research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium dirubidium citrate, NaRb2C6H5O7, and sodium dirubidium citrate dihydrate, NaRb2C6H5O7(H2O)2

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, North Central College, 131 S. Loomis St, Naperville, IL 60540, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 14 January 2019; accepted 5 March 2019; online 11 March 2019)

The crystal structures of sodium dirubidium citrate {poly[μ-citrato-dirubi­dium(I)sodium(I)], [NaRb2(C6H5O7)]n} and sodium dirubidium citrate dihydrate {poly[di­aqua­(μ-citrato)dirubidium(I)sodium(I)], [NaRb2(C6H5O7)(H2O)2]n} have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. Both structures contain Na chains and Rb layers, which link to form different three-dimensional frameworks. In each structure, the citrate triply chelates to the Na+ cation. Each citrate also chelates to Rb+ cations. In the dihydrate structure, the water mol­ecules are bonded to the Rb+ cations; the Na+ cation is coordinated only to citrate O atoms. Both structures contain an intra­molecular O—H⋯O hydrogen bond between the hy­droxy group and one of the terminal carboxyl­ate groups. In the structure of the dihydrate, each hydrogen atom of the water mol­ecules participates in a hydrogen bond to an ionized carboxyl­ate group.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The study was extended to lithium metal hydrogen citrates in Cigler & Kaduk (2018[Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160-1170.]), and to sodium metal hydrogen citrates in Cigler & Kaduk (2019[Cigler, A. J. & Kaduk, J. A. (2019). Acta Cryst. E75, 223-227.]). These two compounds (Figs. 1[link] and 2[link]) are a further extension to sodium dirubidium citrates.

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of NaRb2C6H5O7, with the atom numbering and 50% probability spheroids.
[Figure 2]
Figure 2
The asymmetric unit of NaRb2HC6H5O7(H2O)2, with the atom numbering and 50% probability spheroids.

2. Structural commentary

For NaRb2C6H5O7, the root-mean-square deviation of the non-hydrogen atoms in the refined and optimized structures is 0.095 Å (Fig. 3[link]). The excellent agreement between the structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). For NaRb2C6H5O7(H2O)2, the agreement of the refined and optimized structures is poorer (Fig. 4[link]); the r.m.s. cartesian displacement is 0.45 Å. The largest differences are in the carboxyl group C5/O13/O14. Removing O13 and O14 from the displacement calculation yields a value of 0.222 Å, in the upper range of correct structures according to van de Streek & Neumann (2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). Apparently the refined structure is in error, perhaps because it was refined using laboratory X-ray powder data and the structure contains two heavy Rb atoms. This discussion uses the DFT-optimized structures.

[Figure 3]
Figure 3
Comparison of the refined and optimized structures of sodium dirubidium citrate. The refined structure is in red, and the DFT-optimized structure is in blue.
[Figure 4]
Figure 4
Comparison of the refined and optimized structures of sodium dirubidium citrate dihydrate. The refined structure is in red, and the DFT-optimized structure is in blue.

In both structures, all of the citrate bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The citrate anion in both structures occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The central carboxyl­ate group and the hy­droxy group exhibit small twists (O15—C6—C3—O17 torsion angles of −16.0 and −18.2°) from the normal planar arrangement.

In NaRb2C6H5O7, the citrate anion triply chelates to Na19 through the terminal carboxyl­ate O14, the central carboxyl­ate O15, and the hydroxyl group O17. The citrate also chelates to Rb21 through the terminal carboxyl­ate O11 and the central carboxyl­ate O15. Each citrate oxygen atom bridges multiple metal atoms. The Na+ cation is six-coordinate, with a bond-valence sum of 1.12. The two Rb+ cations are seven-coordinate, with bond-valence sums of 0.99 and 1.16.

In the dihydrate, the citrate anion similarly triply chelates to Na19 through the terminal carboxyl­ate O12, the central carboxyl­ate O15, and the hy­droxy group O17 (the numberings of the oxygen atoms are partially arbitrary). Each terminal carboxyl­ate group chelates to a different Rb21 cation. Most of the oxygen atoms bridge multiple metal atoms, but O13 and O14 bind only to Rb cations, and O17 binds only to the Na+ cation. The Na coordination sphere is composed only of citrate oxygen atoms. Rb20 is coordinated by four H2O, and Rb21 is bonded to two H2O mol­ecules. Each water mol­ecule is coordinated to two Rb20 and and one Rb21 cations. The Na+ cation is six-coordinate (distorted octa­hedral), with a bond-valence sum of 1.19. The Rb20 and Rb21 cations are eight- and nine-coordinate, respectively. The coordination polyhedra are irregular, and the bond-valence sums are 0.94 and 1.03. The Mulliken overlap populations in both structures indicate that the Rb—O bonds are ionic, but that the Na—O bonds have some covalent character.

3. Supra­molecular features

In the crystal structure of NaRb2C6H5O7 (Fig. 5[link]), the distorted octa­hedral NaO6 coordination polyhedra share edges to form zigzag double chains along the a-axis direction. The RbO7 polyhedra share edges to form layers parallel to the ac plane. These layers link the Na chains, forming a three-dimensional framework. The hydro­phobic methyl­ene groups of the citrate anions occupy cavities in this framework.

[Figure 5]
Figure 5
Crystal structure of NaRb2C6H5O7, viewed down the a axis.

In the crystal structure of NaRb2C6H5O7(H2O)2 (Fig. 6[link]), the NaO6 coordination polyhedra share corners to form double zigzag chains along the c-axis direction. The Rb polyhedra share edges to form layers parallel to the ac plane. These layers share corners with each other and share edges with the Na chains, forming a three-dimensional framework. The hydro­phobic methyl­ene groups of the citrate anions also occupy cavities in this framework.

