

A solution of Al(iBu)3 in hexane (1 M, 0.5 ml, 0.5 mmol) was added dropwise to a suspension of [Nd(Ph3CCOO)3(THF)3] (0.122 g, 0.1 mmol) in 15 ml of hexane at room temperature. The suspension dissolved within a few minutes upon addition. The resulting solution was stirred overnight at room temperature. Crystals of [Al(iBu)2(Ph3CCOO)]2 were isolated from the reaction mixture by crystallization at 243 K for 2 d. The mother liquor was deca­nted and crystals were dried under dynamic vacuum. The yield was 56 mg (0.065 mmol, 43% based on the Ph3CCO2 ligand or 26% based on Al). Calculated for C56H66Al2O4 (%): C 78.48, H 7.76; found: C 78.17, H 8.01.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 0.99 Å for methyl­ene and 1.00 Å for methine H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. A rotating group model was applied for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula [Al2(C4H9)4(C20H15O2)2]
Mr 857.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 9.2839 (3), 12.0281 (4), 12.5999 (4)
α, β, γ (°) 108.790 (1), 109.143 (1), 91.866 (1)
V3) 1243.25 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.32 × 0.21 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.684, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 16191, 7242, 6063
Rint 0.016
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.02
No. of reflections 7242
No. of parameters 284
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.23
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), and publCIF (Westrip, 2010).

Bis(µ2-triphenylacetato-κO:κO')bis(diisobutylaluminium) top
Crystal data top
[Al2(C4H9)4(C20H15O2)2]Z = 1
Mr = 857.04F(000) = 460
Triclinic, P1Dx = 1.145 Mg m3
a = 9.2839 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0281 (4) ÅCell parameters from 4293 reflections
c = 12.5999 (4) Åθ = 2.2–28.3°
α = 108.790 (1)°µ = 0.10 mm1
β = 109.143 (1)°T = 120 K
γ = 91.866 (1)°Block, colourless
V = 1243.25 (7) Å30.32 × 0.21 × 0.18 mm
Data collection top
Bruker SMART APEXII
diffractometer
7242 independent reflections
Radiation source: fine-focus sealed tube6063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1312
Tmin = 0.684, Tmax = 0.747k = 1616
16191 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.4816P]
where P = (Fo2 + 2Fc2)/3
7242 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. moisture and air sensitive

