2. Structural commentary
For NaRb2C6H5O7, the root-mean-square deviation of the non-hydrogen atoms in the refined and optimized structures is 0.095 Å (Fig. 3). The excellent agreement between the structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014). For NaRb2C6H5O7(H2O)2, the agreement of the refined and optimized structures is poorer (Fig. 4); the r.m.s. cartesian displacement is 0.45 Å. The largest differences are in the carboxyl group C5/O13/O14. Removing O13 and O14 from the displacement calculation yields a value of 0.222 Å, in the upper range of correct structures according to van de Streek & Neumann (2014). Apparently the refined structure is in error, perhaps because it was refined using laboratory X-ray powder data and the structure contains two heavy Rb atoms. This discussion uses the DFT-optimized structures.
| Figure 3 Comparison of the refined and optimized structures of sodium dirubidium citrate. The refined structure is in red, and the DFT-optimized structure is in blue. |
| Figure 4 Comparison of the refined and optimized structures of sodium dirubidium citrate dihydrate. The refined structure is in red, and the DFT-optimized structure is in blue. |
In both structures, all of the citrate bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008). The citrate anion in both structures occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate (Rammohan & Kaduk, 2018). The central carboxylate group and the hydroxy group exhibit small twists (O15—C6—C3—O17 torsion angles of −16.0 and −18.2°) from the normal planar arrangement.
In NaRb2C6H5O7, the citrate anion triply chelates to Na19 through the terminal carboxylate O14, the central carboxylate O15, and the hydroxyl group O17. The citrate also chelates to Rb21 through the terminal carboxylate O11 and the central carboxylate O15. Each citrate oxygen atom bridges multiple metal atoms. The Na+ cation is six-coordinate, with a bond-valence sum of 1.12. The two Rb+ cations are seven-coordinate, with bond-valence sums of 0.99 and 1.16.
In the dihydrate, the citrate anion similarly triply chelates to Na19 through the terminal carboxylate O12, the central carboxylate O15, and the hydroxy group O17 (the numberings of the oxygen atoms are partially arbitrary). Each terminal carboxylate group chelates to a different Rb21 cation. Most of the oxygen atoms bridge multiple metal atoms, but O13 and O14 bind only to Rb cations, and O17 binds only to the Na+ cation. The Na coordination sphere is composed only of citrate oxygen atoms. Rb20 is coordinated by four H2O, and Rb21 is bonded to two H2O molecules. Each water molecule is coordinated to two Rb20 and and one Rb21 cations. The Na+ cation is six-coordinate (distorted octahedral), with a bond-valence sum of 1.19. The Rb20 and Rb21 cations are eight- and nine-coordinate, respectively. The coordination polyhedra are irregular, and the bond-valence sums are 0.94 and 1.03. The Mulliken overlap populations in both structures indicate that the Rb—O bonds are ionic, but that the Na—O bonds have some covalent character.
3. Supramolecular features
In the crystal structure of NaRb2C6H5O7 (Fig. 5), the distorted octahedral NaO6 coordination polyhedra share edges to form zigzag double chains along the a-axis direction. The RbO7 polyhedra share edges to form layers parallel to the ac plane. These layers link the Na chains, forming a three-dimensional framework. The hydrophobic methylene groups of the citrate anions occupy cavities in this framework.
| Figure 5 Crystal structure of NaRb2C6H5O7, viewed down the a axis. |
In the crystal structure of NaRb2C6H5O7(H2O)2 (Fig. 6), the NaO6 coordination polyhedra share corners to form double zigzag chains along the c-axis direction. The Rb polyhedra share edges to form layers parallel to the ac plane. These layers share corners with each other and share edges with the Na chains, forming a three-dimensional framework. The hydrophobic methylene groups of the citrate anions also occupy cavities in this framework.
| Figure 6 Crystal structure of NaRb2C6H5O7(H2O)2, viewed down the a axis. |
In NaRb2C6H5O7, the only traditional hydrogen bond is an intramolecular O17—H18⋯O11 one between the hydroxyl group and one of the terminal carboxylate groups (Table 1). By the correlation of Rammohan & Kaduk (2018), this hydrogen bond contributes 14.0 kcal mol−1 to the crystal energy. A weak C—H⋯O hydrogen bond also contributes to the crystal energy.
D—H⋯A′ | D—H | H⋯A | D⋯A | D—H⋯A | Mulliken overlap | H-bond energy | O17—H18⋯O11 | 0.996 | 1.662 | 2.585 | 152.3 | 0.072 | 14.7 | C4—H10⋯O17i | 1.088 | 2.451 | 3.515 | 165.5 | 0.017 | | Symmetry code: (i) 1 + x, y, z. | |
In NaRb2C6H5O7(H2O)2, each water molecule hydrogen atom acts as a donor in an O—H⋯O hydrogen bond to a carboxylate oxygen (Table 2). By the correlation of Rammohan & Kaduk (2018), these hydrogen bonds range from 11.0–14.0 kcal mol−1 in energy. There is an intramolecular O17—H18⋯O13 hydrogen bond between the hydroxyl group and one of the terminal carboxylate groups, as well as a C—H⋯O hydrogen bond.
D—H⋯A′ | D—H | H⋯A | D⋯A | D—H⋯A | Mulliken overlap | H-bond energy | O23—H27⋯O15 | 0.986 | 1.755 | 2.721 | 165.6 | 0.064 | 13.8 | O23—H26⋯O14i | 0.974 | 1.934 | 2.833 | 152.2 | 0.041 | 11.1 | O22—H25⋯O14ii | 0.979 | 1.762 | 2.708 | 161.4 | 0.055 | 12.8 | O22—H24⋯O13 | 0.980 | 1.779 | 2.718 | 159.0 | 0.053 | 12.6 | O17—H18⋯O13 | 0.987 | 1.705 | 2.613 | 151.0 | 0.066 | 14.0 | C4—H9⋯O13ii | 1.096 | 2.402 | 3.374 | 147.0 | 0.016 | | Symmetry code: (i) − + x, − y, z; (ii) x, y, −1 + z; (iii) 1 − x, 1 − y, + z. | |
The two structures exhibit some similarities (Fig. 7), but a mechanism for interconversion of the structures is not obvious by visual inspection.
| Figure 7 Comparison of the crystal structures of sodium dirubidium citrate (left) and sodium dirbuidium citrate dihydrate (right). |
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018). A reduced cell search for NaRb2HC6H5O7 in the Cambridge Structural Database (Groom et al., 2016) yielded no hits, while that for NaRb2C6H5O7(H2O)2 yielded 21 hits, but when including the chemistry of C, H, Na, O, and Rb only it yielded no hits.
5. Synthesis and crystallization
NaRb2C6H5O7(H2O)2 was prepared by adding stoichiometric quantities of Na2CO3 and Rb2CO3 to a solution of 10 mmol H3C6H5O7 in 10 ml of water. After the fizzing subsided, the clear solution was dried overnight at 348 K to yield a glass. This glass was heated at 450 K for 30 min to yield a pale-yellow solid. This solid was equilibrated in air at ambient conditions for 3 h. The anhydrous salt was prepared by heating the dihydrate at 450 K for 30 min.
6. Refinement
Crystal data, data collection and structure refinement (Fig. 8) details are summarized in Table 3. The diffraction patterns of both compounds were indexed using N-TREOR (Altomare et al., 2013), and the cells were reduced using the tools in the PDF-4+ database (Fawcett et al., 2017). The systematic absences in the the pattern of NaRb2C6H5O7(H2O)2 suggested the space groups Pna21 and Pnam. The unit-cell volume indicates that Z = 4, so Pna21 was chosen, and confirmed by successful solution and refinement of the structure.
| [NaRb2(C6H5O7)] | [NaRb2(C6H5O7)(H2O)2] | Crystal data | Mr | 383.02 | 419.05 | Crystal system, space group | Triclinic, P | Orthorhombic, Pna21 | Temperature (K) | 300 | 300 | a, b, c (Å) | 5.5917 (4), 7.8862 (5), 11.6133 (6) | 12.1101 (3), 17.2422 (5), 5.73715 (18) | α, β, γ (°) | 83.456 (4), 89.243 (5), 84.488 (4) | 90, 90, 90 | V (Å3) | 506.42 (8) | 1197.94 (8) | Z | 2 | 4 | Radiation type | Cu Kα1, Cu Kα2, λ = 1.540593, 1.544451 Å | Kα1, Kα2, λ = 1.540593, 1.544451 Å | Specimen shape, size (mm) | Flat sheet, 25 × 25 | Flat sheet, 25 × 25 | | Data collection | Diffractometer | Bruker D2 Phaser | Bruker D2 Phaser | Specimen mounting | Standard PMMA holder | Standard PMMA holder | Data collection mode | Reflection | Reflection | Scan method | Step | Step | 2θ values (°) | 2θmin = 5.001 2θmax = 100.007 2θstep = 0.020 | 2θmin = 5.001 2θmax = 100.007 2θstep = 0.020 | | Refinement | R factors and goodness of fit | Rp = 0.023, Rwp = 0.029, Rexp = 0.022, R(F2) = 0.06119, χ2 = 1.742 | Rp = 0.035, Rwp = 0.047, Rexp = 0.023, R(F2) = 0.21645, χ2 = 4.494 | No. of parameters | 75 | 67 | No. of restraints | 29 | 29 | H-atom treatment | Only H-atom displacement parameters refined | Only H-atom displacement parameters refined | The same symmetry and lattice parameters were used for the DFT calculations as for each powder diffraction study. Computer programs: Diffrac.Measurement (Bruker, 2009), PowDLL (Kourkoumelis, 2013), EXPO2014 (Altomare et al.), 2013), GSAS (Larson & Von Dreele, 2004), Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) and publCIF (Westrip, 2010). | |
| Figure 8 Rietveld plot for NaRb2C6H5O7. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 8 for 2θ > 44.0°. The row of black tick marks indicates the reflection positions for this phase. |
The structure of NaRb2HC6H5O7 was solved using Monte Carlo simulated annealing techniques as implemented in EXPO2014 (Altomare et al., 2013). A citrate anion, a Na cation, and two Rb cations were used as fragments. The position of the active hydrogen atom H18 was deduced from the potential intramolecular hydrogen-bonding pattern. Pseudovoigt profile coefficients were as parameterized in Thompson et al. (1987) and the asymmetry correction of Finger et al. (1994) was applied and microstrain broadening by Stephens (1999). The hydrogen atoms were included in fixed positions, which were re-calculated during the course of the refinement. The Uiso values of C2, C3, and C4 were constrained to be equal, and those of H7, H8, H9, and H10 were constrained to be 1.3 times that of these carbon atoms. The Uiso values of C1, C5, C6, and the oxygen atoms were constrained to be equal, and that of H18 was constrained to be 1.3 times this value. The Uiso values of Rb20 and Rb21 were constrained to be equal.
The structure of NaRb2C6H5O7(H2O)2 was solved using Monte Carlo simulated annealing techniques as implemented in EXPO2014 (Altomare et al., 2013). A citrate anion, a Na cation, two Rb cations, and three O atoms were used as fragments. In the best solution, one of the oxygen atoms was 1.30 Å from one of the Rb atoms, and was removed from the model. The positions of the active hydrogen atoms were deduced from potential hydrogen-bonding patterns. The same refinement strategy was used as for the anhydrous compound, and the Uiso values of the two water molecule oxygen atoms were constrained to be equal. Comparison of the initial refined model to that from the DFT calculation revealed that the orientations of the carboxyl group C5/O13/O14 differed, so the Rietveld refinement (Fig. 9) was re-started from the DFT model.
| Figure 9 Rietveld plot for NaRb2C6H5O7(H2O)2. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 10 for 2θ > 44.0°. The row of black tick marks indicates the reflection positions for this phase. |
Density functional geometry optimizations (fixed experimental unit cells) were carried out using CRYSTAL14 (Dovesi et al., 2014). The basis sets for the H, C, and O atoms were those of Gatti et al. (1994), the basis sets for Na was that of Dovesi et al. (1991), and the basis set for Rb was that of Sophia et al. (2014). The calculations were run on eight 2.1 GHz Xeon cores (each with 6 GB RAM) of a 304-core Dell Linux cluster at Illinois Institute of Technology, using 8 k-points and the B3LYP functional, and took approximately 5 and 29 h.
Supporting information
Data collection: Diffrac.Measurement (Bruker, 2009) for KADU1685_publ, KADU1681_publ. Data reduction: PowDLL (Kourkoumelis, 2013) for KADU1685_publ, KADU1681_publ. Program(s) used to solve structure: EXPO2014 (Altomare et al., 2013) for KADU1681_publ. Program(s) used to refine structure: GSAS for KADU1685_publ, KADU1681_publ. Molecular graphics: Mercury (Macrae et al., 2008), DIAMOND (Crystal Impact, 2015) for KADU1685_publ, KADU1681_publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for KADU1685_publ, KADU1681_publ.