[Figure 6]
Figure 6
Crystal structure of NaRb2C6H5O7(H2O)2, viewed down the a axis.

In NaRb2C6H5O7, the only traditional hydrogen bond is an intra­molecular O17—H18⋯O11 one between the hydroxyl group and one of the terminal carboxyl­ate groups (Table 1[link]). By the correlation of Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]), this hydrogen bond contributes 14.0 kcal mol−1 to the crystal energy. A weak C—H⋯O hydrogen bond also contributes to the crystal energy.

Table 1
Hydrogen-bond geometry (Å, °, electrons, kcal mol−1) for [NaRb2(C6H5O7)]

D—H⋯A D—H H⋯A DA D—H⋯A Mulliken overlap H-bond energy
O17—H18⋯O11 0.996 1.662 2.585 152.3 0.072 14.7
C4—H10⋯O17i 1.088 2.451 3.515 165.5 0.017  
Symmetry code: (i) 1 + x, y, z.

In NaRb2C6H5O7(H2O)2, each water mol­ecule hydrogen atom acts as a donor in an O—H⋯O hydrogen bond to a carboxyl­ate oxygen (Table 2[link]). By the correlation of Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]), these hydrogen bonds range from 11.0–14.0 kcal mol−1 in energy. There is an intra­molecular O17—H18⋯O13 hydrogen bond between the hydroxyl group and one of the terminal carboxyl­ate groups, as well as a C—H⋯O hydrogen bond.

Table 2
Hydrogen-bond geometry (Å, °, electrons, kcal mol−1) for [NaRb2(C6H5O7)(H2O)2]

D—H⋯A D—H H⋯A DA D—H⋯A Mulliken overlap H-bond energy
O23—H27⋯O15 0.986 1.755 2.721 165.6 0.064 13.8
O23—H26⋯O14i 0.974 1.934 2.833 152.2 0.041 11.1
O22—H25⋯O14ii 0.979 1.762 2.708 161.4 0.055 12.8
O22—H24⋯O13 0.980 1.779 2.718 159.0 0.053 12.6
O17—H18⋯O13 0.987 1.705 2.613 151.0 0.066 14.0
C4—H9⋯O13ii 1.096 2.402 3.374 147.0 0.016  
Symmetry code: (i) −[{1\over 2}] + x, [{3\over 2}] − y, z; (ii) x, y, −1 + z; (iii) 1 − x, 1 − y, [{1\over 2}] + z.

The two structures exhibit some similarities (Fig. 7[link]), but a mechanism for inter­conversion of the structures is not obvious by visual inspection.

[Figure 7]
Figure 7
Comparison of the crystal structures of sodium dirubidium citrate (left) and sodium dirbuidium citrate dihydrate (right).

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). A reduced cell search for NaRb2HC6H5O7 in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded no hits, while that for NaRb2C6H5O7(H2O)2 yielded 21 hits, but when including the chemistry of C, H, Na, O, and Rb only it yielded no hits.

5. Synthesis and crystallization

NaRb2C6H5O7(H2O)2 was prepared by adding stoichiometric qu­anti­ties of Na2CO3 and Rb2CO3 to a solution of 10 mmol H3C6H5O7 in 10 ml of water. After the fizzing subsided, the clear solution was dried overnight at 348 K to yield a glass. This glass was heated at 450 K for 30 min to yield a pale-yellow solid. This solid was equilibrated in air at ambient conditions for 3 h. The anhydrous salt was prepared by heating the dihydrate at 450 K for 30 min.

6. Refinement

Crystal data, data collection and structure refinement (Fig. 8[link]) details are summarized in Table 3[link]. The diffraction patterns of both compounds were indexed using N-TREOR (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]), and the cells were reduced using the tools in the PDF-4+ database (Fawcett et al., 2017[Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R. & Blanton, T. N. (2017). Powder Diffr. 32, 63-71.]). The systematic absences in the the pattern of NaRb2C6H5O7(H2O)2 suggested the space groups Pna21 and Pnam. The unit-cell volume indicates that Z = 4, so Pna21 was chosen, and confirmed by successful solution and refinement of the structure.

Table 3
Experimental details

  [NaRb2(C6H5O7)] [NaRb2(C6H5O7)(H2O)2]
Crystal data
Mr 383.02 419.05
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pna21
Temperature (K) 300 300
a, b, c (Å) 5.5917 (4), 7.8862 (5), 11.6133 (6) 12.1101 (3), 17.2422 (5), 5.73715 (18)
α, β, γ (°) 83.456 (4), 89.243 (5), 84.488 (4) 90, 90, 90
V3) 506.42 (8) 1197.94 (8)
Z 2 4
Radiation type Cu Kα1, Cu Kα2, λ = 1.540593, 1.544451 Å Kα1, Kα2, λ = 1.540593, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 25 × 25 Flat sheet, 25 × 25
 
Data collection
Diffractometer Bruker D2 Phaser Bruker D2 Phaser
Specimen mounting Standard PMMA holder Standard PMMA holder
Data collection mode Reflection Reflection
Scan method Step Step
2θ values (°) 2θmin = 5.001 2θmax = 100.007 2θstep = 0.020 2θmin = 5.001 2θmax = 100.007 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.023, Rwp = 0.029, Rexp = 0.022, R(F2) = 0.06119, χ2 = 1.742 Rp = 0.035, Rwp = 0.047, Rexp = 0.023, R(F2) = 0.21645, χ2 = 4.494
No. of parameters 75 67
No. of restraints 29 29
H-atom treatment Only H-atom displacement parameters refined Only H-atom displacement parameters refined
The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: Diffrac.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin USA.]), PowDLL (Kourkoumelis, 2013[Kourkoumelis, N. (2013). Powder Diffr. 28, 137-148.]), EXPO2014 (Altomare et al.), 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR 86-784 Los Alamos National Laboratory, New Mexico, USA.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 8]
Figure 8
Rietveld plot for NaRb2C6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 8 for 2θ > 44.0°. The row of black tick marks indicates the reflection positions for this phase.

The structure of NaRb2HC6H5O7 was solved using Monte Carlo simulated annealing techniques as implemented in EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]). A citrate anion, a Na cation, and two Rb cations were used as fragments. The position of the active hydrogen atom H18 was deduced from the potential intra­molecular hydrogen-bonding pattern. Pseudovoigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) and the asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement. The Uiso values of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 times that of these carbon atoms. The Uiso values of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 times this value. The Uiso values of Rb20 and Rb21 were constrained to be equal.

The structure of NaRb2C6H5O7(H2O)2 was solved using Monte Carlo simulated annealing techniques as implemented in EXPO2014 (Altomare et al., 2013[Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231-1235.]). A citrate anion, a Na cation, two Rb cations, and three O atoms were used as fragments. In the best solution, one of the oxygen atoms was 1.30 Å from one of the Rb atoms, and was removed from the model. The positions of the active hydrogen atoms were deduced from potential hydrogen-bonding patterns. The same refinement strategy was used as for the anhydrous compound, and the Uiso values of the two water mol­ecule oxygen atoms were constrained to be equal. Comparison of the initial refined model to that from the DFT calculation revealed that the orientations of the carboxyl group C5/O13/O14 differed, so the Rietveld refinement (Fig. 9[link]) was re-started from the DFT model.

[Figure 9]
Figure 9
Rietveld plot for NaRb2C6H5O7(H2O)2. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 44.0°. The row of black tick marks indicates the reflection positions for this phase.

Density functional geometry optimizations (fixed experimental unit cells) were carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the H, C, and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), the basis sets for Na was that of Dovesi et al. (1991[Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11-19.]), and the basis set for Rb was that of Sophia et al. (2014[Sophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished. https://www.crystal.unito.it/index.php.]). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 GB RAM) of a 304-core Dell Linux cluster at Illinois Institute of Technology, using 8 k-points and the B3LYP functional, and took approximately 5 and 29 h.

Supporting information


Computing details top

Data collection: Diffrac.Measurement (Bruker, 2009) for KADU1685_publ, KADU1681_publ. Data reduction: PowDLL (Kourkoumelis, 2013) for KADU1685_publ, KADU1681_publ. Program(s) used to solve structure: EXPO2014 (Altomare et al., 2013) for KADU1681_publ. Program(s) used to refine structure: GSAS for KADU1685_publ, KADU1681_publ. Molecular graphics: Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) for KADU1685_publ, KADU1681_publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1685_publ, KADU1681_publ.

Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ) top
Crystal data top
[NaRb2(C6H5O7)]γ = 84.488 (4)°
Mr = 383.02V = 506.42 (8) Å3
Triclinic, P1Z = 2
Hall symbol: -P 1Dx = 2.512 Mg m3
a = 5.5917 (4) ÅCuKα1, CuKα2 radiation, λ = 1.540593, 1.544451 Å
b = 7.8862 (5) ÅT = 300 K
c = 11.6133 (6) Åpale yellow
α = 83.456 (4)°flat_sheet, 25 × 25 mm
β = 89.243 (5)°Specimen preparation: Prepared at 450 K
Data collection top
Bruker D2 Phaser
diffractometer
Data collection mode: reflection
Radiation source: sealed Xray tubeScan method: step
Ni filter monochromator2θmin = 5.001°, 2θmax = 100.007°, 2θstep = 0.020°
Specimen mounting: standard PMMA holder
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 4 with 27 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 5.109 #4(GP) = 0.000 #5(LX) = 6.277 #6(ptec) = 0.00 #7(trns) = 1.30 #8(shft) = -2.9593 #9(sfec) = 0.00 #10(S/L) = 0.0005 #11(H/L) = 0.0097 #12(eta) = 0.9000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.02375 parameters
Rwp = 0.02929 restraints
Rexp = 0.022Only H-atom displacement parameters refined
R(F2) = 0.06119Weighting scheme based on measured s.u.'s
4701 data points(Δ/σ)max = 0.01
Excluded region(s): The region from 5-15 degrees was excluded to minimize the effects of beam spillover and surface roughness.Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 1719.95 2: -345.196 3: 91.9837
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.124 (2)0.2349 (14)0.1360 (11)0.010 (3)*
C20.250 (3)0.0724 (15)0.1222 (10)0.023 (7)*
C30.1816 (19)0.0398 (11)0.2201 (7)0.023 (7)*
C40.319 (3)0.2010 (14)0.2001 (10)0.023 (7)*
C50.286 (2)0.3027 (17)0.3028 (11)0.010 (3)*
C60.251 (2)0.0599 (17)0.3397 (9)0.010 (3)*
H70.204370.005650.045960.030 (9)*
H80.427880.102420.124010.030 (9)*
H90.255940.273850.128770.030 (9)*
H100.493700.166150.189850.030 (9)*
O110.099 (2)0.227 (2)0.1578 (14)0.010 (3)*
O120.225 (3)0.3679 (14)0.0961 (14)0.010 (3)*
O130.465 (3)0.366 (2)0.3415 (15)0.010 (3)*
O140.075 (3)0.351 (2)0.3358 (13)0.010 (3)*
O150.088 (3)0.118 (2)0.4057 (11)0.010 (3)*
O160.457 (3)0.051 (2)0.3819 (13)0.010 (3)*
O170.070 (2)0.0903 (16)0.2172 (12)0.010 (3)*
H180.120930.003520.203570.013 (4)*
Na190.247 (3)0.1397 (17)0.4081 (11)0.010 (5)*
Rb200.7394 (9)0.4509 (7)0.1312 (3)0.0224 (13)*
Rb210.2414 (10)0.3662 (5)0.4096 (3)0.0224 (13)*
Geometric parameters (Å, º) top
C1—C21.5108 (13)O14—Rb21vi3.130 (17)
C1—O111.269 (4)O15—C61.269 (4)
C1—O121.273 (4)O15—Na192.63 (2)
C2—C11.5108 (13)O15—Na19vi2.33 (2)
C2—C31.5411 (13)O15—Rb212.810 (17)
C3—C21.5411 (13)O16—C61.270 (4)
C3—C41.5405 (13)O16—Na19iv2.38 (2)
C3—C61.5507 (13)O16—Na19vi2.74 (2)
C3—O171.423 (4)O16—Rb21iv2.858 (16)
C4—C31.5405 (13)O17—C31.423 (4)
C4—C51.5100 (13)O17—Na192.473 (18)
C5—C41.5100 (13)O17—Rb20vii3.003 (13)
C5—O131.270 (4)Na19—O13vii2.35 (2)
C5—O141.269 (4)Na19—O142.637 (19)
C6—C31.5507 (13)Na19—O152.63 (2)
C6—O151.269 (4)Na19—O15vi2.33 (2)
C6—O161.270 (4)Na19—O16vii2.38 (2)
O11—C11.269 (4)Na19—O16vi2.74 (2)
O11—Rb20i2.823 (13)Na19—O172.473 (18)
O11—Rb213.124 (16)Rb20—O11v2.823 (13)
O12—C11.273 (4)Rb20—O12viii3.098 (16)
O12—Rb20i3.187 (16)Rb20—O12v3.187 (16)
O12—Rb20ii3.098 (16)Rb20—O12iii2.791 (15)
O12—Rb20iii2.791 (15)Rb20—O132.914 (19)
O13—C51.270 (4)Rb20—O14iv3.034 (19)
O13—Na19iv2.35 (2)Rb20—O17iv3.003 (13)
O13—Rb202.914 (19)Rb21—O113.124 (16)
O13—Rb21v2.978 (12)Rb21—O13i2.978 (12)
O13—Rb21vi3.135 (19)Rb21—O13vi3.135 (19)
O14—C51.269 (4)Rb21—O14ii2.912 (14)
O14—Na192.637 (19)Rb21—O14vi3.130 (17)
O14—Rb20vii3.034 (19)Rb21—O152.810 (17)
O14—Rb21viii2.912 (14)Rb21—O16vii2.858 (16)
C2—C1—O11119.8 (5)O13vii—Na19—O1485.8 (5)
C2—C1—O12119.0 (4)O13vii—Na19—O15160.3 (8)
O11—C1—O12118.7 (3)O13vii—Na19—O15vi121.1 (8)
O11—C1—Rb20i51.1 (6)O13vii—Na19—O16vii87.2 (8)
O12—C1—Rb20i67.9 (5)O13vii—Na19—O16vi97.3 (8)
C1—C2—C3111.6 (4)O13vii—Na19—O1797.2 (7)
C2—C3—C4108.2 (3)O14—Na19—O1589.0 (8)
C2—C3—C6110.4 (4)O14—Na19—O15vi89.2 (7)
C2—C3—O17109.9 (4)O14—Na19—O16vii154.3 (7)
C4—C3—C6109.6 (3)O14—Na19—O16vi134.2 (7)
C4—C3—O17109.1 (4)O14—Na19—O1766.1 (6)
C6—C3—O17109.7 (3)O15—Na19—O15vi77.7 (8)
C3—C4—C5110.2 (4)O15—Na19—O16vii89.3 (6)
C4—C5—O13119.4 (4)O15—Na19—O16vi99.9 (6)
C4—C5—O14119.7 (3)O15—Na19—O1763.5 (5)
O13—C5—O14119.6 (5)O15vi—Na19—O16vii115.4 (7)
O13—C5—Rb2056.5 (8)O15vi—Na19—O16vi50.3 (3)
O13—C5—Rb21vi65.7 (8)O15vi—Na19—O17133.2 (9)
O14—C5—Rb20140.2 (13)O16vii—Na19—O16vi71.3 (7)
O14—C5—Rb21vi65.4 (8)O16vii—Na19—O1790.3 (7)
C1—O11—Rb20i108.4 (7)O16vi—Na19—O17155.9 (7)
C1—O11—Rb21116.0 (11)O11v—Rb20—O12viii88.4 (4)
Rb20i—O11—Rb2176.6 (4)O11v—Rb20—O12v42.1 (2)
C1—O12—Rb20i90.4 (5)O11v—Rb20—O12iii113.3 (4)
C1—O12—Rb20ii130.7 (9)O11v—Rb20—O13104.5 (4)
C1—O12—Rb20iii130.3 (12)O11v—Rb20—O14iv79.8 (5)
Rb20i—O12—Rb20ii125.7 (4)O11v—Rb20—O17iv132.4 (4)
Rb20i—O12—Rb20iii90.3 (4)O12viii—Rb20—O12v125.7 (4)
Rb20ii—O12—Rb20iii86.5 (4)O12viii—Rb20—O12iii93.5 (4)
C5—O13—Na19iv108.6 (13)O12viii—Rb20—O1372.1 (5)
C5—O13—Rb20102.2 (10)O12viii—Rb20—O14iv135.5 (4)
C5—O13—Rb21v158.1 (13)O12viii—Rb20—O17iv133.1 (4)
C5—O13—Rb21vi92.7 (9)O12v—Rb20—O12iii89.7 (4)
Na19iv—O13—Rb2092.1 (7)O12v—Rb20—O13130.1 (4)
Na19iv—O13—Rb21v93.3 (5)O12v—Rb20—O14iv68.4 (5)
Na19iv—O13—Rb21vi90.8 (7)O12v—Rb20—O17iv101.1 (4)
Rb20—O13—Rb21v77.6 (4)O12iii—Rb20—O13139.1 (4)
Rb20—O13—Rb21vi163.0 (4)O12iii—Rb20—O14iv130.6 (5)
Rb21v—O13—Rb21vi85.5 (4)O12iii—Rb20—O17iv89.5 (4)
C5—O14—Na19123.9 (14)O13—Rb20—O14iv69.8 (3)
C5—O14—Rb20vii111.3 (9)O13—Rb20—O17iv75.4 (5)
C5—O14—Rb21viii145.9 (12)O14iv—Rb20—O17iv55.0 (4)
C5—O14—Rb21vi92.9 (8)O11—Rb21—O13i96.0 (5)
Na19—O14—Rb20vii84.2 (5)O11—Rb21—O13vi158.9 (5)
Na19—O14—Rb21viii89.2 (5)O11—Rb21—O14ii77.0 (5)
Na19—O14—Rb21vi91.2 (6)O11—Rb21—O14vi138.7 (4)
Rb20vii—O14—Rb21viii76.8 (4)O11—Rb21—O1567.5 (3)
Rb20vii—O14—Rb21vi153.5 (5)O11—Rb21—O16vii80.2 (5)
Rb21viii—O14—Rb21vi77.1 (3)O13i—Rb21—O13vi94.5 (4)
C6—O15—Na19105.0 (9)O13i—Rb21—O14ii70.6 (3)
C6—O15—Na19vi104.8 (10)O13i—Rb21—O14vi123.3 (6)
C6—O15—Rb21138.4 (12)O13i—Rb21—O15162.7 (5)
Na19—O15—Na19vi102.3 (8)O13i—Rb21—O16vii106.4 (5)
Na19—O15—Rb2194.2 (6)O13vi—Rb21—O14ii123.9 (6)
Na19vi—O15—Rb21106.6 (5)O13vi—Rb21—O14vi41.01 (19)
C6—O16—Na19iv143.9 (11)O13vi—Rb21—O15102.7 (3)
C6—O16—Na19vi85.3 (8)O13vi—Rb21—O16vii79.4 (5)
C6—O16—Rb21iv115.0 (12)O14ii—Rb21—O14vi102.9 (3)
Na19iv—O16—Na19vi108.7 (7)O14ii—Rb21—O1599.4 (5)
Na19iv—O16—Rb21iv98.5 (6)O14ii—Rb21—O16vii156.4 (4)
Na19vi—O16—Rb21iv89.6 (5)O14vi—Rb21—O1571.9 (4)
C3—O17—Na19114.2 (7)O14vi—Rb21—O16vii98.0 (4)
C3—O17—Rb20vii121.1 (6)O15—Rb21—O16vii76.9 (3)
Na19—O17—Rb20vii87.7 (5)
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x1, y, z; (viii) x, y+1, z.
(kadu1685_DFT) top
Crystal data top
C6H5NaO7Rb2α = 83.4560°
Mr = 383.02β = 89.2430°
Triclinic, P1γ = 84.4880°
a = 5.5917 ÅV = 506.42 Å3
b = 7.8862 ÅZ = 2
c = 11.6133 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.129540.240910.132580.01020*
C20.263240.079160.132010.02320*
C30.174180.040280.224110.02320*
C40.299710.206380.206960.02320*
C50.272640.313780.310430.01020*
C60.241310.051210.347010.01020*
H70.235830.007070.045680.03000*
H80.455560.117400.141580.03000*
H90.228300.285120.128880.03000*
H100.489420.170370.192110.03000*
O110.091350.229590.162880.01020*
O120.241680.372990.099350.01020*
O130.462590.362270.349920.01020*
O140.063610.345420.350280.01020*
O150.077660.113400.409600.01020*
O160.458560.056470.376540.01020*
O170.079630.081080.212100.01020*
H180.136120.031340.199530.01300*
Na190.237980.122720.402620.01000*
Rb200.744020.449490.133750.02240*
Rb210.249170.364500.409090.02240*
Bond lengths (Å) top
C1—C21.539O14—Na192.568
C1—O111.277O14—Rb20vii3.091
C1—O121.260O14—Rb21v3.018
C2—C31.551O14—Rb21viii2.884
C2—H71.100O15—Na19v2.359
C2—H81.092O15—Rb212.821
C3—C41.537O16—Na19iv2.354
C3—C61.558O16—Rb21iv2.785
C3—O171.430O17—H180.996
C4—C51.545O17—Na192.418
C4—H91.096O17—Rb20vii3.019
C4—H101.088Na19—O15v2.359
C5—O131.271Na19—O13vii2.429
C5—O141.264Na19—O16vii2.354
C6—O151.262Rb20—O12viii3.026
C6—O161.262Rb20—O14iv3.091
O11—Rb20i2.832Rb20—O17iv3.019
O11—Rb213.083Rb20—O11vi2.832
O12—Rb20ii3.026Rb20—O12vi3.233
O12—Rb20i3.233Rb20—O12iii2.838
O12—Rb20iii2.838Rb21—O16vii2.785
O13—Na19iv2.429Rb21—O13v3.029
O13—Rb202.994Rb21—O14v3.018
O13—Rb21v3.029Rb21—O13i2.957
O13—Rb21vi2.957Rb21—O14ii2.884
Symmetry codes: (i) x1, y1, z; (ii) x, y1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y+1, z; (vii) x1, y, z; (viii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O110.9961.6622.585152.3
C4—H10···O171.0882.4513.515165.5
Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ) top
Crystal data top
[NaRb2(C6H5O7)(H2O)2]V = 1197.94 (8) Å3
Mr = 419.05Z = 4
Orthorhombic, Pna21Dx = 2.342 Mg m3
Hall symbol: P 2c -2nKα1, Kα2 radiation, λ = 1.540593, 1.544451 Å
a = 12.1101 (3) ÅT = 300 K
b = 17.2422 (5) Åflat_sheet, 25 × 25 mm
c = 5.73715 (18) ÅSpecimen preparation: Prepared at 450 K
Data collection top
Bruker D2 Phaser
diffractometer
Data collection mode: reflection
Radiation source: sealed X-ray tubeScan method: step
Ni filter monochromator2θmin = 5.001°, 2θmax = 100.007°, 2θstep = 0.020°
Specimen mounting: standard PMMA holder
Refinement top
Least-squares matrix: full67 parameters
Rp = 0.03529 restraints
Rwp = 0.047Only H-atom displacement parameters refined
Rexp = 0.023Weighting scheme based on measured s.u.'s
R(F2) = 0.21645(Δ/σ)max = 0.04
4701 data pointsBackground function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 1693.18 2: -250.425 3: 22.2802
Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 5.109 #4(GP) = 0.000 #5(LX) = 3.634 #6(ptec) = 0.00 #7(trns) = 1.30 #8(shft) = -4.0778 #9(sfec) = 0.00 #10(S/L) = 0.0295 #11(H/L) = 0.0097 #12(eta) = 0.9000 #13(S400 ) = 3.3E-04 #14(S040 ) = 2.5E-05 #15(S004 ) = 0.0E+00 #16(S220 ) = 6.5E-03 #17(S202 ) = 9.2E-04 #18(S022 ) = 3.0E-03 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1222 (10)0.4396 (8)0.414150.024 (4)*
C20.2395 (12)0.4503 (9)0.498 (5)0.034 (12)*
C30.2929 (9)0.5252 (5)0.405 (5)0.034 (12)*
C40.4049 (12)0.5361 (8)0.528 (6)0.034 (12)*
C50.4633 (12)0.6091 (6)0.450 (6)0.024 (4)*
C60.2178 (17)0.5957 (9)0.460 (6)0.024 (4)*
H70.284660.404900.446290.045 (15)*
H80.240380.452780.672130.045 (15)*
H90.452970.490370.493500.045 (15)*
H100.393040.539520.700180.045 (15)*
O110.0717 (10)0.3782 (9)0.471 (7)0.024 (4)*
O120.0665 (13)0.4969 (9)0.337 (6)0.024 (4)*
O130.5481 (13)0.6042 (9)0.322 (7)0.024 (4)*
O140.4444 (16)0.6727 (8)0.552 (7)0.024 (4)*
O150.196 (2)0.6441 (11)0.301 (7)0.024 (4)*
O160.195 (2)0.6118 (13)0.670 (6)0.024 (4)*
O170.3087 (15)0.5187 (14)0.159 (5)0.024 (4)*
H180.344280.558920.133260.031 (5)*
Na190.1149 (15)0.5624 (9)0.072 (8)0.048 (8)*
Rb200.3036 (3)0.7303 (2)0.995 (6)0.0662 (17)*
Rb210.0285 (3)0.3392 (3)0.968 (5)0.0662 (17)*
O220.5625 (14)0.7125 (12)0.060 (9)0.05*
O230.2385 (16)0.7991 (12)0.489 (12)0.05*
H240.526280.686210.039310.065*
H250.549840.691670.191600.065*
H260.179640.825660.501380.065*
H270.217720.752150.476970.065*
Geometric parameters (Å, º) top
C1—C21.511 (2)O16—C61.267 (6)
C1—O111.265 (6)O16—Na19vi1.97 (4)
C1—O121.275 (6)O16—Rb203.06 (3)
C2—C11.511 (2)O16—Rb21iv3.07 (3)
C2—C31.541 (2)O17—C31.426 (6)
C3—C21.541 (2)O17—Na192.80 (3)
C3—C41.541 (2)O17—Rb20iii3.77 (2)
C3—C61.550 (2)Na19—O11iv2.49 (2)
C3—O171.426 (6)Na19—O122.67 (4)
C4—C31.541 (2)Na19—O12iv2.48 (2)
C4—C51.512 (2)Na19—O152.74 (4)
C5—C41.512 (2)Na19—O16iii1.97 (4)
C5—O131.264 (6)Na19—O172.80 (3)
C5—O141.264 (6)Rb20—O11vii2.967 (14)
C6—C31.550 (2)Rb20—O143.22 (2)
C6—O151.266 (6)Rb20—O14vi3.76 (3)
C6—O161.267 (6)Rb20—O15vi2.65 (3)
O11—C11.265 (6)Rb20—O163.06 (3)
O11—Na19i2.49 (2)Rb20—O17vi3.77 (2)
O11—Rb20ii2.967 (14)Rb20—O22vi3.165 (18)
O11—Rb21iii3.01 (4)Rb20—O22viii3.099 (18)
O11—Rb212.97 (4)Rb20—O233.24 (7)
O12—C11.275 (6)Rb20—O23vi3.17 (7)
O12—Na192.67 (4)Rb21—O112.97 (4)
O12—Na19i2.48 (2)Rb21—O11vi3.01 (4)
O12—Rb21iii3.48 (2)Rb21—O12vi3.48 (2)
O12—Rb21iv3.142 (17)Rb21—O12i3.142 (17)
O13—C51.264 (6)Rb21—O14ix2.929 (15)
O13—O142.171 (10)Rb21—O15i2.89 (3)
O14—C51.264 (6)Rb21—O16i3.07 (3)
O14—O132.171 (10)Rb21—O22x3.65 (4)
O14—Rb20iii3.76 (3)Rb21—O23ix2.91 (2)
O14—Rb203.22 (2)O22—Rb20iii3.165 (18)
O14—Rb21v2.929 (15)O22—Rb20xi3.099 (18)
O15—C61.266 (6)O22—Rb21xii3.65 (4)
O15—Na192.74 (4)O23—Rb20iii3.17 (7)
O15—Rb20iii2.65 (3)O23—Rb203.24 (7)
O15—Rb21iv2.89 (3)O23—Rb21v2.91 (2)
C2—C1—O11118.3 (6)O12iv—Na19—O15133.7 (13)
C2—C1—O12120.8 (6)O12iv—Na19—O16iii117.4 (19)
O11—C1—O12118.8 (6)O15—Na19—O16iii100.9 (9)
C1—C2—C3112.7 (5)O11vii—Rb20—O1487.7 (7)
C2—C3—C4108.2 (5)O11vii—Rb20—O15vi140.0 (11)
C2—C3—C6109.9 (5)O11vii—Rb20—O16139.7 (11)
C2—C3—O17109.6 (6)O11vii—Rb20—O22vi64.8 (5)
C4—C3—C6109.1 (5)O11vii—Rb20—O22viii101.6 (4)
C4—C3—O17110.1 (6)O11vii—Rb20—O2376.5 (9)
C6—C3—O17110.0 (5)O11vii—Rb20—O23vi81.1 (8)
C3—C4—C5112.2 (5)O14—Rb20—O15vi127.8 (6)
C4—C5—O13119.7 (6)O14—Rb20—O1662.6 (6)
C4—C5—O14120.0 (6)O14—Rb20—O22vi50.7 (9)
O13—C5—O14118.3 (5)O14—Rb20—O22viii121.2 (11)
C3—C6—O15119.7 (6)O14—Rb20—O2362.2 (7)
C3—C6—O16119.6 (6)O14—Rb20—O23vi162.3 (6)
O15—C6—O16119.6 (6)O15vi—Rb20—O22vi120.1 (9)
C1—O11—Na19i94.0 (9)O15vi—Rb20—O22viii77.3 (8)
C1—O11—Rb20ii119.0 (11)O15vi—Rb20—O23132.9 (7)
C1—O11—Rb21iii91.3 (19)O15vi—Rb20—O23vi59.7 (7)
C1—O11—Rb21122 (2)O16—Rb20—O22vi107.4 (7)
Na19i—O11—Rb20ii145.0 (7)O16—Rb20—O22viii75.3 (8)
Na19i—O11—Rb21iii80.7 (12)O16—Rb20—O2366.0 (7)
Na19i—O11—Rb2191.7 (12)O16—Rb20—O23vi133.4 (6)
Rb20ii—O11—Rb21iii86.6 (9)O22vi—Rb20—O22viii162.5 (13)
Rb20ii—O11—Rb2181.4 (7)O22vi—Rb20—O23100.8 (11)
Rb21iii—O11—Rb21146.9 (5)O22vi—Rb20—O23vi111.8 (11)
C1—O12—Na19121.0 (17)O22viii—Rb20—O2364.0 (10)
C1—O12—Na19i94.4 (9)O22viii—Rb20—O23vi74.8 (10)
C1—O12—Rb21iv144.0 (17)O23—Rb20—O23vi127.2 (6)
Na19—O12—Na19i123.6 (13)O11—Rb21—O11vi146.9 (5)
Na19—O12—Rb21iv84.8 (6)O11—Rb21—O12i68.4 (5)
Na19i—O12—Rb21iv89.8 (6)O11—Rb21—O14ix111.2 (6)
C5—O14—Rb20137.0 (10)O11—Rb21—O15i79.9 (7)
C5—O14—Rb21v138.7 (12)O11—Rb21—O16i117.1 (6)
Rb20—O14—Rb21v83.6 (4)O11—Rb21—O23ix85.6 (14)
C6—O15—Na19107.4 (16)O11vi—Rb21—O12i95.2 (4)
C6—O15—Rb20iii138 (2)O11vi—Rb21—O14ix92.3 (6)
C6—O15—Rb21iv91.6 (15)O11vi—Rb21—O15i117.3 (6)
Na19—O15—Rb20iii87.0 (10)O11vi—Rb21—O16i74.3 (5)
Na19—O15—Rb21iv88.6 (9)O11vi—Rb21—O23ix81.1 (14)
Rb20iii—O15—Rb21iv128.9 (5)O12i—Rb21—O14ix164.1 (5)
C6—O16—Na19vi137 (2)O12i—Rb21—O15i59.2 (6)
C6—O16—Rb20129 (2)O12i—Rb21—O16i61.2 (5)
C6—O16—Rb21iv83.8 (15)O12i—Rb21—O23ix125.4 (6)
Na19vi—O16—Rb2092.4 (12)O14ix—Rb21—O15i104.9 (6)
Na19vi—O16—Rb21iv88.1 (12)O14ix—Rb21—O16i107.8 (6)
Rb20—O16—Rb21iv115.2 (5)O14ix—Rb21—O23ix69.6 (5)
O11iv—Na19—O1283.5 (11)O15i—Rb21—O16i43.0 (3)
O11iv—Na19—O12iv52.2 (4)O15i—Rb21—O23ix161.4 (14)
O11iv—Na19—O1592.0 (12)O16i—Rb21—O23ix155.2 (15)
O11iv—Na19—O16iii110.2 (17)Rb20iii—O22—Rb20xi153.1 (9)
O12—Na19—O12iv79.4 (8)Rb20iii—O23—Rb20127.2 (6)
O12—Na19—O1567.0 (11)Rb20iii—O23—Rb21v79.1 (12)
O12—Na19—O16iii162.5 (17)Rb20—O23—Rb21v83.6 (12)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z1/2; (iii) x, y, z1; (iv) x, y+1, z1/2; (v) x+1/2, y+1/2, z1/2; (vi) x, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x1/2, y+3/2, z+1; (ix) x+1/2, y1/2, z+1/2; (x) x+1/2, y1/2, z+3/2; (xi) x+1/2, y+3/2, z1; (xii) x+1/2, y+1/2, z3/2.
(kadu1681_DFT) top
Crystal data top
C6H9NaO9Rb2b = 17.2422 Å
Mr = 419.05c = 5.7371 Å
Orthorhombic, Pna21V = 1197.94 Å3
a = 12.1101 ÅZ = 4
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.113490.442940.517140.02400*
C20.235970.456660.574210.03400*
C30.283670.527940.453700.03400*
C40.405000.543790.527120.03400*
C50.458230.610180.389870.02400*
C60.217920.601150.526170.02400*
H70.284540.405720.524640.04500*
H80.243160.462480.763640.04500*
H90.454220.491330.498520.04500*
H100.408150.557140.712900.04500*
O110.073260.377610.572700.02400*
O120.057250.496300.421970.02400*
O130.440700.611960.170850.02400*
O140.516740.659960.493540.02400*
O150.193210.649450.366300.02400*
O160.197810.610910.739430.02400*
O170.277230.513840.208450.02400*
H180.333940.548230.140740.03100*
Na190.109710.566780.071960.04800*
Rb200.288610.740430.999740.06620*
Rb210.028210.337901.058520.06620*
O220.556130.719050.077010.05000*
O230.241920.795910.510190.05000*
H240.524830.685160.043280.06500*
H250.547320.687530.217770.06500*
H260.175410.827570.502290.06500*
H270.213900.743530.474820.06500*
Bond lengths (Å) top
C1—C21.537C4—H101.091
C1—O111.268C5—O131.275
C1—O121.268C5—O141.262
C2—C31.524C6—O151.275
C2—H71.095C6—O161.259
C2—H81.095O17—H180.987
C3—C41.553O22—H240.980
C3—C61.549O22—H250.979
C3—O171.430O23—H260.974
C4—C51.532O23—H270.986
C4—H91.096
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H27···O150.9861.7552.721165.6
O23—H26···O140.9741.9342.833152.2
O22—H25···O140.9791.7622.708161.4
O22—H24···O130.9801.7792.718159.0
O17—H18···O130.9871.7052.613151.0
C4—H9···O131.0962.4023.374147.0
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [NaRb2(C6H5O7)] top
D—H···A'D—HH···AD···AD—H···AMulliken overlapH-bond energy
O17—H18···O110.9961.6622.585152.30.07214.7
C4—H10···O17i1.0882.4513.515165.50.017
Symmetry code: (i) 1 + x, y, z.
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [NaRb2(C6H5O7)(H2O)2] top
D—H···A'D—HH···AD···AD—H···AMulliken overlapH-bond energy
O23—H27···O150.9861.7552.721165.60.06413.8
O23—H26···O14i0.9741.9342.833152.20.04111.1
O22—H25···O14ii0.9791.7622.708161.40.05512.8
O22—H24···O130.9801.7792.718159.00.05312.6
O17—H18···O130.9871.7052.613151.00.06614.0
C4—H9···O13ii1.0962.4023.374147.00.016
Symmetry code: (i) -1/2 + x, 3/2 - y, z; (ii) x, y, -1 + z; (III) 1 - x, 1 - y, 1/2 + z.
 

Acknowledgements

We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.

References

First citationAltomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin USA.  Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170.  CrossRef IUCr Journals Google Scholar
First citationCigler, A. J. & Kaduk, J. A. (2019). Acta Cryst. E75, 223–227.  CrossRef IUCr Journals Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  Web of Science CrossRef CAS Google Scholar
First citationDovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19.  CrossRef CAS Web of Science Google Scholar
First citationFawcett, T. G., Kabekkodu, S. N., Blanton, J. R. & Blanton, T. N. (2017). Powder Diffr. 32, 63–71.  CrossRef CAS Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKourkoumelis, N. (2013). Powder Diffr. 28, 137–148.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR 86–784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  CrossRef IUCr Journals Google Scholar
First citationSophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished. https://www.crystal.unito.it/index.phpGoogle Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds