research communications
μ2-triphenylacetato-κO:κO′)bis(diisobutylaluminium)
of bis(aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, 119991 Moscow, Russian Federation, bG.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russian Federation, and cChemistry Department, M.V. Lomonosov Moscow State University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru
Single crystals of the title compound, [Al(iBu)2(O2CCPh3)]2 or [Al2(C4H9)4(C20H15O2)2], have been formed in the reaction between tris(tetrahydrofuran)tris(triphenylacetato)neodymium, [Nd(Ph3CCOO)3(THF)3], and triisobutylaluminium, Al(iBu)3, in hexane followed by low-temperature crystallization (243 K) from the reaction mixture. The structure has triclinic (P) symmetry at 120 K. The dimeric complex [Al(iBu)2(O2CCPh3-μ-κO:κO′)]2 is located about an inversion centre. The triphenylacetate ligand displays a μ-κO:κO′-bridging coordination mode, leading to the formation of an octagonal Al2O4C2 core. The complex displays HPh⋯CPh intermolecular interactions.
Keywords: aluminium; TIBA; triphenylacetate; coordination compound; crystal structure.
CCDC reference: 1902149
1. Chemical context
Coordination compounds of lanthanides have attracted considerable attention due to their unique properties as co-catalysts in the ; Friebe et al., 2006; Fischbach & Anwander, 2006; Fischbach et al., 2006; Kobayashi & Anwander, 2001; Minyaev et al., 2018a,b,c; Nifant'ev et al., 2013, 2014; Zhang et al., 2010; Kwag, 2002; Evans et al., 2001; Evans & Giarikos, 2004; Roitershtein et al., 2013, 2019). The elastomers formed in this process are of fundamental importance with respect to the production of wear-resistant rubbers. Interaction between organoaluminium and lanthanide complexes usually leads to the formation of Ln–aluminate complexes (e.g. see Fischbach et al., 2006; Roitershtein et al., 2013, 2019; Vinogradov et al., 2018, and references therein), which may be considered as the models for catalytically active species. Sometimes, the second product – an unusual dimeric aluminate complex – forms in this reaction, for instance, when a starting Ln complex contains a bulky triphenylacetate anion (Roitershtein et al., 2013) or S/Se-phenyl carbonothio/selenoate ligands (Evans et al., 2006). This article describes such a product, which was isolated from a reaction between tris(tetrahydrofuran)tris(triphenylacetato)neodymium, [Nd(Ph3CCOO)3(THF)3], and triisobutylaluminium, Al(iBu)3 or TIBA, in hexane in a 1:5 ratio, followed by low-temperature crystallization (Fig. 1).
of conjugated 1,3-dienes (Anwander, 20022. Structural commentary
The title compound crystallizes in the triclinic P. Its comprises half the dimeric molecule [Al(iBu)2(μ-O2CCPh3)]2 (Fig. 2) located about an inversion centre [symmetry code: (i) −x + 1, −y + 1, −z + 1]. The Al atom adopts a distorted tetrahedral environment: the O—Al—C and O—Al—O bond angles range from 103.48 (4) (O1—Al—C21) to 108.55 (5)° (O2i—Al—C21), whereas the C21—Al—C25 angle is 125.97 (5)°. The triphenylacetate ligand exhibits a μ2-κO:κO′-bridging coordination mode. The CPh—CPh [1.3788 (17) Å for C5—C6 to 1.4016 (14) Å for C15—C16], CiBu—CiBu [1.523 (2) Å for C26—C28 to 1.5381 (16) Å for C21—C22], C1—C2 [1.5473 (13) Å] and C1—Cipso [1.5425 (14) Å for C2—C9 to 1.5455 (14) Å for C2—C3] bond lengths inside the ligands are within the expected ranges. The complex has a nearly flat eight-membered Al2O4C2 core, with the greatest deviations from the plane being 0.0548 (6) Å for the O2 and O2i atoms. The bond angles inside the core are 106.84 (4) (O1—Al—O2i), 151.00 (7) (Al—O1—C1), 123.64 (9) (O1—C1—O2) and 156.79 (8)° (C1—O2—Ali), summing to a value of 1076.54° for the entire core, which deviates from a flat octagon by 3.46°. The Al—X bond lengths are given in Table 1. 20 known crystal structures of [AlR2(μ-O2CR′)]2 compounds (see §4 below) having the Al2O4C2 core (23 independent core fragments) have Al—X bond lengths varying from ca 1.77 to 1.86 Å (average 1.82 Å) for Al—O, 1.92–2.00 Å (average 1.96 Å) for Al—C and 1.23–1.29 Å (average 1.26 Å) for C—O bonds. The bond lengths in the title complex (Table 1) are close to the average values. It might be noted that the Al—O distances in the studied complex are slightly longer than those in alkoxide/aryloxide derivatives (the average value for the Al—O distances is 1.76 Å; 946 complexes, 4423 fragments with terminal or μ2-bridging RO− ligands), but shorter than the Al—O distances in complexes with either Al–O=CR2 (1.89 Å; 57 complexes; 103 fragments) or Al—Oether fragments (1.98 Å; 471 complexes, 731 fragments) due to different types of Al—O interactions, changing from the ion–ion type in the case of Al—Oalkyl/aryl bonds to the ion–dipole one in the case of Al—O=CR2 or Al—Oether fragments.