Poly[µ-citrato-dirubidium(I)sodium(I)] (KADU1685_publ)
top Crystal data top [NaRb2(C6H5O7)] | γ = 84.488 (4)° |
Mr = 383.02 | V = 506.42 (8) Å3 |
Triclinic, P1 | Z = 2 |
Hall symbol: -P 1 | Dx = 2.512 Mg m−3 |
a = 5.5917 (4) Å | CuKα1, CuKα2 radiation, λ = 1.540593, 1.544451 Å |
b = 7.8862 (5) Å | T = 300 K |
c = 11.6133 (6) Å | pale yellow |
α = 83.456 (4)° | flat_sheet, 25 × 25 mm |
β = 89.243 (5)° | Specimen preparation: Prepared at 450 K |
Data collection top Bruker D2 Phaser diffractometer | Data collection mode: reflection |
Radiation source: sealed Xray tube | Scan method: step |
Ni filter monochromator | 2θmin = 5.001°, 2θmax = 100.007°, 2θstep = 0.020° |
Specimen mounting: standard PMMA holder | |
Refinement top Least-squares matrix: full | Profile function: CW Profile function number 4 with 27 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 5.109 #4(GP) = 0.000 #5(LX) = 6.277 #6(ptec) = 0.00 #7(trns) = 1.30 #8(shft) = -2.9593 #9(sfec) = 0.00 #10(S/L) = 0.0005 #11(H/L) = 0.0097 #12(eta) = 0.9000 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rp = 0.023 | 75 parameters |
Rwp = 0.029 | 29 restraints |
Rexp = 0.022 | Only H-atom displacement parameters refined |
R(F2) = 0.06119 | Weighting scheme based on measured s.u.'s |
4701 data points | (Δ/σ)max = 0.01 |
Excluded region(s): The region from 5-15 degrees was excluded to minimize the effects of beam spillover and surface roughness. | Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 1719.95 2: -345.196 3: 91.9837 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.124 (2) | −0.2349 (14) | 0.1360 (11) | 0.010 (3)* | |
C2 | 0.250 (3) | −0.0724 (15) | 0.1222 (10) | 0.023 (7)* | |
C3 | 0.1816 (19) | 0.0398 (11) | 0.2201 (7) | 0.023 (7)* | |
C4 | 0.319 (3) | 0.2010 (14) | 0.2001 (10) | 0.023 (7)* | |
C5 | 0.286 (2) | 0.3027 (17) | 0.3028 (11) | 0.010 (3)* | |
C6 | 0.251 (2) | −0.0599 (17) | 0.3397 (9) | 0.010 (3)* | |
H7 | 0.20437 | −0.00565 | 0.04596 | 0.030 (9)* | |
H8 | 0.42788 | −0.10242 | 0.12401 | 0.030 (9)* | |
H9 | 0.25594 | 0.27385 | 0.12877 | 0.030 (9)* | |
H10 | 0.49370 | 0.16615 | 0.18985 | 0.030 (9)* | |
O11 | −0.099 (2) | −0.227 (2) | 0.1578 (14) | 0.010 (3)* | |
O12 | 0.225 (3) | −0.3679 (14) | 0.0961 (14) | 0.010 (3)* | |
O13 | 0.465 (3) | 0.366 (2) | 0.3415 (15) | 0.010 (3)* | |
O14 | 0.075 (3) | 0.351 (2) | 0.3358 (13) | 0.010 (3)* | |
O15 | 0.088 (3) | −0.118 (2) | 0.4057 (11) | 0.010 (3)* | |
O16 | 0.457 (3) | −0.051 (2) | 0.3819 (13) | 0.010 (3)* | |
O17 | −0.070 (2) | 0.0903 (16) | 0.2172 (12) | 0.010 (3)* | |
H18 | −0.12093 | −0.00352 | 0.20357 | 0.013 (4)* | |
Na19 | −0.247 (3) | 0.1397 (17) | 0.4081 (11) | 0.010 (5)* | |
Rb20 | 0.7394 (9) | 0.4509 (7) | 0.1312 (3) | 0.0224 (13)* | |
Rb21 | −0.2414 (10) | −0.3662 (5) | 0.4096 (3) | 0.0224 (13)* | |
Geometric parameters (Å, º) top C1—C2 | 1.5108 (13) | O14—Rb21vi | 3.130 (17) |
C1—O11 | 1.269 (4) | O15—C6 | 1.269 (4) |
C1—O12 | 1.273 (4) | O15—Na19 | 2.63 (2) |
C2—C1 | 1.5108 (13) | O15—Na19vi | 2.33 (2) |
C2—C3 | 1.5411 (13) | O15—Rb21 | 2.810 (17) |
C3—C2 | 1.5411 (13) | O16—C6 | 1.270 (4) |
C3—C4 | 1.5405 (13) | O16—Na19iv | 2.38 (2) |
C3—C6 | 1.5507 (13) | O16—Na19vi | 2.74 (2) |
C3—O17 | 1.423 (4) | O16—Rb21iv | 2.858 (16) |
C4—C3 | 1.5405 (13) | O17—C3 | 1.423 (4) |
C4—C5 | 1.5100 (13) | O17—Na19 | 2.473 (18) |
C5—C4 | 1.5100 (13) | O17—Rb20vii | 3.003 (13) |
C5—O13 | 1.270 (4) | Na19—O13vii | 2.35 (2) |
C5—O14 | 1.269 (4) | Na19—O14 | 2.637 (19) |
C6—C3 | 1.5507 (13) | Na19—O15 | 2.63 (2) |
C6—O15 | 1.269 (4) | Na19—O15vi | 2.33 (2) |
C6—O16 | 1.270 (4) | Na19—O16vii | 2.38 (2) |
O11—C1 | 1.269 (4) | Na19—O16vi | 2.74 (2) |
O11—Rb20i | 2.823 (13) | Na19—O17 | 2.473 (18) |
O11—Rb21 | 3.124 (16) | Rb20—O11v | 2.823 (13) |
O12—C1 | 1.273 (4) | Rb20—O12viii | 3.098 (16) |
O12—Rb20i | 3.187 (16) | Rb20—O12v | 3.187 (16) |
O12—Rb20ii | 3.098 (16) | Rb20—O12iii | 2.791 (15) |
O12—Rb20iii | 2.791 (15) | Rb20—O13 | 2.914 (19) |
O13—C5 | 1.270 (4) | Rb20—O14iv | 3.034 (19) |
O13—Na19iv | 2.35 (2) | Rb20—O17iv | 3.003 (13) |
O13—Rb20 | 2.914 (19) | Rb21—O11 | 3.124 (16) |
O13—Rb21v | 2.978 (12) | Rb21—O13i | 2.978 (12) |
O13—Rb21vi | 3.135 (19) | Rb21—O13vi | 3.135 (19) |
O14—C5 | 1.269 (4) | Rb21—O14ii | 2.912 (14) |
O14—Na19 | 2.637 (19) | Rb21—O14vi | 3.130 (17) |
O14—Rb20vii | 3.034 (19) | Rb21—O15 | 2.810 (17) |
O14—Rb21viii | 2.912 (14) | Rb21—O16vii | 2.858 (16) |
| | | |
C2—C1—O11 | 119.8 (5) | O13vii—Na19—O14 | 85.8 (5) |
C2—C1—O12 | 119.0 (4) | O13vii—Na19—O15 | 160.3 (8) |
O11—C1—O12 | 118.7 (3) | O13vii—Na19—O15vi | 121.1 (8) |
O11—C1—Rb20i | 51.1 (6) | O13vii—Na19—O16vii | 87.2 (8) |
O12—C1—Rb20i | 67.9 (5) | O13vii—Na19—O16vi | 97.3 (8) |
C1—C2—C3 | 111.6 (4) | O13vii—Na19—O17 | 97.2 (7) |
C2—C3—C4 | 108.2 (3) | O14—Na19—O15 | 89.0 (8) |
C2—C3—C6 | 110.4 (4) | O14—Na19—O15vi | 89.2 (7) |
C2—C3—O17 | 109.9 (4) | O14—Na19—O16vii | 154.3 (7) |
C4—C3—C6 | 109.6 (3) | O14—Na19—O16vi | 134.2 (7) |
C4—C3—O17 | 109.1 (4) | O14—Na19—O17 | 66.1 (6) |
C6—C3—O17 | 109.7 (3) | O15—Na19—O15vi | 77.7 (8) |
C3—C4—C5 | 110.2 (4) | O15—Na19—O16vii | 89.3 (6) |
C4—C5—O13 | 119.4 (4) | O15—Na19—O16vi | 99.9 (6) |
C4—C5—O14 | 119.7 (3) | O15—Na19—O17 | 63.5 (5) |
O13—C5—O14 | 119.6 (5) | O15vi—Na19—O16vii | 115.4 (7) |
O13—C5—Rb20 | 56.5 (8) | O15vi—Na19—O16vi | 50.3 (3) |
O13—C5—Rb21vi | 65.7 (8) | O15vi—Na19—O17 | 133.2 (9) |
O14—C5—Rb20 | 140.2 (13) | O16vii—Na19—O16vi | 71.3 (7) |
O14—C5—Rb21vi | 65.4 (8) | O16vii—Na19—O17 | 90.3 (7) |
C1—O11—Rb20i | 108.4 (7) | O16vi—Na19—O17 | 155.9 (7) |
C1—O11—Rb21 | 116.0 (11) | O11v—Rb20—O12viii | 88.4 (4) |
Rb20i—O11—Rb21 | 76.6 (4) | O11v—Rb20—O12v | 42.1 (2) |
C1—O12—Rb20i | 90.4 (5) | O11v—Rb20—O12iii | 113.3 (4) |
C1—O12—Rb20ii | 130.7 (9) | O11v—Rb20—O13 | 104.5 (4) |
C1—O12—Rb20iii | 130.3 (12) | O11v—Rb20—O14iv | 79.8 (5) |
Rb20i—O12—Rb20ii | 125.7 (4) | O11v—Rb20—O17iv | 132.4 (4) |
Rb20i—O12—Rb20iii | 90.3 (4) | O12viii—Rb20—O12v | 125.7 (4) |
Rb20ii—O12—Rb20iii | 86.5 (4) | O12viii—Rb20—O12iii | 93.5 (4) |
C5—O13—Na19iv | 108.6 (13) | O12viii—Rb20—O13 | 72.1 (5) |
C5—O13—Rb20 | 102.2 (10) | O12viii—Rb20—O14iv | 135.5 (4) |
C5—O13—Rb21v | 158.1 (13) | O12viii—Rb20—O17iv | 133.1 (4) |
C5—O13—Rb21vi | 92.7 (9) | O12v—Rb20—O12iii | 89.7 (4) |
Na19iv—O13—Rb20 | 92.1 (7) | O12v—Rb20—O13 | 130.1 (4) |
Na19iv—O13—Rb21v | 93.3 (5) | O12v—Rb20—O14iv | 68.4 (5) |
Na19iv—O13—Rb21vi | 90.8 (7) | O12v—Rb20—O17iv | 101.1 (4) |
Rb20—O13—Rb21v | 77.6 (4) | O12iii—Rb20—O13 | 139.1 (4) |
Rb20—O13—Rb21vi | 163.0 (4) | O12iii—Rb20—O14iv | 130.6 (5) |
Rb21v—O13—Rb21vi | 85.5 (4) | O12iii—Rb20—O17iv | 89.5 (4) |
C5—O14—Na19 | 123.9 (14) | O13—Rb20—O14iv | 69.8 (3) |
C5—O14—Rb20vii | 111.3 (9) | O13—Rb20—O17iv | 75.4 (5) |
C5—O14—Rb21viii | 145.9 (12) | O14iv—Rb20—O17iv | 55.0 (4) |
C5—O14—Rb21vi | 92.9 (8) | O11—Rb21—O13i | 96.0 (5) |
Na19—O14—Rb20vii | 84.2 (5) | O11—Rb21—O13vi | 158.9 (5) |
Na19—O14—Rb21viii | 89.2 (5) | O11—Rb21—O14ii | 77.0 (5) |
Na19—O14—Rb21vi | 91.2 (6) | O11—Rb21—O14vi | 138.7 (4) |
Rb20vii—O14—Rb21viii | 76.8 (4) | O11—Rb21—O15 | 67.5 (3) |
Rb20vii—O14—Rb21vi | 153.5 (5) | O11—Rb21—O16vii | 80.2 (5) |
Rb21viii—O14—Rb21vi | 77.1 (3) | O13i—Rb21—O13vi | 94.5 (4) |
C6—O15—Na19 | 105.0 (9) | O13i—Rb21—O14ii | 70.6 (3) |
C6—O15—Na19vi | 104.8 (10) | O13i—Rb21—O14vi | 123.3 (6) |
C6—O15—Rb21 | 138.4 (12) | O13i—Rb21—O15 | 162.7 (5) |
Na19—O15—Na19vi | 102.3 (8) | O13i—Rb21—O16vii | 106.4 (5) |
Na19—O15—Rb21 | 94.2 (6) | O13vi—Rb21—O14ii | 123.9 (6) |
Na19vi—O15—Rb21 | 106.6 (5) | O13vi—Rb21—O14vi | 41.01 (19) |
C6—O16—Na19iv | 143.9 (11) | O13vi—Rb21—O15 | 102.7 (3) |
C6—O16—Na19vi | 85.3 (8) | O13vi—Rb21—O16vii | 79.4 (5) |
C6—O16—Rb21iv | 115.0 (12) | O14ii—Rb21—O14vi | 102.9 (3) |
Na19iv—O16—Na19vi | 108.7 (7) | O14ii—Rb21—O15 | 99.4 (5) |
Na19iv—O16—Rb21iv | 98.5 (6) | O14ii—Rb21—O16vii | 156.4 (4) |
Na19vi—O16—Rb21iv | 89.6 (5) | O14vi—Rb21—O15 | 71.9 (4) |
C3—O17—Na19 | 114.2 (7) | O14vi—Rb21—O16vii | 98.0 (4) |
C3—O17—Rb20vii | 121.1 (6) | O15—Rb21—O16vii | 76.9 (3) |
Na19—O17—Rb20vii | 87.7 (5) | | |
Symmetry codes: (i) x−1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) −x, −y, −z+1; (vii) x−1, y, z; (viii) x, y+1, z. |
Crystal data top C6H5NaO7Rb2 | α = 83.4560° |
Mr = 383.02 | β = 89.2430° |
Triclinic, P1 | γ = 84.4880° |
a = 5.5917 Å | V = 506.42 Å3 |
b = 7.8862 Å | Z = 2 |
c = 11.6133 Å | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.12954 | −0.24091 | 0.13258 | 0.01020* | |
C2 | 0.26324 | −0.07916 | 0.13201 | 0.02320* | |
C3 | 0.17418 | 0.04028 | 0.22411 | 0.02320* | |
C4 | 0.29971 | 0.20638 | 0.20696 | 0.02320* | |
C5 | 0.27264 | 0.31378 | 0.31043 | 0.01020* | |
C6 | 0.24131 | −0.05121 | 0.34701 | 0.01020* | |
H7 | 0.23583 | −0.00707 | 0.04568 | 0.03000* | |
H8 | 0.45556 | −0.11740 | 0.14158 | 0.03000* | |
H9 | 0.22830 | 0.28512 | 0.12888 | 0.03000* | |
H10 | 0.48942 | 0.17037 | 0.19211 | 0.03000* | |
O11 | −0.09135 | −0.22959 | 0.16288 | 0.01020* | |
O12 | 0.24168 | −0.37299 | 0.09935 | 0.01020* | |
O13 | 0.46259 | 0.36227 | 0.34992 | 0.01020* | |
O14 | 0.06361 | 0.34542 | 0.35028 | 0.01020* | |
O15 | 0.07766 | −0.11340 | 0.40960 | 0.01020* | |
O16 | 0.45856 | −0.05647 | 0.37654 | 0.01020* | |
O17 | −0.07963 | 0.08108 | 0.21210 | 0.01020* | |
H18 | −0.13612 | −0.03134 | 0.19953 | 0.01300* | |
Na19 | −0.23798 | 0.12272 | 0.40262 | 0.01000* | |
Rb20 | 0.74402 | 0.44949 | 0.13375 | 0.02240* | |
Rb21 | −0.24917 | −0.36450 | 0.40909 | 0.02240* | |
Bond lengths (Å) top C1—C2 | 1.539 | O14—Na19 | 2.568 |
C1—O11 | 1.277 | O14—Rb20vii | 3.091 |
C1—O12 | 1.260 | O14—Rb21v | 3.018 |
C2—C3 | 1.551 | O14—Rb21viii | 2.884 |
C2—H7 | 1.100 | O15—Na19v | 2.359 |
C2—H8 | 1.092 | O15—Rb21 | 2.821 |
C3—C4 | 1.537 | O16—Na19iv | 2.354 |
C3—C6 | 1.558 | O16—Rb21iv | 2.785 |
C3—O17 | 1.430 | O17—H18 | 0.996 |
C4—C5 | 1.545 | O17—Na19 | 2.418 |
C4—H9 | 1.096 | O17—Rb20vii | 3.019 |
C4—H10 | 1.088 | Na19—O15v | 2.359 |
C5—O13 | 1.271 | Na19—O13vii | 2.429 |
C5—O14 | 1.264 | Na19—O16vii | 2.354 |
C6—O15 | 1.262 | Rb20—O12viii | 3.026 |
C6—O16 | 1.262 | Rb20—O14iv | 3.091 |
O11—Rb20i | 2.832 | Rb20—O17iv | 3.019 |
O11—Rb21 | 3.083 | Rb20—O11vi | 2.832 |
O12—Rb20ii | 3.026 | Rb20—O12vi | 3.233 |
O12—Rb20i | 3.233 | Rb20—O12iii | 2.838 |
O12—Rb20iii | 2.838 | Rb21—O16vii | 2.785 |
O13—Na19iv | 2.429 | Rb21—O13v | 3.029 |
O13—Rb20 | 2.994 | Rb21—O14v | 3.018 |
O13—Rb21v | 3.029 | Rb21—O13i | 2.957 |
O13—Rb21vi | 2.957 | Rb21—O14ii | 2.884 |
Symmetry codes: (i) x−1, y−1, z; (ii) x, y−1, z; (iii) −x+1, −y, −z; (iv) x+1, y, z; (v) −x, −y, −z+1; (vi) x+1, y+1, z; (vii) x−1, y, z; (viii) x, y+1, z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O11 | 0.996 | 1.662 | 2.585 | 152.3 |
C4—H10···O17 | 1.088 | 2.451 | 3.515 | 165.5 |
Poly[diaqua(µ-citrato)dirubidium(I)sodium(I)] (KADU1681_publ)
top Crystal data top [NaRb2(C6H5O7)(H2O)2] | V = 1197.94 (8) Å3 |
Mr = 419.05 | Z = 4 |
Orthorhombic, Pna21 | Dx = 2.342 Mg m−3 |
Hall symbol: P 2c -2n | Kα1, Kα2 radiation, λ = 1.540593, 1.544451 Å |
a = 12.1101 (3) Å | T = 300 K |
b = 17.2422 (5) Å | flat_sheet, 25 × 25 mm |
c = 5.73715 (18) Å | Specimen preparation: Prepared at 450 K |
Data collection top Bruker D2 Phaser diffractometer | Data collection mode: reflection |
Radiation source: sealed X-ray tube | Scan method: step |
Ni filter monochromator | 2θmin = 5.001°, 2θmax = 100.007°, 2θstep = 0.020° |
Specimen mounting: standard PMMA holder | |
Refinement top Least-squares matrix: full | 67 parameters |
Rp = 0.035 | 29 restraints |
Rwp = 0.047 | Only H-atom displacement parameters refined |
Rexp = 0.023 | Weighting scheme based on measured s.u.'s |
R(F2) = 0.21645 | (Δ/σ)max = 0.04 |
4701 data points | Background function: GSAS Background function number 1 with 3 terms. Shifted Chebyshev function of 1st kind 1: 1693.18 2: -250.425 3: 22.2802 |
Profile function: CW Profile function number 4 with 18 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 5.109 #4(GP) = 0.000 #5(LX) = 3.634 #6(ptec) = 0.00 #7(trns) = 1.30 #8(shft) = -4.0778 #9(sfec) = 0.00 #10(S/L) = 0.0295 #11(H/L) = 0.0097 #12(eta) = 0.9000 #13(S400 ) = 3.3E-04 #14(S040 ) = 2.5E-05 #15(S004 ) = 0.0E+00 #16(S220 ) = 6.5E-03 #17(S202 ) = 9.2E-04 #18(S022 ) = 3.0E-03 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 0.0 1.0 | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.1222 (10) | 0.4396 (8) | 0.41415 | 0.024 (4)* | |
C2 | 0.2395 (12) | 0.4503 (9) | 0.498 (5) | 0.034 (12)* | |
C3 | 0.2929 (9) | 0.5252 (5) | 0.405 (5) | 0.034 (12)* | |
C4 | 0.4049 (12) | 0.5361 (8) | 0.528 (6) | 0.034 (12)* | |
C5 | 0.4633 (12) | 0.6091 (6) | 0.450 (6) | 0.024 (4)* | |
C6 | 0.2178 (17) | 0.5957 (9) | 0.460 (6) | 0.024 (4)* | |
H7 | 0.28466 | 0.40490 | 0.44629 | 0.045 (15)* | |
H8 | 0.24038 | 0.45278 | 0.67213 | 0.045 (15)* | |
H9 | 0.45297 | 0.49037 | 0.49350 | 0.045 (15)* | |
H10 | 0.39304 | 0.53952 | 0.70018 | 0.045 (15)* | |
O11 | 0.0717 (10) | 0.3782 (9) | 0.471 (7) | 0.024 (4)* | |
O12 | 0.0665 (13) | 0.4969 (9) | 0.337 (6) | 0.024 (4)* | |
O13 | 0.5481 (13) | 0.6042 (9) | 0.322 (7) | 0.024 (4)* | |
O14 | 0.4444 (16) | 0.6727 (8) | 0.552 (7) | 0.024 (4)* | |
O15 | 0.196 (2) | 0.6441 (11) | 0.301 (7) | 0.024 (4)* | |
O16 | 0.195 (2) | 0.6118 (13) | 0.670 (6) | 0.024 (4)* | |
O17 | 0.3087 (15) | 0.5187 (14) | 0.159 (5) | 0.024 (4)* | |
H18 | 0.34428 | 0.55892 | 0.13326 | 0.031 (5)* | |
Na19 | 0.1149 (15) | 0.5624 (9) | −0.072 (8) | 0.048 (8)* | |
Rb20 | 0.3036 (3) | 0.7303 (2) | 0.995 (6) | 0.0662 (17)* | |
Rb21 | 0.0285 (3) | 0.3392 (3) | 0.968 (5) | 0.0662 (17)* | |
O22 | 0.5625 (14) | 0.7125 (12) | −0.060 (9) | 0.05* | |
O23 | 0.2385 (16) | 0.7991 (12) | 0.489 (12) | 0.05* | |
H24 | 0.52628 | 0.68621 | 0.03931 | 0.065* | |
H25 | 0.54984 | 0.69167 | −0.19160 | 0.065* | |
H26 | 0.17964 | 0.82566 | 0.50138 | 0.065* | |
H27 | 0.21772 | 0.75215 | 0.47697 | 0.065* | |
Geometric parameters (Å, º) top C1—C2 | 1.511 (2) | O16—C6 | 1.267 (6) |
C1—O11 | 1.265 (6) | O16—Na19vi | 1.97 (4) |
C1—O12 | 1.275 (6) | O16—Rb20 | 3.06 (3) |
C2—C1 | 1.511 (2) | O16—Rb21iv | 3.07 (3) |
C2—C3 | 1.541 (2) | O17—C3 | 1.426 (6) |
C3—C2 | 1.541 (2) | O17—Na19 | 2.80 (3) |
C3—C4 | 1.541 (2) | O17—Rb20iii | 3.77 (2) |
C3—C6 | 1.550 (2) | Na19—O11iv | 2.49 (2) |
C3—O17 | 1.426 (6) | Na19—O12 | 2.67 (4) |
C4—C3 | 1.541 (2) | Na19—O12iv | 2.48 (2) |
C4—C5 | 1.512 (2) | Na19—O15 | 2.74 (4) |
C5—C4 | 1.512 (2) | Na19—O16iii | 1.97 (4) |
C5—O13 | 1.264 (6) | Na19—O17 | 2.80 (3) |
C5—O14 | 1.264 (6) | Rb20—O11vii | 2.967 (14) |
C6—C3 | 1.550 (2) | Rb20—O14 | 3.22 (2) |
C6—O15 | 1.266 (6) | Rb20—O14vi | 3.76 (3) |
C6—O16 | 1.267 (6) | Rb20—O15vi | 2.65 (3) |
O11—C1 | 1.265 (6) | Rb20—O16 | 3.06 (3) |
O11—Na19i | 2.49 (2) | Rb20—O17vi | 3.77 (2) |
O11—Rb20ii | 2.967 (14) | Rb20—O22vi | 3.165 (18) |
O11—Rb21iii | 3.01 (4) | Rb20—O22viii | 3.099 (18) |
O11—Rb21 | 2.97 (4) | Rb20—O23 | 3.24 (7) |
O12—C1 | 1.275 (6) | Rb20—O23vi | 3.17 (7) |
O12—Na19 | 2.67 (4) | Rb21—O11 | 2.97 (4) |
O12—Na19i | 2.48 (2) | Rb21—O11vi | 3.01 (4) |
O12—Rb21iii | 3.48 (2) | Rb21—O12vi | 3.48 (2) |
O12—Rb21iv | 3.142 (17) | Rb21—O12i | 3.142 (17) |
O13—C5 | 1.264 (6) | Rb21—O14ix | 2.929 (15) |
O13—O14 | 2.171 (10) | Rb21—O15i | 2.89 (3) |
O14—C5 | 1.264 (6) | Rb21—O16i | 3.07 (3) |
O14—O13 | 2.171 (10) | Rb21—O22x | 3.65 (4) |
O14—Rb20iii | 3.76 (3) | Rb21—O23ix | 2.91 (2) |
O14—Rb20 | 3.22 (2) | O22—Rb20iii | 3.165 (18) |
O14—Rb21v | 2.929 (15) | O22—Rb20xi | 3.099 (18) |
O15—C6 | 1.266 (6) | O22—Rb21xii | 3.65 (4) |
O15—Na19 | 2.74 (4) | O23—Rb20iii | 3.17 (7) |
O15—Rb20iii | 2.65 (3) | O23—Rb20 | 3.24 (7) |
O15—Rb21iv | 2.89 (3) | O23—Rb21v | 2.91 (2) |
| | | |
C2—C1—O11 | 118.3 (6) | O12iv—Na19—O15 | 133.7 (13) |
C2—C1—O12 | 120.8 (6) | O12iv—Na19—O16iii | 117.4 (19) |
O11—C1—O12 | 118.8 (6) | O15—Na19—O16iii | 100.9 (9) |
C1—C2—C3 | 112.7 (5) | O11vii—Rb20—O14 | 87.7 (7) |
C2—C3—C4 | 108.2 (5) | O11vii—Rb20—O15vi | 140.0 (11) |
C2—C3—C6 | 109.9 (5) | O11vii—Rb20—O16 | 139.7 (11) |
C2—C3—O17 | 109.6 (6) | O11vii—Rb20—O22vi | 64.8 (5) |
C4—C3—C6 | 109.1 (5) | O11vii—Rb20—O22viii | 101.6 (4) |
C4—C3—O17 | 110.1 (6) | O11vii—Rb20—O23 | 76.5 (9) |
C6—C3—O17 | 110.0 (5) | O11vii—Rb20—O23vi | 81.1 (8) |
C3—C4—C5 | 112.2 (5) | O14—Rb20—O15vi | 127.8 (6) |
C4—C5—O13 | 119.7 (6) | O14—Rb20—O16 | 62.6 (6) |
C4—C5—O14 | 120.0 (6) | O14—Rb20—O22vi | 50.7 (9) |
O13—C5—O14 | 118.3 (5) | O14—Rb20—O22viii | 121.2 (11) |
C3—C6—O15 | 119.7 (6) | O14—Rb20—O23 | 62.2 (7) |
C3—C6—O16 | 119.6 (6) | O14—Rb20—O23vi | 162.3 (6) |
O15—C6—O16 | 119.6 (6) | O15vi—Rb20—O22vi | 120.1 (9) |
C1—O11—Na19i | 94.0 (9) | O15vi—Rb20—O22viii | 77.3 (8) |
C1—O11—Rb20ii | 119.0 (11) | O15vi—Rb20—O23 | 132.9 (7) |
C1—O11—Rb21iii | 91.3 (19) | O15vi—Rb20—O23vi | 59.7 (7) |
C1—O11—Rb21 | 122 (2) | O16—Rb20—O22vi | 107.4 (7) |
Na19i—O11—Rb20ii | 145.0 (7) | O16—Rb20—O22viii | 75.3 (8) |
Na19i—O11—Rb21iii | 80.7 (12) | O16—Rb20—O23 | 66.0 (7) |
Na19i—O11—Rb21 | 91.7 (12) | O16—Rb20—O23vi | 133.4 (6) |
Rb20ii—O11—Rb21iii | 86.6 (9) | O22vi—Rb20—O22viii | 162.5 (13) |
Rb20ii—O11—Rb21 | 81.4 (7) | O22vi—Rb20—O23 | 100.8 (11) |
Rb21iii—O11—Rb21 | 146.9 (5) | O22vi—Rb20—O23vi | 111.8 (11) |
C1—O12—Na19 | 121.0 (17) | O22viii—Rb20—O23 | 64.0 (10) |
C1—O12—Na19i | 94.4 (9) | O22viii—Rb20—O23vi | 74.8 (10) |
C1—O12—Rb21iv | 144.0 (17) | O23—Rb20—O23vi | 127.2 (6) |
Na19—O12—Na19i | 123.6 (13) | O11—Rb21—O11vi | 146.9 (5) |
Na19—O12—Rb21iv | 84.8 (6) | O11—Rb21—O12i | 68.4 (5) |
Na19i—O12—Rb21iv | 89.8 (6) | O11—Rb21—O14ix | 111.2 (6) |
C5—O14—Rb20 | 137.0 (10) | O11—Rb21—O15i | 79.9 (7) |
C5—O14—Rb21v | 138.7 (12) | O11—Rb21—O16i | 117.1 (6) |
Rb20—O14—Rb21v | 83.6 (4) | O11—Rb21—O23ix | 85.6 (14) |
C6—O15—Na19 | 107.4 (16) | O11vi—Rb21—O12i | 95.2 (4) |
C6—O15—Rb20iii | 138 (2) | O11vi—Rb21—O14ix | 92.3 (6) |
C6—O15—Rb21iv | 91.6 (15) | O11vi—Rb21—O15i | 117.3 (6) |
Na19—O15—Rb20iii | 87.0 (10) | O11vi—Rb21—O16i | 74.3 (5) |
Na19—O15—Rb21iv | 88.6 (9) | O11vi—Rb21—O23ix | 81.1 (14) |
Rb20iii—O15—Rb21iv | 128.9 (5) | O12i—Rb21—O14ix | 164.1 (5) |
C6—O16—Na19vi | 137 (2) | O12i—Rb21—O15i | 59.2 (6) |
C6—O16—Rb20 | 129 (2) | O12i—Rb21—O16i | 61.2 (5) |
C6—O16—Rb21iv | 83.8 (15) | O12i—Rb21—O23ix | 125.4 (6) |
Na19vi—O16—Rb20 | 92.4 (12) | O14ix—Rb21—O15i | 104.9 (6) |
Na19vi—O16—Rb21iv | 88.1 (12) | O14ix—Rb21—O16i | 107.8 (6) |
Rb20—O16—Rb21iv | 115.2 (5) | O14ix—Rb21—O23ix | 69.6 (5) |
O11iv—Na19—O12 | 83.5 (11) | O15i—Rb21—O16i | 43.0 (3) |
O11iv—Na19—O12iv | 52.2 (4) | O15i—Rb21—O23ix | 161.4 (14) |
O11iv—Na19—O15 | 92.0 (12) | O16i—Rb21—O23ix | 155.2 (15) |
O11iv—Na19—O16iii | 110.2 (17) | Rb20iii—O22—Rb20xi | 153.1 (9) |
O12—Na19—O12iv | 79.4 (8) | Rb20iii—O23—Rb20 | 127.2 (6) |
O12—Na19—O15 | 67.0 (11) | Rb20iii—O23—Rb21v | 79.1 (12) |
O12—Na19—O16iii | 162.5 (17) | Rb20—O23—Rb21v | 83.6 (12) |
Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x+1/2, y−1/2, z−1/2; (iii) x, y, z−1; (iv) −x, −y+1, z−1/2; (v) −x+1/2, y+1/2, z−1/2; (vi) x, y, z+1; (vii) −x+1/2, y+1/2, z+1/2; (viii) x−1/2, −y+3/2, z+1; (ix) −x+1/2, y−1/2, z+1/2; (x) −x+1/2, y−1/2, z+3/2; (xi) x+1/2, −y+3/2, z−1; (xii) −x+1/2, y+1/2, z−3/2. |
Crystal data top C6H9NaO9Rb2 | b = 17.2422 Å |
Mr = 419.05 | c = 5.7371 Å |
Orthorhombic, Pna21 | V = 1197.94 Å3 |
a = 12.1101 Å | Z = 4 |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.11349 | 0.44294 | 0.51714 | 0.02400* | |
C2 | 0.23597 | 0.45666 | 0.57421 | 0.03400* | |
C3 | 0.28367 | 0.52794 | 0.45370 | 0.03400* | |
C4 | 0.40500 | 0.54379 | 0.52712 | 0.03400* | |
C5 | 0.45823 | 0.61018 | 0.38987 | 0.02400* | |
C6 | 0.21792 | 0.60115 | 0.52617 | 0.02400* | |
H7 | 0.28454 | 0.40572 | 0.52464 | 0.04500* | |
H8 | 0.24316 | 0.46248 | 0.76364 | 0.04500* | |
H9 | 0.45422 | 0.49133 | 0.49852 | 0.04500* | |
H10 | 0.40815 | 0.55714 | 0.71290 | 0.04500* | |
O11 | 0.07326 | 0.37761 | 0.57270 | 0.02400* | |
O12 | 0.05725 | 0.49630 | 0.42197 | 0.02400* | |
O13 | 0.44070 | 0.61196 | 0.17085 | 0.02400* | |
O14 | 0.51674 | 0.65996 | 0.49354 | 0.02400* | |
O15 | 0.19321 | 0.64945 | 0.36630 | 0.02400* | |
O16 | 0.19781 | 0.61091 | 0.73943 | 0.02400* | |
O17 | 0.27723 | 0.51384 | 0.20845 | 0.02400* | |
H18 | 0.33394 | 0.54823 | 0.14074 | 0.03100* | |
Na19 | 0.10971 | 0.56678 | 0.07196 | 0.04800* | |
Rb20 | 0.28861 | 0.74043 | 0.99974 | 0.06620* | |
Rb21 | 0.02821 | 0.33790 | 1.05852 | 0.06620* | |
O22 | 0.55613 | 0.71905 | −0.07701 | 0.05000* | |
O23 | 0.24192 | 0.79591 | 0.51019 | 0.05000* | |
H24 | 0.52483 | 0.68516 | 0.04328 | 0.06500* | |
H25 | 0.54732 | 0.68753 | −0.21777 | 0.06500* | |
H26 | 0.17541 | 0.82757 | 0.50229 | 0.06500* | |
H27 | 0.21390 | 0.74353 | 0.47482 | 0.06500* | |
Bond lengths (Å) top C1—C2 | 1.537 | C4—H10 | 1.091 |
C1—O11 | 1.268 | C5—O13 | 1.275 |
C1—O12 | 1.268 | C5—O14 | 1.262 |
C2—C3 | 1.524 | C6—O15 | 1.275 |
C2—H7 | 1.095 | C6—O16 | 1.259 |
C2—H8 | 1.095 | O17—H18 | 0.987 |
C3—C4 | 1.553 | O22—H24 | 0.980 |
C3—C6 | 1.549 | O22—H25 | 0.979 |
C3—O17 | 1.430 | O23—H26 | 0.974 |
C4—C5 | 1.532 | O23—H27 | 0.986 |
C4—H9 | 1.096 | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O23—H27···O15 | 0.986 | 1.755 | 2.721 | 165.6 |
O23—H26···O14 | 0.974 | 1.934 | 2.833 | 152.2 |
O22—H25···O14 | 0.979 | 1.762 | 2.708 | 161.4 |
O22—H24···O13 | 0.980 | 1.779 | 2.718 | 159.0 |
O17—H18···O13 | 0.987 | 1.705 | 2.613 | 151.0 |
C4—H9···O13 | 1.096 | 2.402 | 3.374 | 147.0 |
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [NaRb2(C6H5O7)] topD—H···A' | D—H | H···A | D···A | D—H···A | Mulliken overlap | H-bond energy |
O17—H18···O11 | 0.996 | 1.662 | 2.585 | 152.3 | 0.072 | 14.7 |
C4—H10···O17i | 1.088 | 2.451 | 3.515 | 165.5 | 0.017 | |
Symmetry code: (i) 1 + x, y, z. |
Hydrogen-bond geometry (Å, °, electrons, kcal mol-1) for [NaRb2(C6H5O7)(H2O)2] topD—H···A' | D—H | H···A | D···A | D—H···A | Mulliken overlap | H-bond energy |
O23—H27···O15 | 0.986 | 1.755 | 2.721 | 165.6 | 0.064 | 13.8 |
O23—H26···O14i | 0.974 | 1.934 | 2.833 | 152.2 | 0.041 | 11.1 |
O22—H25···O14ii | 0.979 | 1.762 | 2.708 | 161.4 | 0.055 | 12.8 |
O22—H24···O13 | 0.980 | 1.779 | 2.718 | 159.0 | 0.053 | 12.6 |
O17—H18···O13 | 0.987 | 1.705 | 2.613 | 151.0 | 0.066 | 14.0 |
C4—H9···O13ii | 1.096 | 2.402 | 3.374 | 147.0 | 0.016 | |
Symmetry code: (i) -1/2 + x, 3/2 - y, z; (ii) x, y, -1 + z; (III) 1 - x, 1 - y, 1/2 + z. |
Acknowledgements
We thank Andrey Rogachev for the use of computing resources at the Illinois Institute of Technology.
References
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. & Falcicchio, A. (2013). J. Appl. Cryst. 46, 1231–1235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2009). DIFFRAC. Measurement. Bruker AXS Inc., Madison Wisconsin USA. Google Scholar
Cigler, A. J. & Kaduk, J. A. (2018). Acta Cryst. C74, 1160–1170. CrossRef IUCr Journals Google Scholar
Cigler, A. J. & Kaduk, J. A. (2019). Acta Cryst. E75, 223–227. CrossRef IUCr Journals Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noël, Y., Causà, M., Rérat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317. Web of Science CrossRef CAS Google Scholar
Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. & Saunders, V. R. (1991). Chem. Phys. 156, 11–19. CrossRef CAS Web of Science Google Scholar
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R. & Blanton, T. N. (2017). Powder Diffr. 32, 63–71. CrossRef CAS Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kourkoumelis, N. (2013). Powder Diffr. 28, 137–148. Google Scholar
Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS). Report LAUR 86–784 Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. CrossRef IUCr Journals Google Scholar
Sophia, G., Baranek, P., Sarrazin, C., Rerat, M. & Dovesi, R. (2014). Unpublished. https://www.crystal.unito.it/index.php. Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access