research communications
(Z)-3-({[3-Methoxy-5-(trifluoromethyl)phenyl]imino}methyl)benzene-1,2-diol
aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and dTaras Shevchenko National University of Kyiv, Department, of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sibeld@gantep.edu.tr, necmid@omu.edu.tr, igolenya@ua.fm
The title compound, C15H12F3NO3, crystallizes with one molecule in the The mean planes of the two phenyl rings of the Schiff base moiety, bearing the OH groups and the imine group, respectively, are inclined to each other by 4.91 (1)°. In the crystal, molecules are linked via pairs of bifurcated O—H⋯O hydrogen bonds between the phenol OH groups, forming inversion dimers with an R12(5) ring motif. The structure exhibits also intramolecular O—H⋯N and C—H⋯F hydrogen-bonding interactions. Hirshfeld surfaces analysis and two-dimensional fingerprint plots were applied to quantify the intermolecular interactions. The three F atoms of the trifluoromethyl group are disordered over two sets of sites, with occupancy factors of 0.578 (8) and 0.422 (8). The crystal studied was refined as an inversion twin
CCDC reference: 1892713
1. Chemical context
et al., 1881). are also employed as catalyst carriers (Grigoras et al., 2001), thermo-stable materials (Vančo et al., 2004), metal–cation complexing agents or in biological systems (Taggi et al., 2002). Furthermore, they are used as starting materials in the synthesis of significant drugs with properties such as antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic (Hadjoudis et al., 1987). On an industrial scale, they have a wide range of applications such as dyes and pigments.
(azomethines, imines) belong to a widely used group of organic compounds or intermediates that are important for production of certain chemical specialties, e.g. pharmaceuticals, or additives to rubber. The synthesis involves an aromatic amine and an aldehyde (SchiffIn general, viz. phenol–imine and keto–amine. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in O—H⋯N in phenol–imine and N—H⋯O in keto-amine tautomers. In the present study, a new Schiff base, (Z)-3-({[3-methoxy-5-(trifluoromethyl)phenyl]imino}methyl)benzene-1,2-diol, was obtained in crystalline form from the reaction of 2,3-dihydroxybenzaldehyde with 3-methoxy-5-(trifluoromethyl)aniline.
display two possible tautomeric forms,2. Structural commentary
The title compound crystallizes as the phenol–imine tautomer with one molecule in the ). The two phenyl rings of the Schiff base (C1–C6 and C8–C13) are inclined at an angle of 4.91 (1)° with respect to one another. The orientation of the two hydroxy groups with respect to their tautomeric counterparts is defined by the torsion angles T1(C1—C6—C7—N1) and T2(C7—N1—C8—C9). The respective values of = 2.0 (10) and −5.5 (11)° indicate that the molecule is not planar (Ünver et al., 2016).
(Fig. 1In the molecule, the C=N group has a strong electron-withdrawing character as revealed by the double-bond character of N1=C7 [1.269 (8) Å] and the single bond character of O1—C2 [1.368 (6) Å] in the phenol–imine tautomer. These values and other bond lengths and angles (Table 1) are in good agreement with those previously reported for C=N and O—C bonds (Koşar et al.., 2010; Demir Kanmazalp et al.., 2019). One of the hydroxy groups (O2) makes a strong intramolecular O—H⋯N bond to the imine N atom (Fig. 1, Table 2) with an S(6) ring motif, characteristic of o-hydroxysalicylidene systems. Other intramolecular hydrogen bonding interactions involve the disordered –CF3 group and adjacent aromatic H atoms bonded to C9 and C11 (Table 2). As a result of the strongly bent C—H⋯F angles of about 100°, these contributions are of minor importance.
|
3. Supramolecular features
Between adjacent molecules there are bifurcated intermolecular O1—H⋯(O1,O2) hydrogen bonds with an (5) graph-set motif (Fig. 2, Table 2), leading to the formation of chains parallel to [001]. Despite the presence of aromatic systems, the molecule is arranged in such a way that π–π or C—H⋯π interactions are not favoured.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update Nov 2018; Groom et al., 2016) for the (Z)-1-phenyl-N-[3-(trifluoromethyl)phenyl]methanimine skeleton yielded eight matches. Distinctive bond lengths (here N1=C7, C1—O2) in the Schiff base structure are the same within standard uncertainties as those of the corresponding bond lengths in the structures of 4N-[3,5-bis(trifluoromethyl)phenyl]-3-methoxysalicylaldimine (Karadayı et al., 2003), 2-{[3,5-bis(trifluoromethyl)phenyl]carbonoimidoyl}phenol (Yıldız et al., 2015), 2-{[3,5-bis(trifluoromethyl)phenyl]carbonoimidoyl}phenol (Ünver et al., 2016), (E)-3-{[3-(trifluoromethyl)phenylimino]methyl}benzene-1,2-diol (Koşar et al., 2010), 2-fluoro-N-(3-nitrobenzylidene)-5-(trifluoromethyl)aniline (Yang et al., 2007), (E)-2-methyl-6-[3-(trifluoromethyl)-phenyliminomethyl]phenol (Akkaya et al., 2007), (E)-2-[(4-chlorophenyl)iminomethyl]-4-(trifluoromethoxy)phenol (Tüfekçi et al., 2009) and (E)-4-methyl-2-[3-(trifluoromethyl)phenyliminomethyl]phenol (Gül et al., 2007). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The molecular conformations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intramolecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.
5. Hirshfeld surface analysis
Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017). The three-dimensional dnorm surface is a useful tool for analysing and visualizing the intermolecular interactions and utilizes the function of the normalized distances de and di, where de and di are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour convention used for the dnorm-mapped Hirshfeld surfaces indicates the interatomic contacts longer, equal to or shorter than the van der Waals separations. The standard-resolution molecular 3D (dnorm) plot with de and di for the title compound is shown in Fig. 3. The bright-red spots near the oxygen and hydrogen atoms indicate donors and acceptors of a potential O—H⋯O interaction. As can be seen from the two-dimensional fingerprint plots (scattering points spread up to de = di = 1.5 Å; Fig. 4), the dominant interaction in the title compound originates from H⋯H contacts, which are the major contributor (25.1%) to the total Hirshfeld surface. The contribution from the O⋯H/H⋯O contacts, corresponding to medium O1—H1⋯O1 and O1—H1⋯O2 intermolecular interactions (9.6% + 8.2% = 17.8%), is represented by a pair of sharp spikes that are the characteristics of hydrogen-bonding interactions (Fig. 4). Other significant interactions are F⋯H/H⋯F (20.6%) and C⋯H/H⋯C (15.4%). While it is likely there are other identifiable points of contact that can be highlighted in the crystal, these may be of limited significance and do not require detailed discussion nor illustration. The interactions are visualized in Fig. 5.
6. Synthesis and crystallization
The title compound was prepared by refluxing mixed solutions of 2,3-dihydroxybenzaldehyde (34.5 mg, 0.25 mmol) in ethanol (15 ml) and 3-methoxy-5-(trifluoromethyl)aniline (47.8 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 396–398 K).
7. Refinement
Crystal data, data collection and structure . The carbon-bound H atoms were positioned with idealized geometry and refined isotropically with C—H distances of 0.93–0.96 Å and Uiso(H) set to 1.2–1.5Ueq(C), and with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The three F atoms of the trifluoromethyl group are disordered over two sets of sites, with occupancy factors of 0.578 (8) for F atoms with suffix A and 0.422 (8) for those with suffix B (Fig. 1). A similar behaviour for a disordered –CF3 group was observed in a previous study (Demir et al., 2006). Restraints (SIMU, DELU and ISOR; Sheldrick et al., 2015b) were finally applied to the disordered trifluoromethyl group. As a result of missing the of the title compound could not be determined reliably (Table 3).
details are summarized in Table 3Supporting information
CCDC reference: 1892713
https://doi.org/10.1107/S2056989019003220/wm5488sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003220/wm5488Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019003220/wm5488Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C15H12F3NO3 | Dx = 1.524 Mg m−3 |
Mr = 311.26 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 5897 reflections |
a = 30.790 (3) Å | θ = 2.2–27.0° |
b = 9.0703 (6) Å | µ = 0.13 mm−1 |
c = 4.8579 (3) Å | T = 296 K |
V = 1356.69 (17) Å3 | Prism, red |
Z = 4 | 0.79 × 0.32 × 0.05 mm |
F(000) = 640 |
Stoe IPDS 2 diffractometer | 2140 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1110 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.099 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.0°, θmin = 2.3° |
rotation method scans | h = −30→36 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −10→10 |
Tmin = 0.957, Tmax = 0.995 | l = −4→5 |
7150 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.062 | w = 1/[σ2(Fo2) + (0.0144P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max < 0.001 |
S = 0.95 | Δρmax = 0.14 e Å−3 |
2140 reflections | Δρmin = −0.16 e Å−3 |
231 parameters | Absolute structure: Refined as an inversion twin. |
73 restraints | Absolute structure parameter: 3 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1A | −0.2587 (3) | −0.7222 (12) | −0.112 (3) | 0.109 (3) | 0.578 (8) |
F2A | −0.2437 (3) | −0.4973 (12) | −0.058 (4) | 0.110 (3) | 0.578 (8) |
F3A | −0.2630 (4) | −0.6345 (18) | 0.281 (3) | 0.117 (4) | 0.578 (8) |
F1B | −0.2486 (5) | −0.605 (3) | −0.165 (4) | 0.115 (4) | 0.422 (8) |
F2B | −0.2558 (4) | −0.4953 (17) | 0.212 (5) | 0.111 (4) | 0.422 (8) |
F3B | −0.2668 (6) | −0.7256 (19) | 0.191 (5) | 0.112 (4) | 0.422 (8) |
O1 | −0.48182 (12) | −0.0397 (5) | −1.1221 (12) | 0.0559 (13) | |
H1 | −0.488061 | 0.002147 | −1.266405 | 0.084* | |
O2 | −0.45187 (14) | −0.2219 (5) | −0.7485 (11) | 0.0566 (13) | |
H2 | −0.439356 | −0.273123 | −0.634283 | 0.085* | |
O3 | −0.42289 (17) | −0.6770 (5) | 0.2365 (12) | 0.0675 (15) | |
N1 | −0.38682 (18) | −0.3355 (6) | −0.4892 (13) | 0.0462 (15) | |
C13 | −0.4043 (2) | −0.5057 (6) | −0.1300 (19) | 0.0429 (18) | |
H13 | −0.433339 | −0.485521 | −0.165359 | 0.051* | |
C8 | −0.3718 (2) | −0.4343 (7) | −0.2864 (14) | 0.0422 (17) | |
C2 | −0.4376 (2) | −0.0449 (7) | −1.0943 (16) | 0.0444 (18) | |
C12 | −0.3936 (2) | −0.6048 (7) | 0.0740 (16) | 0.050 (2) | |
C1 | −0.4223 (2) | −0.1434 (7) | −0.8926 (14) | 0.0383 (17) | |
C6 | −0.37787 (19) | −0.1545 (7) | −0.8426 (13) | 0.0367 (17) | |
C7 | −0.3617 (2) | −0.2539 (7) | −0.6293 (16) | 0.0453 (18) | |
H7 | −0.331950 | −0.257523 | −0.595114 | 0.054* | |
C10 | −0.3189 (2) | −0.5665 (8) | −0.0246 (15) | 0.0475 (19) | |
C5 | −0.3498 (2) | −0.0686 (7) | −0.9968 (15) | 0.0477 (19) | |
H5 | −0.320085 | −0.075095 | −0.962902 | 0.057* | |
C11 | −0.3506 (3) | −0.6359 (7) | 0.1267 (16) | 0.056 (2) | |
H11 | −0.343162 | −0.703200 | 0.263109 | 0.067* | |
C9 | −0.3286 (2) | −0.4645 (7) | −0.2283 (15) | 0.051 (2) | |
H9 | −0.306471 | −0.417196 | −0.324352 | 0.061* | |
C3 | −0.4091 (2) | 0.0371 (7) | −1.2431 (17) | 0.054 (2) | |
H3 | −0.419422 | 0.101663 | −1.376554 | 0.065* | |
C4 | −0.3642 (2) | 0.0258 (7) | −1.1982 (16) | 0.053 (2) | |
H4 | −0.344674 | 0.080776 | −1.302170 | 0.064* | |
C15 | −0.2733 (3) | −0.5977 (14) | 0.035 (2) | 0.088 (3) | |
C14 | −0.4674 (2) | −0.6454 (10) | 0.189 (2) | 0.087 (3) | |
H14A | −0.475930 | −0.685003 | 0.013742 | 0.130* | |
H14B | −0.471687 | −0.540545 | 0.188861 | 0.130* | |
H14C | −0.484666 | −0.689170 | 0.331567 | 0.130* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1A | 0.078 (5) | 0.107 (7) | 0.142 (8) | 0.048 (5) | −0.008 (6) | −0.030 (8) |
F2A | 0.055 (5) | 0.125 (7) | 0.148 (9) | 0.008 (6) | −0.018 (6) | 0.015 (8) |
F3A | 0.080 (5) | 0.155 (10) | 0.116 (8) | 0.043 (8) | −0.034 (6) | 0.014 (8) |
F1B | 0.074 (6) | 0.138 (9) | 0.133 (9) | 0.034 (8) | −0.001 (7) | 0.003 (9) |
F2B | 0.059 (6) | 0.136 (8) | 0.138 (8) | 0.018 (7) | −0.034 (7) | −0.017 (9) |
F3B | 0.087 (6) | 0.118 (9) | 0.132 (9) | 0.042 (7) | −0.029 (8) | 0.010 (9) |
O1 | 0.041 (3) | 0.075 (4) | 0.051 (3) | 0.014 (2) | −0.006 (3) | 0.009 (3) |
O2 | 0.043 (3) | 0.067 (3) | 0.060 (4) | 0.002 (2) | 0.003 (3) | 0.012 (3) |
O3 | 0.072 (4) | 0.067 (3) | 0.063 (4) | −0.011 (3) | 0.002 (4) | 0.012 (3) |
N1 | 0.045 (3) | 0.049 (3) | 0.044 (4) | 0.009 (3) | −0.004 (3) | 0.000 (3) |
C13 | 0.042 (4) | 0.037 (4) | 0.050 (5) | 0.005 (3) | −0.009 (4) | 0.000 (4) |
C8 | 0.042 (4) | 0.052 (4) | 0.032 (5) | 0.001 (3) | −0.006 (4) | −0.003 (4) |
C2 | 0.039 (4) | 0.047 (4) | 0.047 (5) | 0.013 (3) | 0.004 (4) | −0.004 (4) |
C12 | 0.046 (5) | 0.049 (4) | 0.057 (6) | 0.002 (3) | 0.000 (5) | 0.002 (4) |
C1 | 0.035 (4) | 0.044 (4) | 0.036 (4) | 0.002 (3) | 0.004 (4) | 0.002 (3) |
C6 | 0.040 (4) | 0.036 (4) | 0.034 (5) | −0.001 (3) | −0.002 (4) | 0.000 (4) |
C7 | 0.030 (3) | 0.055 (4) | 0.051 (5) | 0.000 (3) | −0.004 (4) | −0.004 (4) |
C10 | 0.048 (5) | 0.053 (4) | 0.042 (5) | 0.016 (4) | −0.003 (4) | −0.005 (4) |
C5 | 0.045 (5) | 0.050 (4) | 0.048 (5) | −0.008 (4) | −0.007 (4) | 0.000 (4) |
C11 | 0.077 (6) | 0.042 (4) | 0.049 (5) | 0.009 (4) | −0.005 (5) | −0.002 (4) |
C9 | 0.053 (4) | 0.051 (4) | 0.048 (5) | 0.007 (3) | 0.005 (5) | −0.001 (4) |
C3 | 0.061 (5) | 0.049 (4) | 0.051 (5) | 0.009 (4) | −0.002 (5) | 0.007 (4) |
C4 | 0.056 (5) | 0.052 (4) | 0.052 (6) | −0.011 (3) | 0.008 (5) | 0.006 (4) |
C15 | 0.070 (7) | 0.136 (10) | 0.059 (7) | 0.044 (6) | −0.004 (7) | 0.029 (7) |
C14 | 0.051 (5) | 0.113 (7) | 0.096 (9) | −0.017 (5) | 0.008 (6) | 0.026 (6) |
F1A—C15 | 1.410 (14) | C2—C1 | 1.407 (9) |
F2A—C15 | 1.364 (14) | C12—C11 | 1.377 (9) |
F3A—C15 | 1.282 (15) | C1—C6 | 1.394 (8) |
F1B—C15 | 1.236 (19) | C6—C5 | 1.385 (8) |
F2B—C15 | 1.375 (19) | C6—C7 | 1.462 (9) |
F3B—C15 | 1.40 (2) | C7—H7 | 0.9300 |
O1—C2 | 1.368 (6) | C10—C11 | 1.376 (9) |
O1—H1 | 0.8200 | C10—C9 | 1.387 (8) |
O2—C1 | 1.350 (7) | C10—C15 | 1.462 (10) |
O2—H2 | 0.8200 | C5—C4 | 1.374 (9) |
O3—C12 | 1.366 (8) | C5—H5 | 0.9300 |
O3—C14 | 1.419 (8) | C11—H11 | 0.9300 |
N1—C7 | 1.269 (8) | C9—H9 | 0.9300 |
N1—C8 | 1.409 (8) | C3—C4 | 1.403 (9) |
C13—C12 | 1.377 (9) | C3—H3 | 0.9300 |
C13—C8 | 1.412 (9) | C4—H4 | 0.9300 |
C13—H13 | 0.9300 | C14—H14A | 0.9600 |
C8—C9 | 1.389 (8) | C14—H14B | 0.9600 |
C2—C3 | 1.360 (9) | C14—H14C | 0.9600 |
C2—O1—H1 | 109.5 | C10—C11—C12 | 119.3 (7) |
C1—O2—H2 | 109.5 | C10—C11—H11 | 120.3 |
C12—O3—C14 | 116.5 (6) | C12—C11—H11 | 120.3 |
C7—N1—C8 | 123.1 (6) | C10—C9—C8 | 118.9 (7) |
C12—C13—C8 | 121.2 (6) | C10—C9—H9 | 120.6 |
C12—C13—H13 | 119.4 | C8—C9—H9 | 120.6 |
C8—C13—H13 | 119.4 | C2—C3—C4 | 120.9 (7) |
C9—C8—N1 | 125.6 (7) | C2—C3—H3 | 119.5 |
C9—C8—C13 | 118.5 (7) | C4—C3—H3 | 119.5 |
N1—C8—C13 | 115.9 (6) | C5—C4—C3 | 118.4 (7) |
C3—C2—O1 | 124.9 (7) | C5—C4—H4 | 120.8 |
C3—C2—C1 | 120.1 (6) | C3—C4—H4 | 120.8 |
O1—C2—C1 | 115.0 (6) | F3A—C15—F2A | 108.6 (13) |
O3—C12—C11 | 115.4 (6) | F1B—C15—F2B | 106.8 (16) |
O3—C12—C13 | 124.9 (6) | F1B—C15—F3B | 107.0 (14) |
C11—C12—C13 | 119.7 (7) | F2B—C15—F3B | 99.5 (14) |
O2—C1—C6 | 122.2 (6) | F3A—C15—F1A | 100.6 (11) |
O2—C1—C2 | 118.1 (6) | F2A—C15—F1A | 98.8 (11) |
C6—C1—C2 | 119.7 (6) | F1B—C15—C10 | 116.4 (12) |
C5—C6—C1 | 118.6 (6) | F3A—C15—C10 | 118.3 (10) |
C5—C6—C7 | 121.1 (6) | F2A—C15—C10 | 116.5 (9) |
C1—C6—C7 | 120.2 (6) | F2B—C15—C10 | 111.7 (10) |
N1—C7—C6 | 122.1 (6) | F3B—C15—C10 | 113.9 (13) |
N1—C7—H7 | 119.0 | F1A—C15—C10 | 111.1 (10) |
C6—C7—H7 | 119.0 | O3—C14—H14A | 109.5 |
C11—C10—C9 | 122.2 (7) | O3—C14—H14B | 109.5 |
C11—C10—C15 | 119.2 (8) | H14A—C14—H14B | 109.5 |
C9—C10—C15 | 118.5 (8) | O3—C14—H14C | 109.5 |
C4—C5—C6 | 122.2 (7) | H14A—C14—H14C | 109.5 |
C4—C5—H5 | 118.9 | H14B—C14—H14C | 109.5 |
C6—C5—H5 | 118.9 | ||
C7—N1—C8—C9 | −5.5 (11) | O3—C12—C11—C10 | −179.1 (6) |
C7—N1—C8—C13 | 173.7 (7) | C13—C12—C11—C10 | 0.5 (11) |
C12—C13—C8—C9 | −0.8 (11) | C11—C10—C9—C8 | −1.7 (11) |
C12—C13—C8—N1 | 179.9 (6) | C15—C10—C9—C8 | 180.0 (8) |
C14—O3—C12—C11 | 179.2 (7) | N1—C8—C9—C10 | −179.0 (6) |
C14—O3—C12—C13 | −0.3 (11) | C13—C8—C9—C10 | 1.7 (11) |
C8—C13—C12—O3 | 179.1 (7) | O1—C2—C3—C4 | 179.2 (7) |
C8—C13—C12—C11 | −0.3 (11) | C1—C2—C3—C4 | −0.2 (12) |
C3—C2—C1—O2 | 179.6 (7) | C6—C5—C4—C3 | 1.5 (11) |
O1—C2—C1—O2 | 0.0 (9) | C2—C3—C4—C5 | −1.0 (12) |
C3—C2—C1—C6 | 1.1 (11) | C11—C10—C15—F1B | 141.8 (17) |
O1—C2—C1—C6 | −178.4 (6) | C9—C10—C15—F1B | −40 (2) |
O2—C1—C6—C5 | −179.1 (6) | C11—C10—C15—F3A | −28.9 (18) |
C2—C1—C6—C5 | −0.7 (10) | C9—C10—C15—F3A | 149.5 (13) |
O2—C1—C6—C7 | 0.3 (10) | C11—C10—C15—F2A | −161.1 (11) |
C2—C1—C6—C7 | 178.6 (6) | C9—C10—C15—F2A | 17.3 (17) |
C8—N1—C7—C6 | 178.7 (6) | C11—C10—C15—F2B | −95.2 (15) |
C5—C6—C7—N1 | −178.7 (7) | C9—C10—C15—F2B | 83.2 (14) |
C1—C6—C7—N1 | 2.0 (10) | C11—C10—C15—F3B | 16.6 (18) |
C1—C6—C5—C4 | −0.6 (11) | C9—C10—C15—F3B | −165.0 (13) |
C7—C6—C5—C4 | −179.9 (6) | C11—C10—C15—F1A | 86.8 (12) |
C9—C10—C11—C12 | 0.6 (11) | C9—C10—C15—F1A | −94.9 (13) |
C15—C10—C11—C12 | 178.9 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 | 1.99 | 2.770 (4) | 159 |
O1—H1···O2i | 0.82 | 2.72 | 3.190 (6) | 118 |
O2—H2···N1 | 0.82 | 1.85 | 2.581 (7) | 147 |
C9—H9···F2A | 0.93 | 2.44 | 2.757 (12) | 100 |
C11—H11···F3B | 0.93 | 2.39 | 2.725 (18) | 101 |
Symmetry code: (i) −x−1, −y, z−1/2. |
Funding information
The authors are grateful to the Scientific Research Project Office of Ondokuz Mayıs University, Turkey, for a research grant (project No. PYO·FEN.1904.18.019).
References
Akkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555. Web of Science CSD CrossRef IUCr Journals Google Scholar
Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299. Web of Science CrossRef IUCr Journals Google Scholar
Demir Kanmazalp, S., Macit, M. & Dege, N. (2019). J. Mol. Struct. 1179, 181–191. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360. CrossRef CAS Web of Science Google Scholar
Karadayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466–o467. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481–487. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schiff, H. (1881). Justus Liebigs Ann. Chem. 210, 114–123. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. Web of Science CrossRef PubMed CAS Google Scholar
Tüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162–176. Google Scholar
Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161. Web of Science PubMed Google Scholar
Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148–160. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.