3. Supramolecular features
The A⋯H20 and 2.30 Å for H25A⋯H12. Two intermolecular interactions involving aromatic H atoms with the π-system of a arene group have been found, i.e. 2.89 Å for H6⋯C12 and 2.98 Å for H7⋯C11 (see Table S1 for details). Interacting arene rings are located nearly perpendicular to one another, with the corresponding angle between the C3–C8 and C9–C14 planes being 82.83 (3)° (Fig. 3). The last interaction type is most likely responsible for the orthogonal orientation for two-thirds of the arene groups in the (see Figs. S1–S3 in the supporting information).
exhibits weak intermolecular van der Waals contacts between methyl or methylene and aromatic H atoms, with the distances being 2.49 Å for H234. Database survey
According to the Cambridge Structural Database (CSD, Version 5.40 with updates, Groom et al., 2016), there are 20 known crystal structures possessing the Al2O4C2 core and having the [AlR2(μ-O2CR′)]2 motif, where R is alkyl or C6F5. Records for crystal structures with other R groups connected to Al via the C atom have not been found in the CSD. 14 complexes have bridging carboxylate ligands, the others have a heteroatom in the α-position (carbamate, selenocarboxylate and thiocarboxylate ligands).
Complexes of the [AlRR'(μ-O2Caryl)]2 type are represented by structures with R = R′ = Me and aryl = Ph (CSD refcode DANMUD; Justyniak et al., 2017), aryl = 2,4,6-Ph3C6H2 (IZUROK; Dickie et al., 2004), aryl = 2,4,6-iPr3C6H2 (JEFXEY; Fischbach et al., 2006); R = R′ = tert-butyl and aryl = Ph (RITQUG; Bethley et al., 1997), aryl = 2-NMe2C6H4 (MIJZEK; Branch et al., 2001), and R = Me, R′ = C(SiMe3)3 and aryl = 4-MeC6H4 (OXUZUD; Kalita et al., 2011). Two complexes with several Al2O4C2 skeleton fragments, containing 2,2′-O2C–C6H4–C6H4–CO2 dicarboxylate ligands have R = Et (RUJCIJ; two fragments) and R = isobutyl (iBu) (RUJCOP; three fragments) (Ziemkowska et al., 2009). Three [AlR2(μ-O2CCX3)]2 complexes with a substituted acetate anion possess R = Et and CX3 = CPh3 (RIJVEN; Roitershtein et al., 2013; this complex has a very similar structure compared with that described herein but a `less flat' core), and R = tert-butyl, and CX3 = CH2Ph, tert-butyl and CH2OC2H4OCH3 (RITRAN, RITQOA and RITRER; Bethley et al., 1997). The other complexes are [Al(iBu)2(μ2-O2CX)]2, with X = –C4H(CH3)2Zr(η5-C5Me5)2 (OBOLIB; Burlakov et al., 2004), [Al(C6F5)2(μ-O2CC6F5)]2 (ZIGGON; Ménard et al., 2013), [AlMe2(μ-O2CEPh)]2 (E = S for YEBKAS and E = Se for YEBKIA; Evans et al., 2006), [AlR2(μ-O2CNX2)]2, with R = iBu (NACYUN; Kennedy et al., 2010), tert-Bu (OFELIW; Hengesbach et al., 2013) and Me [XAPKEH (Zijlstra et al., 2017) and ZIQLEQ (Chang et al., 1995)].
Based on an analysis of the listed structures, the Al2O4C2 core is quite flexible and its conformation (from flat to chair-like) depends greatly on various interactions within the complex, including nonvalence ones. See also related ab initio calculations in the literature (Bethley et al., 1997).
5. Synthesis and crystallization
All synthetic manipulations were performed under a purified argon atmosphere, using Schlenk glassware, dry-box techniques and absolute solvents. The C/H elemental analysis was performed with a PerkinElmer 2400 Series II elemental analyzer. Hexane was distilled from Na/K alloy. The complex [Nd(Ph3CCOO)3(THF)3] was prepared according to a previously published method (Roitershtein et al., 2013).
A solution of Al(iBu)3 in hexane (1 M, 0.5 ml, 0.5 mmol) was added dropwise to a suspension of [Nd(Ph3CCOO)3(THF)3] (0.122 g, 0.1 mmol) in 15 ml of hexane at room temperature. The suspension dissolved within a few minutes upon addition. The resulting solution was stirred overnight at room temperature. Crystals of [Al(iBu)2(Ph3CCOO)]2 were isolated from the reaction mixture by crystallization at 243 K for 2 d. The mother liquor was decanted and crystals were dried under dynamic vacuum. The yield was 56 mg (0.065 mmol, 43% based on the Ph3CCO2− ligand or 26% based on Al). Calculated for C56H66Al2O4 (%): C 78.48, H 7.76; found: C 78.17, H 8.01.
6. Refinement
Crystal data, data collection and structure . The H atoms were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl, 0.99 Å for methylene and 1.00 Å for methine H atoms) and refined as riding atoms with relative isotropic displacement parameters Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. A rotating group model was applied for methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1902149
https://doi.org/10.1107/S2056989019003396/tx2010sup1.cif
contains datablock global. DOI:C...H interactions and packing plots. DOI: https://doi.org/10.1107/S2056989019003396/tx2010sup4.pdf
Data collection: APEX2 (Bruker, 2008); cell
APEX2 (Bruker, 2008); data reduction: APEX2 (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), and publCIF (Westrip, 2010).[Al2(C4H9)4(C20H15O2)2] | Z = 1 |
Mr = 857.04 | F(000) = 460 |
Triclinic, P1 | Dx = 1.145 Mg m−3 |
a = 9.2839 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.0281 (4) Å | Cell parameters from 4293 reflections |
c = 12.5999 (4) Å | θ = 2.2–28.3° |
α = 108.790 (1)° | µ = 0.10 mm−1 |
β = 109.143 (1)° | T = 120 K |
γ = 91.866 (1)° | Block, colourless |
V = 1243.25 (7) Å3 | 0.32 × 0.21 × 0.18 mm |
Bruker SMART APEXII diffractometer | 7242 independent reflections |
Radiation source: fine-focus sealed tube | 6063 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 30.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→12 |
Tmin = 0.684, Tmax = 0.747 | k = −16→16 |
16191 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0485P)2 + 0.4816P] where P = (Fo2 + 2Fc2)/3 |
7242 reflections | (Δ/σ)max = 0.001 |
284 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Experimental. moisture and air sensitive |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Al | 0.36034 (4) | 0.60789 (3) | 0.40800 (3) | 0.01642 (8) | |
O1 | 0.46295 (9) | 0.65487 (7) | 0.56994 (7) | 0.02070 (16) | |
O2 | 0.59680 (10) | 0.53977 (7) | 0.65814 (7) | 0.02258 (17) | |
C1 | 0.55346 (11) | 0.63769 (9) | 0.66037 (9) | 0.01473 (18) | |
C2 | 0.60602 (11) | 0.74392 (8) | 0.78064 (8) | 0.01395 (17) | |
C3 | 0.70126 (11) | 0.84711 (9) | 0.77322 (9) | 0.01552 (18) | |
C4 | 0.72549 (13) | 0.84652 (10) | 0.66985 (10) | 0.0214 (2) | |
H4 | 0.679269 | 0.780431 | 0.597423 | 0.026* | |
C5 | 0.81694 (14) | 0.94188 (11) | 0.67113 (11) | 0.0264 (2) | |
H5 | 0.831675 | 0.940322 | 0.599551 | 0.032* | |
C6 | 0.88595 (13) | 1.03822 (10) | 0.77555 (11) | 0.0255 (2) | |
H6 | 0.948184 | 1.102928 | 0.776255 | 0.031* | |
C7 | 0.86365 (14) | 1.03974 (10) | 0.87945 (11) | 0.0254 (2) | |
H7 | 0.910835 | 1.105845 | 0.951716 | 0.030* | |
C8 | 0.77282 (13) | 0.94532 (9) | 0.87861 (10) | 0.0213 (2) | |
H8 | 0.758995 | 0.947335 | 0.950612 | 0.026* | |
C9 | 0.71189 (11) | 0.70895 (9) | 0.88401 (9) | 0.01570 (18) | |
C10 | 0.84898 (12) | 0.66876 (9) | 0.87587 (9) | 0.01762 (19) | |
H10 | 0.872291 | 0.660624 | 0.805990 | 0.021* | |
C11 | 0.95149 (13) | 0.64058 (10) | 0.96847 (10) | 0.0219 (2) | |
H11 | 1.043453 | 0.612413 | 0.961155 | 0.026* | |
C12 | 0.91965 (14) | 0.65356 (10) | 1.07182 (10) | 0.0245 (2) | |
H12 | 0.989225 | 0.633819 | 1.135044 | 0.029* | |
C13 | 0.78621 (14) | 0.69535 (11) | 1.08199 (10) | 0.0249 (2) | |
H13 | 0.764773 | 0.705090 | 1.152906 | 0.030* | |
C14 | 0.68228 (13) | 0.72347 (10) | 0.98882 (10) | 0.0208 (2) | |
H14 | 0.591151 | 0.752588 | 0.997035 | 0.025* | |
C15 | 0.45248 (11) | 0.77495 (9) | 0.79625 (9) | 0.01574 (18) | |
C16 | 0.35242 (12) | 0.68609 (10) | 0.79768 (10) | 0.0204 (2) | |
H16 | 0.382480 | 0.610353 | 0.792614 | 0.025* | |
C17 | 0.20989 (13) | 0.70739 (11) | 0.80642 (11) | 0.0243 (2) | |
H17 | 0.143354 | 0.646379 | 0.807484 | 0.029* | |
C18 | 0.16423 (13) | 0.81765 (11) | 0.81363 (11) | 0.0260 (2) | |
H18 | 0.066942 | 0.832509 | 0.819938 | 0.031* | |
C19 | 0.26197 (14) | 0.90553 (11) | 0.81151 (12) | 0.0276 (2) | |
H19 | 0.231175 | 0.980971 | 0.816053 | 0.033* | |
C20 | 0.40547 (13) | 0.88454 (10) | 0.80277 (10) | 0.0219 (2) | |
H20 | 0.471338 | 0.945698 | 0.801290 | 0.026* | |
C21 | 0.46133 (13) | 0.72019 (10) | 0.36084 (10) | 0.0222 (2) | |
H21A | 0.469150 | 0.800830 | 0.418442 | 0.027* | |
H21C | 0.568096 | 0.703514 | 0.372745 | 0.027* | |
C22 | 0.39213 (13) | 0.72538 (10) | 0.23396 (11) | 0.0238 (2) | |
H22 | 0.281201 | 0.734727 | 0.218042 | 0.029* | |
C23 | 0.47318 (17) | 0.83216 (12) | 0.22378 (13) | 0.0320 (3) | |
H23A | 0.460235 | 0.905703 | 0.280219 | 0.048* | |
H23B | 0.427888 | 0.832215 | 0.141750 | 0.048* | |
H23C | 0.583350 | 0.826987 | 0.242832 | 0.048* | |
C24 | 0.39865 (17) | 0.61094 (12) | 0.13896 (12) | 0.0333 (3) | |
H24A | 0.357500 | 0.618086 | 0.059590 | 0.050* | |
H24B | 0.336713 | 0.544191 | 0.140295 | 0.050* | |
H24C | 0.505921 | 0.596939 | 0.155904 | 0.050* | |
C25 | 0.13991 (13) | 0.58192 (10) | 0.38202 (10) | 0.0220 (2) | |
H25A | 0.081171 | 0.575283 | 0.298399 | 0.026* | |
H25B | 0.116166 | 0.504248 | 0.388900 | 0.026* | |
C26 | 0.07847 (14) | 0.67528 (12) | 0.46520 (11) | 0.0279 (2) | |
H26 | 0.134767 | 0.679617 | 0.549380 | 0.033* | |
C27 | −0.09381 (17) | 0.63988 (16) | 0.43580 (15) | 0.0430 (3) | |
H27A | −0.128031 | 0.698006 | 0.493736 | 0.064* | |
H27B | −0.111633 | 0.561008 | 0.440224 | 0.064* | |
H27C | −0.152073 | 0.637961 | 0.354626 | 0.064* | |
C28 | 0.1090 (2) | 0.79795 (14) | 0.45938 (16) | 0.0440 (4) | |
H28A | 0.068374 | 0.855379 | 0.513088 | 0.066* | |
H28B | 0.057855 | 0.795392 | 0.376941 | 0.066* | |
H28C | 0.220363 | 0.822015 | 0.484379 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Al | 0.01816 (15) | 0.01465 (14) | 0.01484 (14) | 0.00357 (11) | 0.00382 (11) | 0.00514 (11) |
O1 | 0.0225 (4) | 0.0188 (4) | 0.0153 (3) | 0.0026 (3) | 0.0020 (3) | 0.0038 (3) |
O2 | 0.0279 (4) | 0.0149 (3) | 0.0192 (4) | 0.0047 (3) | 0.0044 (3) | 0.0026 (3) |
C1 | 0.0135 (4) | 0.0144 (4) | 0.0153 (4) | −0.0002 (3) | 0.0057 (3) | 0.0037 (3) |
C2 | 0.0141 (4) | 0.0127 (4) | 0.0134 (4) | 0.0015 (3) | 0.0043 (3) | 0.0031 (3) |
C3 | 0.0140 (4) | 0.0140 (4) | 0.0173 (4) | 0.0019 (3) | 0.0044 (3) | 0.0052 (4) |
C4 | 0.0213 (5) | 0.0208 (5) | 0.0196 (5) | −0.0016 (4) | 0.0074 (4) | 0.0041 (4) |
C5 | 0.0273 (6) | 0.0273 (6) | 0.0286 (6) | −0.0002 (4) | 0.0135 (5) | 0.0118 (5) |
C6 | 0.0214 (5) | 0.0207 (5) | 0.0349 (6) | −0.0009 (4) | 0.0080 (5) | 0.0128 (5) |
C7 | 0.0256 (5) | 0.0163 (5) | 0.0260 (5) | −0.0035 (4) | 0.0023 (4) | 0.0047 (4) |
C8 | 0.0248 (5) | 0.0175 (5) | 0.0177 (5) | −0.0007 (4) | 0.0047 (4) | 0.0045 (4) |
C9 | 0.0158 (4) | 0.0137 (4) | 0.0148 (4) | 0.0001 (3) | 0.0031 (3) | 0.0039 (3) |
C10 | 0.0167 (4) | 0.0163 (4) | 0.0181 (5) | 0.0006 (3) | 0.0048 (4) | 0.0055 (4) |
C11 | 0.0175 (5) | 0.0202 (5) | 0.0251 (5) | 0.0024 (4) | 0.0030 (4) | 0.0088 (4) |
C12 | 0.0247 (5) | 0.0233 (5) | 0.0212 (5) | 0.0010 (4) | 0.0001 (4) | 0.0107 (4) |
C13 | 0.0281 (6) | 0.0286 (6) | 0.0167 (5) | 0.0015 (4) | 0.0055 (4) | 0.0094 (4) |
C14 | 0.0208 (5) | 0.0232 (5) | 0.0178 (5) | 0.0036 (4) | 0.0065 (4) | 0.0067 (4) |
C15 | 0.0147 (4) | 0.0170 (4) | 0.0140 (4) | 0.0022 (3) | 0.0048 (3) | 0.0038 (3) |
C16 | 0.0191 (5) | 0.0191 (5) | 0.0231 (5) | 0.0018 (4) | 0.0082 (4) | 0.0069 (4) |
C17 | 0.0196 (5) | 0.0278 (6) | 0.0267 (5) | 0.0009 (4) | 0.0106 (4) | 0.0092 (4) |
C18 | 0.0201 (5) | 0.0343 (6) | 0.0262 (6) | 0.0083 (4) | 0.0121 (4) | 0.0099 (5) |
C19 | 0.0270 (6) | 0.0255 (6) | 0.0351 (6) | 0.0120 (5) | 0.0155 (5) | 0.0117 (5) |
C20 | 0.0223 (5) | 0.0190 (5) | 0.0269 (5) | 0.0049 (4) | 0.0113 (4) | 0.0086 (4) |
C21 | 0.0228 (5) | 0.0200 (5) | 0.0234 (5) | 0.0027 (4) | 0.0069 (4) | 0.0083 (4) |
C22 | 0.0212 (5) | 0.0261 (5) | 0.0284 (6) | 0.0040 (4) | 0.0086 (4) | 0.0156 (5) |
C23 | 0.0396 (7) | 0.0267 (6) | 0.0412 (7) | 0.0074 (5) | 0.0217 (6) | 0.0190 (5) |
C24 | 0.0438 (7) | 0.0290 (6) | 0.0258 (6) | −0.0037 (5) | 0.0118 (5) | 0.0096 (5) |
C25 | 0.0214 (5) | 0.0266 (5) | 0.0176 (5) | 0.0038 (4) | 0.0058 (4) | 0.0085 (4) |
C26 | 0.0269 (6) | 0.0367 (6) | 0.0227 (5) | 0.0115 (5) | 0.0108 (5) | 0.0113 (5) |
C27 | 0.0307 (7) | 0.0603 (10) | 0.0474 (8) | 0.0159 (7) | 0.0223 (6) | 0.0218 (7) |
C28 | 0.0497 (9) | 0.0339 (7) | 0.0557 (9) | 0.0175 (6) | 0.0288 (8) | 0.0140 (7) |
Al—O1 | 1.8269 (8) | C16—C17 | 1.3887 (15) |
Al—O2i | 1.8212 (8) | C16—H16 | 0.9500 |
Al—C21 | 1.9639 (12) | C17—C18 | 1.3896 (17) |
Al—C25 | 1.9611 (12) | C17—H17 | 0.9500 |
O1—C1 | 1.2579 (12) | C18—C19 | 1.3831 (18) |
O2—C1 | 1.2518 (12) | C18—H18 | 0.9500 |
C1—C2 | 1.5473 (13) | C19—C20 | 1.3968 (16) |
C2—C9 | 1.5425 (14) | C19—H19 | 0.9500 |
C2—C15 | 1.5431 (14) | C20—H20 | 0.9500 |
C2—C3 | 1.5455 (14) | C21—C22 | 1.5381 (16) |
C3—C4 | 1.3905 (14) | C21—H21A | 0.9900 |
C3—C8 | 1.3999 (14) | C21—H21C | 0.9900 |
C4—C5 | 1.3973 (15) | C22—C24 | 1.5241 (18) |
C4—H4 | 0.9500 | C22—C23 | 1.5293 (16) |
C5—C6 | 1.3788 (17) | C22—H22 | 1.0000 |
C5—H5 | 0.9500 | C23—H23A | 0.9800 |
C6—C7 | 1.3855 (17) | C23—H23B | 0.9800 |
C6—H6 | 0.9500 | C23—H23C | 0.9800 |
C7—C8 | 1.3875 (15) | C24—H24A | 0.9800 |
C7—H7 | 0.9500 | C24—H24B | 0.9800 |
C8—H8 | 0.9500 | C24—H24C | 0.9800 |
C9—C14 | 1.3938 (14) | C25—C26 | 1.5363 (16) |
C9—C10 | 1.3992 (14) | C25—H25A | 0.9900 |
C10—C11 | 1.3890 (14) | C25—H25B | 0.9900 |
C10—H10 | 0.9500 | C26—C28 | 1.523 (2) |
C11—C12 | 1.3900 (17) | C26—C27 | 1.5304 (19) |
C11—H11 | 0.9500 | C26—H26 | 1.0000 |
C12—C13 | 1.3809 (17) | C27—H27A | 0.9800 |
C12—H12 | 0.9500 | C27—H27B | 0.9800 |
C13—C14 | 1.3992 (15) | C27—H27C | 0.9800 |
C13—H13 | 0.9500 | C28—H28A | 0.9800 |
C14—H14 | 0.9500 | C28—H28B | 0.9800 |
C15—C20 | 1.3878 (14) | C28—H28C | 0.9800 |
C15—C16 | 1.4016 (14) | ||
O2i—Al—O1 | 106.84 (4) | C16—C17—H17 | 119.9 |
O2i—Al—C25 | 104.41 (5) | C18—C17—H17 | 119.9 |
O1—Al—C25 | 106.37 (4) | C19—C18—C17 | 119.28 (10) |
O2i—Al—C21 | 108.55 (5) | C19—C18—H18 | 120.4 |
O1—Al—C21 | 103.48 (4) | C17—C18—H18 | 120.4 |
C25—Al—C21 | 125.97 (5) | C18—C19—C20 | 120.70 (11) |
C1—O1—Al | 151.00 (7) | C18—C19—H19 | 119.7 |
C1—O2—Ali | 156.79 (8) | C20—C19—H19 | 119.7 |
O2—C1—O1 | 123.64 (9) | C15—C20—C19 | 120.45 (10) |
O2—C1—C2 | 119.65 (9) | C15—C20—H20 | 119.8 |
O1—C1—C2 | 116.65 (9) | C19—C20—H20 | 119.8 |
C9—C2—C15 | 112.68 (8) | C22—C21—Al | 120.48 (8) |
C9—C2—C3 | 106.65 (8) | C22—C21—H21A | 107.2 |
C15—C2—C3 | 113.13 (8) | Al—C21—H21A | 107.2 |
C9—C2—C1 | 110.97 (8) | C22—C21—H21C | 107.2 |
C15—C2—C1 | 103.23 (8) | Al—C21—H21C | 107.2 |
C3—C2—C1 | 110.25 (8) | H21A—C21—H21C | 106.8 |
C4—C3—C8 | 117.96 (9) | C24—C22—C23 | 110.11 (10) |
C4—C3—C2 | 124.20 (9) | C24—C22—C21 | 111.38 (10) |
C8—C3—C2 | 117.79 (9) | C23—C22—C21 | 111.41 (10) |
C3—C4—C5 | 120.85 (10) | C24—C22—H22 | 107.9 |
C3—C4—H4 | 119.6 | C23—C22—H22 | 107.9 |
C5—C4—H4 | 119.6 | C21—C22—H22 | 107.9 |
C6—C5—C4 | 120.45 (11) | C22—C23—H23A | 109.5 |
C6—C5—H5 | 119.8 | C22—C23—H23B | 109.5 |
C4—C5—H5 | 119.8 | H23A—C23—H23B | 109.5 |
C5—C6—C7 | 119.35 (10) | C22—C23—H23C | 109.5 |
C5—C6—H6 | 120.3 | H23A—C23—H23C | 109.5 |
C7—C6—H6 | 120.3 | H23B—C23—H23C | 109.5 |
C6—C7—C8 | 120.41 (10) | C22—C24—H24A | 109.5 |
C6—C7—H7 | 119.8 | C22—C24—H24B | 109.5 |
C8—C7—H7 | 119.8 | H24A—C24—H24B | 109.5 |
C7—C8—C3 | 120.97 (10) | C22—C24—H24C | 109.5 |
C7—C8—H8 | 119.5 | H24A—C24—H24C | 109.5 |
C3—C8—H8 | 119.5 | H24B—C24—H24C | 109.5 |
C14—C9—C10 | 118.49 (9) | C26—C25—Al | 117.87 (8) |
C14—C9—C2 | 122.79 (9) | C26—C25—H25A | 107.8 |
C10—C9—C2 | 118.56 (9) | Al—C25—H25A | 107.8 |
C11—C10—C9 | 120.97 (10) | C26—C25—H25B | 107.8 |
C11—C10—H10 | 119.5 | Al—C25—H25B | 107.8 |
C9—C10—H10 | 119.5 | H25A—C25—H25B | 107.2 |
C10—C11—C12 | 120.06 (10) | C28—C26—C27 | 110.38 (12) |
C10—C11—H11 | 120.0 | C28—C26—C25 | 111.39 (11) |
C12—C11—H11 | 120.0 | C27—C26—C25 | 111.31 (11) |
C13—C12—C11 | 119.55 (10) | C28—C26—H26 | 107.9 |
C13—C12—H12 | 120.2 | C27—C26—H26 | 107.9 |
C11—C12—H12 | 120.2 | C25—C26—H26 | 107.9 |
C12—C13—C14 | 120.62 (11) | C26—C27—H27A | 109.5 |
C12—C13—H13 | 119.7 | C26—C27—H27B | 109.5 |
C14—C13—H13 | 119.7 | H27A—C27—H27B | 109.5 |
C9—C14—C13 | 120.28 (10) | C26—C27—H27C | 109.5 |
C9—C14—H14 | 119.9 | H27A—C27—H27C | 109.5 |
C13—C14—H14 | 119.9 | H27B—C27—H27C | 109.5 |
C20—C15—C16 | 118.53 (9) | C26—C28—H28A | 109.5 |
C20—C15—C2 | 123.12 (9) | C26—C28—H28B | 109.5 |
C16—C15—C2 | 118.27 (9) | H28A—C28—H28B | 109.5 |
C17—C16—C15 | 120.81 (10) | C26—C28—H28C | 109.5 |
C17—C16—H16 | 119.6 | H28A—C28—H28C | 109.5 |
C15—C16—H16 | 119.6 | H28B—C28—H28C | 109.5 |
C16—C17—C18 | 120.23 (11) | ||
O2i—Al—O1—C1 | 3.48 (16) | C15—C2—C9—C10 | 174.54 (9) |
C25—Al—O1—C1 | 114.58 (15) | C3—C2—C9—C10 | −60.76 (11) |
C21—Al—O1—C1 | −111.00 (15) | C1—C2—C9—C10 | 59.34 (11) |
Ali—O2—C1—O1 | 24.1 (3) | C14—C9—C10—C11 | 1.83 (15) |
Ali—O2—C1—C2 | −158.73 (15) | C2—C9—C10—C11 | 177.43 (9) |
Al—O1—C1—O2 | −12.9 (2) | C9—C10—C11—C12 | −0.82 (16) |
Al—O1—C1—C2 | 169.90 (11) | C10—C11—C12—C13 | −0.44 (17) |
O2—C1—C2—C9 | 0.80 (13) | C11—C12—C13—C14 | 0.67 (18) |
O1—C1—C2—C9 | 178.13 (8) | C10—C9—C14—C13 | −1.60 (16) |
O2—C1—C2—C15 | −120.15 (10) | C2—C9—C14—C13 | −177.00 (10) |
O1—C1—C2—C15 | 57.18 (11) | C12—C13—C14—C9 | 0.37 (17) |
O2—C1—C2—C3 | 118.74 (10) | C9—C2—C15—C20 | 121.13 (11) |
O1—C1—C2—C3 | −63.94 (11) | C3—C2—C15—C20 | 0.05 (13) |
C9—C2—C3—C4 | 124.93 (10) | C1—C2—C15—C20 | −119.09 (10) |
C15—C2—C3—C4 | −110.63 (11) | C9—C2—C15—C16 | −62.24 (12) |
C1—C2—C3—C4 | 4.38 (13) | C3—C2—C15—C16 | 176.68 (9) |
C9—C2—C3—C8 | −52.35 (11) | C1—C2—C15—C16 | 57.54 (11) |
C15—C2—C3—C8 | 72.08 (11) | C20—C15—C16—C17 | −0.52 (16) |
C1—C2—C3—C8 | −172.91 (9) | C2—C15—C16—C17 | −177.30 (10) |
C8—C3—C4—C5 | −0.80 (16) | C15—C16—C17—C18 | 0.15 (17) |
C2—C3—C4—C5 | −178.08 (10) | C16—C17—C18—C19 | 0.25 (18) |
C3—C4—C5—C6 | 0.48 (18) | C17—C18—C19—C20 | −0.28 (19) |
C4—C5—C6—C7 | −0.07 (18) | C16—C15—C20—C19 | 0.49 (16) |
C5—C6—C7—C8 | 0.01 (18) | C2—C15—C20—C19 | 177.11 (10) |
C6—C7—C8—C3 | −0.36 (18) | C18—C19—C20—C15 | −0.10 (18) |
C4—C3—C8—C7 | 0.74 (16) | Al—C21—C22—C24 | −66.22 (12) |
C2—C3—C8—C7 | 178.19 (10) | Al—C21—C22—C23 | 170.40 (8) |
C15—C2—C9—C14 | −10.07 (13) | Al—C25—C26—C28 | 58.20 (13) |
C3—C2—C9—C14 | 114.64 (10) | Al—C25—C26—C27 | −178.14 (9) |
C1—C2—C9—C14 | −125.27 (10) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
Funding for this research was provided by the TIPS RAS State Plan.
References
Anwander, R. (2002). in Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH. Google Scholar
Bethley, C. E., Aitken, C. L., Harlan, C. J., Koide, Y., Bott, S. G. & Barron, A. R. (1997). Organometallics, 16, 329–341. CrossRef CAS Google Scholar
Branch, C. S., Lewinski, J., Justyniak, I., Bott, S. G., Lipkowski, J. & Barron, A. R. (2001). J. Chem. Soc. Dalton Trans. pp. 1253–1258. CrossRef Google Scholar
Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burlakov, V. V., Arndt, P., Baumann, W., Spannenberg, A. & Rosenthal, U. (2004). Organometallics, 23, 4160–4165. CrossRef CAS Google Scholar
Chang, C.-C., Srinivas, B., Mung-Liang, W., Wen-Ho, C., Chiang, M. Y. & Chung-Sheng, H. (1995). Organometallics, 14, 5150–5159. CrossRef CAS Google Scholar
Dickie, D. A., Choytun, D. D., Jennings, M. C., Jenkins, H. A. & Clyburne, J. A. C. (2004). J. Organomet. Chem. 689, 2186–2191. CrossRef CAS Google Scholar
Evans, W. J. & Giarikos, D. G. (2004). Macromolecules, 37, 5130–5132. Web of Science CrossRef CAS Google Scholar
Evans, W. J., Giarikos, D. G. & Ziller, J. W. (2001). Organometallics, 20, 5751–5758. Web of Science CrossRef CAS Google Scholar
Evans, W. J., Miller, K. A. & Ziller, J. W. (2006). Inorg. Chem. 45, 424–429. CrossRef CAS Google Scholar
Fischbach, A. & Anwander, R. (2006). Adv. Polym. Sci. 204, 155–281. Web of Science CrossRef CAS Google Scholar
Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006). Organometallics, 25, 1626–1642. Web of Science CrossRef CAS Google Scholar
Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hengesbach, F., Jin, X., Hepp, A., Wibbeling, B., Würthwein, E.-U. & Uhl, W. (2013). Chem. Eur. J. 19, 13901–13909. CrossRef CAS Google Scholar
Justyniak, I., Prochowicz, D., Tulewicz, A., Bury, W., Goś, P. & Lewiński, J. (2017). Dalton Trans. 46, 669–677. CrossRef CAS Google Scholar
Kalita, L., Pothiraja, R., Saraf, V., Walawalkar, M. G., Butcher, R. J. & Murugavel, R. (2011). J. Organomet. Chem. 696, 3155–3161. CrossRef CAS Google Scholar
Kennedy, A. R., Mulvey, R. E., Oliver, D. E. & Robertson, S. D. (2010). Dalton Trans. 39, 6190–6197. CrossRef CAS Google Scholar
Kobayashi, S. & Anwander, R. (2001). Lanthanides: Chemistry and Use in Organic Synthesis. Topics in Organometallic Chemistry, Vol. 2, pp. 1–307. Berlin, Heidelberg: Springer-Verlag. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kwag, G. (2002). Macromolecules, 35, 4875–4879. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ménard, G., Gilbert, T. M., Hatnean, J. A., Kraft, A., Krossing, I. & Stephan, D. W. (2013). Organometallics, 32, 4416–4422. Google Scholar
Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Churakov, A. V. & Nifant'ev, I. E. (2018b). Acta Cryst. C74, 673–682. Web of Science CrossRef IUCr Journals Google Scholar
Minyaev, M. E., Korchagina, S. A., Tavtorkin, A. N., Kostitsyna, N. N., Churakov, A. V. & Nifant'ev, I. E. (2018c). Struct. Chem. 29, 1475–1487. Web of Science CrossRef CAS Google Scholar
Minyaev, M. E., Tavtorkin, A. N., Korchagina, S. A., Bondarenko, G. N., Churakov, A. V. & Nifant'ev, I. E. (2018a). Acta Cryst. C74, 590–598. Web of Science CrossRef IUCr Journals Google Scholar
Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227. CAS Google Scholar
Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230. Web of Science CAS PubMed Google Scholar
Roitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A., Ananyev, I. V., Yakovlev, V. A., Kostitsyna, N. N. & Nifant'ev, I. E. (2019). Inorg. Chim. Acta, 487, 153–161. CrossRef CAS Google Scholar
Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272–1286. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vinogradov, A. A., Roitershtein, D. M., Minyaev, M. E., Lyssenko, K. A. & Nifant'ev, I. E. (2018). Acta Cryst. E74, 1790–1794. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Z., Cui, D., Wang, B., Liu, B. & Yang, Y. (2010). Struct. Bond. 137, 49–108. Web of Science CrossRef CAS Google Scholar
Ziemkowska, W., Cyrański, M. & Kunicki, A. (2009). Inorg. Chem. 48, 7006–7008. CrossRef CAS Google Scholar
Zijlstra, H. S., Pahl, J., Penafiel, J. & Harder, S. (2017). Dalton Trans. 46, 3601–3610. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.