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al0.36034 (4)0.60789 (3)0.40800 (3)0.01642 (8)
O10.46295 (9)0.65487 (7)0.56994 (7)0.02070 (16)
O20.59680 (10)0.53977 (7)0.65814 (7)0.02258 (17)
C10.55346 (11)0.63769 (9)0.66037 (9)0.01473 (18)
C20.60602 (11)0.74392 (8)0.78064 (8)0.01395 (17)
C30.70126 (11)0.84711 (9)0.77322 (9)0.01552 (18)
C40.72549 (13)0.84652 (10)0.66985 (10)0.0214 (2)
H40.6792690.7804310.5974230.026*
C50.81694 (14)0.94188 (11)0.67113 (11)0.0264 (2)
H50.8316750.9403220.5995510.032*
C60.88595 (13)1.03822 (10)0.77555 (11)0.0255 (2)
H60.9481841.1029280.7762550.031*
C70.86365 (14)1.03974 (10)0.87945 (11)0.0254 (2)
H70.9108351.1058450.9517160.030*
C80.77282 (13)0.94532 (9)0.87861 (10)0.0213 (2)
H80.7589950.9473350.9506120.026*
C90.71189 (11)0.70895 (9)0.88401 (9)0.01570 (18)
C100.84898 (12)0.66876 (9)0.87587 (9)0.01762 (19)
H100.8722910.6606240.8059900.021*
C110.95149 (13)0.64058 (10)0.96847 (10)0.0219 (2)
H111.0434530.6124130.9611550.026*
C120.91965 (14)0.65356 (10)1.07182 (10)0.0245 (2)
H120.9892250.6338191.1350440.029*
C130.78621 (14)0.69535 (11)1.08199 (10)0.0249 (2)
H130.7647730.7050901.1529060.030*
C140.68228 (13)0.72347 (10)0.98882 (10)0.0208 (2)
H140.5911510.7525880.9970350.025*
C150.45248 (11)0.77495 (9)0.79625 (9)0.01574 (18)
C160.35242 (12)0.68609 (10)0.79768 (10)0.0204 (2)
H160.3824800.6103530.7926140.025*
C170.20989 (13)0.70739 (11)0.80642 (11)0.0243 (2)
H170.1433540.6463790.8074840.029*
C180.16423 (13)0.81765 (11)0.81363 (11)0.0260 (2)
H180.0669420.8325090.8199380.031*
C190.26197 (14)0.90553 (11)0.81151 (12)0.0276 (2)
H190.2311750.9809710.8160530.033*
C200.40547 (13)0.88454 (10)0.80277 (10)0.0219 (2)
H200.4713380.9456980.8012900.026*
C210.46133 (13)0.72019 (10)0.36084 (10)0.0222 (2)
H21A0.4691500.8008300.4184420.027*
H21C0.5680960.7035140.3727450.027*
C220.39213 (13)0.72538 (10)0.23396 (11)0.0238 (2)
H220.2812010.7347270.2180420.029*
C230.47318 (17)0.83216 (12)0.22378 (13)0.0320 (3)
H23A0.4602350.9057030.2802190.048*
H23B0.4278880.8322150.1417500.048*
H23C0.5833500.8269870.2428320.048*
C240.39865 (17)0.61094 (12)0.13896 (12)0.0333 (3)
H24A0.3575000.6180860.0595900.050*
H24B0.3367130.5441910.1402950.050*
H24C0.5059210.5969390.1559040.050*
C250.13991 (13)0.58192 (10)0.38202 (10)0.0220 (2)
H25A0.0811710.5752830.2983990.026*
H25B0.1161660.5042480.3889000.026*
C260.07847 (14)0.67528 (12)0.46520 (11)0.0279 (2)
H260.1347670.6796170.5493800.033*
C270.09381 (17)0.63988 (16)0.43580 (15)0.0430 (3)
H27A0.1280310.6980060.4937360.064*
H27B0.1116330.5610080.4402240.064*
H27C0.1520730.6379610.3546260.064*
C280.1090 (2)0.79795 (14)0.45938 (16)0.0440 (4)
H28A0.0683740.8553790.5130880.066*
H28B0.0578550.7953920.3769410.066*
H28C0.2203630.8220150.4843790.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al0.01816 (15)0.01465 (14)0.01484 (14)0.00357 (11)0.00382 (11)0.00514 (11)
O10.0225 (4)0.0188 (4)0.0153 (3)0.0026 (3)0.0020 (3)0.0038 (3)
O20.0279 (4)0.0149 (3)0.0192 (4)0.0047 (3)0.0044 (3)0.0026 (3)
C10.0135 (4)0.0144 (4)0.0153 (4)0.0002 (3)0.0057 (3)0.0037 (3)
C20.0141 (4)0.0127 (4)0.0134 (4)0.0015 (3)0.0043 (3)0.0031 (3)
C30.0140 (4)0.0140 (4)0.0173 (4)0.0019 (3)0.0044 (3)0.0052 (4)
C40.0213 (5)0.0208 (5)0.0196 (5)0.0016 (4)0.0074 (4)0.0041 (4)
C50.0273 (6)0.0273 (6)0.0286 (6)0.0002 (4)0.0135 (5)0.0118 (5)
C60.0214 (5)0.0207 (5)0.0349 (6)0.0009 (4)0.0080 (5)0.0128 (5)
C70.0256 (5)0.0163 (5)0.0260 (5)0.0035 (4)0.0023 (4)0.0047 (4)
C80.0248 (5)0.0175 (5)0.0177 (5)0.0007 (4)0.0047 (4)0.0045 (4)
C90.0158 (4)0.0137 (4)0.0148 (4)0.0001 (3)0.0031 (3)0.0039 (3)
C100.0167 (4)0.0163 (4)0.0181 (5)0.0006 (3)0.0048 (4)0.0055 (4)
C110.0175 (5)0.0202 (5)0.0251 (5)0.0024 (4)0.0030 (4)0.0088 (4)
C120.0247 (5)0.0233 (5)0.0212 (5)0.0010 (4)0.0001 (4)0.0107 (4)
C130.0281 (6)0.0286 (6)0.0167 (5)0.0015 (4)0.0055 (4)0.0094 (4)
C140.0208 (5)0.0232 (5)0.0178 (5)0.0036 (4)0.0065 (4)0.0067 (4)
C150.0147 (4)0.0170 (4)0.0140 (4)0.0022 (3)0.0048 (3)0.0038 (3)
C160.0191 (5)0.0191 (5)0.0231 (5)0.0018 (4)0.0082 (4)0.0069 (4)
C170.0196 (5)0.0278 (6)0.0267 (5)0.0009 (4)0.0106 (4)0.0092 (4)
C180.0201 (5)0.0343 (6)0.0262 (6)0.0083 (4)0.0121 (4)0.0099 (5)
C190.0270 (6)0.0255 (6)0.0351 (6)0.0120 (5)0.0155 (5)0.0117 (5)
C200.0223 (5)0.0190 (5)0.0269 (5)0.0049 (4)0.0113 (4)0.0086 (4)
C210.0228 (5)0.0200 (5)0.0234 (5)0.0027 (4)0.0069 (4)0.0083 (4)
C220.0212 (5)0.0261 (5)0.0284 (6)0.0040 (4)0.0086 (4)0.0156 (5)
C230.0396 (7)0.0267 (6)0.0412 (7)0.0074 (5)0.0217 (6)0.0190 (5)
C240.0438 (7)0.0290 (6)0.0258 (6)0.0037 (5)0.0118 (5)0.0096 (5)
C250.0214 (5)0.0266 (5)0.0176 (5)0.0038 (4)0.0058 (4)0.0085 (4)
C260.0269 (6)0.0367 (6)0.0227 (5)0.0115 (5)0.0108 (5)0.0113 (5)
C270.0307 (7)0.0603 (10)0.0474 (8)0.0159 (7)0.0223 (6)0.0218 (7)
C280.0497 (9)0.0339 (7)0.0557 (9)0.0175 (6)0.0288 (8)0.0140 (7)
Geometric parameters (Å, º) top
Al—O11.8269 (8)C16—C171.3887 (15)
Al—O2i1.8212 (8)C16—H160.9500
Al—C211.9639 (12)C17—C181.3896 (17)
Al—C251.9611 (12)C17—H170.9500
O1—C11.2579 (12)C18—C191.3831 (18)
O2—C11.2518 (12)C18—H180.9500
C1—C21.5473 (13)C19—C201.3968 (16)
C2—C91.5425 (14)C19—H190.9500
C2—C151.5431 (14)C20—H200.9500
C2—C31.5455 (14)C21—C221.5381 (16)
C3—C41.3905 (14)C21—H21A0.9900
C3—C81.3999 (14)C21—H21C0.9900
C4—C51.3973 (15)C22—C241.5241 (18)
C4—H40.9500C22—C231.5293 (16)
C5—C61.3788 (17)C22—H221.0000
C5—H50.9500C23—H23A0.9800
C6—C71.3855 (17)C23—H23B0.9800
C6—H60.9500C23—H23C0.9800
C7—C81.3875 (15)C24—H24A0.9800
C7—H70.9500C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C9—C141.3938 (14)C25—C261.5363 (16)
C9—C101.3992 (14)C25—H25A0.9900
C10—C111.3890 (14)C25—H25B0.9900
C10—H100.9500C26—C281.523 (2)
C11—C121.3900 (17)C26—C271.5304 (19)
C11—H110.9500C26—H261.0000
C12—C131.3809 (17)C27—H27A0.9800
C12—H120.9500C27—H27B0.9800
C13—C141.3992 (15)C27—H27C0.9800
C13—H130.9500C28—H28A0.9800
C14—H140.9500C28—H28B0.9800
C15—C201.3878 (14)C28—H28C0.9800
C15—C161.4016 (14)
O2i—Al—O1106.84 (4)C16—C17—H17119.9
O2i—Al—C25104.41 (5)C18—C17—H17119.9
O1—Al—C25106.37 (4)C19—C18—C17119.28 (10)
O2i—Al—C21108.55 (5)C19—C18—H18120.4
O1—Al—C21103.48 (4)C17—C18—H18120.4
C25—Al—C21125.97 (5)C18—C19—C20120.70 (11)
C1—O1—Al151.00 (7)C18—C19—H19119.7
C1—O2—Ali156.79 (8)C20—C19—H19119.7
O2—C1—O1123.64 (9)C15—C20—C19120.45 (10)
O2—C1—C2119.65 (9)C15—C20—H20119.8
O1—C1—C2116.65 (9)C19—C20—H20119.8
C9—C2—C15112.68 (8)C22—C21—Al120.48 (8)
C9—C2—C3106.65 (8)C22—C21—H21A107.2
C15—C2—C3113.13 (8)Al—C21—H21A107.2
C9—C2—C1110.97 (8)C22—C21—H21C107.2
C15—C2—C1103.23 (8)Al—C21—H21C107.2
C3—C2—C1110.25 (8)H21A—C21—H21C106.8
C4—C3—C8117.96 (9)C24—C22—C23110.11 (10)
C4—C3—C2124.20 (9)C24—C22—C21111.38 (10)
C8—C3—C2117.79 (9)C23—C22—C21111.41 (10)
C3—C4—C5120.85 (10)C24—C22—H22107.9
C3—C4—H4119.6C23—C22—H22107.9
C5—C4—H4119.6C21—C22—H22107.9
C6—C5—C4120.45 (11)C22—C23—H23A109.5
C6—C5—H5119.8C22—C23—H23B109.5
C4—C5—H5119.8H23A—C23—H23B109.5
C5—C6—C7119.35 (10)C22—C23—H23C109.5
C5—C6—H6120.3H23A—C23—H23C109.5
C7—C6—H6120.3H23B—C23—H23C109.5
C6—C7—C8120.41 (10)C22—C24—H24A109.5
C6—C7—H7119.8C22—C24—H24B109.5
C8—C7—H7119.8H24A—C24—H24B109.5
C7—C8—C3120.97 (10)C22—C24—H24C109.5
C7—C8—H8119.5H24A—C24—H24C109.5
C3—C8—H8119.5H24B—C24—H24C109.5
C14—C9—C10118.49 (9)C26—C25—Al117.87 (8)
C14—C9—C2122.79 (9)C26—C25—H25A107.8
C10—C9—C2118.56 (9)Al—C25—H25A107.8
C11—C10—C9120.97 (10)C26—C25—H25B107.8
C11—C10—H10119.5Al—C25—H25B107.8
C9—C10—H10119.5H25A—C25—H25B107.2
C10—C11—C12120.06 (10)C28—C26—C27110.38 (12)
C10—C11—H11120.0C28—C26—C25111.39 (11)
C12—C11—H11120.0C27—C26—C25111.31 (11)
C13—C12—C11119.55 (10)C28—C26—H26107.9
C13—C12—H12120.2C27—C26—H26107.9
C11—C12—H12120.2C25—C26—H26107.9
C12—C13—C14120.62 (11)C26—C27—H27A109.5
C12—C13—H13119.7C26—C27—H27B109.5
C14—C13—H13119.7H27A—C27—H27B109.5
C9—C14—C13120.28 (10)C26—C27—H27C109.5
C9—C14—H14119.9H27A—C27—H27C109.5
C13—C14—H14119.9H27B—C27—H27C109.5
C20—C15—C16118.53 (9)C26—C28—H28A109.5
C20—C15—C2123.12 (9)C26—C28—H28B109.5
C16—C15—C2118.27 (9)H28A—C28—H28B109.5
C17—C16—C15120.81 (10)C26—C28—H28C109.5
C17—C16—H16119.6H28A—C28—H28C109.5
C15—C16—H16119.6H28B—C28—H28C109.5
C16—C17—C18120.23 (11)
O2i—Al—O1—C13.48 (16)C15—C2—C9—C10174.54 (9)
C25—Al—O1—C1114.58 (15)C3—C2—C9—C1060.76 (11)
C21—Al—O1—C1111.00 (15)C1—C2—C9—C1059.34 (11)
Ali—O2—C1—O124.1 (3)C14—C9—C10—C111.83 (15)
Ali—O2—C1—C2158.73 (15)C2—C9—C10—C11177.43 (9)
Al—O1—C1—O212.9 (2)C9—C10—C11—C120.82 (16)
Al—O1—C1—C2169.90 (11)C10—C11—C12—C130.44 (17)
O2—C1—C2—C90.80 (13)C11—C12—C13—C140.67 (18)
O1—C1—C2—C9178.13 (8)C10—C9—C14—C131.60 (16)
O2—C1—C2—C15120.15 (10)C2—C9—C14—C13177.00 (10)
O1—C1—C2—C1557.18 (11)C12—C13—C14—C90.37 (17)
O2—C1—C2—C3118.74 (10)C9—C2—C15—C20121.13 (11)
O1—C1—C2—C363.94 (11)C3—C2—C15—C200.05 (13)
C9—C2—C3—C4124.93 (10)C1—C2—C15—C20119.09 (10)
C15—C2—C3—C4110.63 (11)C9—C2—C15—C1662.24 (12)
C1—C2—C3—C44.38 (13)C3—C2—C15—C16176.68 (9)
C9—C2—C3—C852.35 (11)C1—C2—C15—C1657.54 (11)
C15—C2—C3—C872.08 (11)C20—C15—C16—C170.52 (16)
C1—C2—C3—C8172.91 (9)C2—C15—C16—C17177.30 (10)
C8—C3—C4—C50.80 (16)C15—C16—C17—C180.15 (17)
C2—C3—C4—C5178.08 (10)C16—C17—C18—C190.25 (18)
C3—C4—C5—C60.48 (18)C17—C18—C19—C200.28 (19)
C4—C5—C6—C70.07 (18)C16—C15—C20—C190.49 (16)
C5—C6—C7—C80.01 (18)C2—C15—C20—C19177.11 (10)
C6—C7—C8—C30.36 (18)C18—C19—C20—C150.10 (18)
C4—C3—C8—C70.74 (16)Al—C21—C22—C2466.22 (12)
C2—C3—C8—C7178.19 (10)Al—C21—C22—C23170.40 (8)
C15—C2—C9—C1410.07 (13)Al—C25—C26—C2858.20 (13)
C3—C2—C9—C14114.64 (10)Al—C25—C26—C27178.14 (9)
C1—C2—C9—C14125.27 (10)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Funding for this research was provided by the TIPS RAS State Plan.

References

First citationAnwander, R. (2002). in Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH.  Google Scholar
First citationBethley, C. E., Aitken, C. L., Harlan, C. J., Koide, Y., Bott, S. G. & Barron, A. R. (1997). Organometallics, 16, 329–341.  CrossRef CAS Google Scholar
First citationBranch, C. S., Lewinski, J., Justyniak, I., Bott, S. G., Lipkowski, J. & Barron, A. R. (2001). J. Chem. Soc. Dalton Trans. pp. 1253–1258.  CrossRef Google Scholar
First citationBruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2004). Organometallics, 23, 4160–4165.  CrossRef CAS Google Scholar
First citationChang, C.-C., Srinivas, B., Mung-Liang, W., Wen-Ho, C., Chiang, M. Y. & Chung-Sheng, H. (1995). Organometallics, 14, 5150–5159.  CrossRef CAS Google Scholar
First citationDickie, D. A., Choytun, D. D., Jennings, M. C., Jenkins, H. A. & Clyburne, J. A. C. (2004). J. Organomet. Chem. 689, 2186–2191.  CrossRef CAS Google Scholar
First citationEvans, W. J. & Giarikos, D. G. (2004). Macromolecules, 37, 5130–5132.  Web of Science CrossRef CAS Google Scholar
First citationEvans, W. J., Giarikos, D. G. & Ziller, J. W. (2001). Organometallics, 20, 5751–5758.  Web of Science CrossRef CAS Google Scholar
First citationEvans, W. J., Miller, K. A. & Ziller, J. W. (2006). Inorg. Chem. 45, 424–429.  CrossRef CAS Google Scholar
First citationFischbach, A. & Anwander, R. (2006). Adv. Polym. Sci. 204, 155–281.  Web of Science CrossRef CAS Google Scholar
First citationFischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626–1642.  Web of Science CrossRef CAS Google Scholar
First citationFriebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHengesbach, F., Jin, X., Hepp, A., Wibbeling, B., Würthwein, E.-U. & Uhl, W. (2013). Chem. Eur. J. 19, 13901–13909.  CrossRef CAS Google Scholar
First citationJustyniak, I., Prochowicz, D., Tulewicz, A., Bury, W., Goś, P. & Lewiński, J. (2017). Dalton Trans. 46, 669–677.  CrossRef CAS Google Scholar
First citationKalita, L., Pothiraja, R., Saraf, V., Walawalkar, M. G., Butcher, R. J. & Murugavel, R. (2011). J. Organomet. Chem. 696, 3155–3161.  CrossRef CAS Google Scholar
First citationKennedy, A. R., Mulvey, R. E., Oliver, D. E. & Robertson, S. D. (2010). Dalton Trans. 39, 6190–6197.  CrossRef CAS Google Scholar
First citationKobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1–307. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKwag, G. (2002). Macromolecules, 35, 4875–4879.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMénard, G., Gilbert, T. M., Hatnean, J. A., Kraft, A., Krossing, I. & Stephan, D. W. (2013). Organometallics, 32, 4416–4422.  Google Scholar
First citationMinyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673–682.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMinyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475–1487.  Web of Science CrossRef CAS Google Scholar
First citationMinyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590–598.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227.  CAS Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230.  Web of Science CAS PubMed Google Scholar
First citationRoitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A., Ananyev, I. V., Yakovlev, V. A., Kostitsyna, N. N. & Nifant'ev, I. E. (2019). Inorg. Chim. Acta, 487, 153–161.  CrossRef CAS Google Scholar
First citationRoitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272–1286.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVinogradov, A. A., Roitershtein, D. M., Minyaev, M. E., Lyssenko, K. A. & Nifant'ev, I. E. (2018). Acta Cryst. E74, 1790–1794.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137, 49–108.  Web of Science CrossRef CAS Google Scholar
First citationZiemkowska, W., Cyrański, M. & Kunicki, A. (2009). Inorg. Chem. 48, 7006–7008.  CrossRef CAS Google Scholar
First citationZijlstra, H. S., Pahl, J., Penafiel, J. & Harder, S. (2017). Dalton Trans. 46, 3601–3610.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds