research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-({[3-Meth­­oxy-5-(tri­fluoro­meth­yl)phen­yl]imino}meth­yl)benzene-1,2-diol

crossmark logo

aGaziantep University, Technical Sciences, 27310, Gaziantep, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Kurupelit, Samsun, Turkey, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and dTaras Shevchenko National University of Kyiv, Department, of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: sibeld@gantep.edu.tr, necmid@omu.edu.tr, igolenya@ua.fm

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 February 2019; accepted 6 March 2019; online 26 March 2019)

The title compound, C15H12F3NO3, crystallizes with one mol­ecule in the asymmetric unit. The mean planes of the two phenyl rings of the Schiff base moiety, bearing the OH groups and the imine group, respectively, are inclined to each other by 4.91 (1)°. In the crystal, mol­ecules are linked via pairs of bifurcated O—H⋯O hydrogen bonds between the phenol OH groups, forming inversion dimers with an R12(5) ring motif. The structure exhibits also intra­molecular O—H⋯N and C—H⋯F hydrogen-bonding inter­actions. Hirshfeld surfaces analysis and two-dimensional fingerprint plots were applied to qu­antify the inter­molecular inter­actions. The three F atoms of the tri­fluoro­methyl group are disordered over two sets of sites, with occupancy factors of 0.578 (8) and 0.422 (8). The crystal studied was refined as an inversion twin

1. Chemical context

Schiff bases (azomethines, imines) belong to a widely used group of organic compounds or inter­mediates that are important for production of certain chemical specialties, e.g. pharmaceuticals, or additives to rubber. The synthesis involves an aromatic amine and an aldehyde (Schiff et al., 1881[Schiff, H. (1881). Justus Liebigs Ann. Chem. 210, 114-123.]). Schiff bases are also employed as catalyst carriers (Grigoras et al., 2001[Grigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927-939.]), thermo-stable materials (Vančo et al., 2004[Vančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155-161.]), metal–cation complexing agents or in biological systems (Taggi et al., 2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). Furthermore, they are used as starting materials in the synthesis of significant drugs with properties such as anti­fungal, anti­bacterial, anti­malarial, anti­proliferative, anti-inflammatory, anti­viral, and anti­pyretic (Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). On an industrial scale, they have a wide range of applications such as dyes and pigments.

In general, Schiff bases display two possible tautomeric forms, viz. phenol–imine and keto–amine. Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto-amine tautomers. In the present study, a new Schiff base, (Z)-3-({[3-meth­oxy-5-(tri­fluoro­meth­yl)phen­yl]imino}­meth­yl)benzene-1,2-diol, was obtained in crystalline form from the reaction of 2,3-di­hydroxy­benzaldehyde with 3-meth­oxy-5-(tri­fluoro­meth­yl)aniline.

2. Structural commentary

The title compound crystallizes as the phenol–imine tautomer with one mol­ecule in the asymmetric unit (Fig. 1[link]). The two phenyl rings of the Schiff base (C1–C6 and C8–C13) are inclined at an angle of 4.91 (1)° with respect to one another. The orientation of the two hy­droxy groups with respect to their tautomeric counterparts is defined by the torsion angles T1(C1—C6—C7—N1) and T2(C7—N1—C8—C9). The respective values of = 2.0 (10) and −5.5 (11)° indicate that the mol­ecule is not planar (Ünver et al., 2016[Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162-176.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atomic numbering scheme. The dashed line shows the intra­molecular O—H⋯N hydrogen bond. Displacement ellipsoids are drawn at the 50% probability level.

In the mol­ecule, the C=N group has a strong electron-withdrawing character as revealed by the double-bond character of N1=C7 [1.269 (8) Å] and the single bond character of O1—C2 [1.368 (6) Å] in the phenol–imine tautomer. These values and other bond lengths and angles (Table 1[link]) are in good agreement with those previously reported for C=N and O—C bonds (Koşar et al.., 2010[Koşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481-487.]; Demir Kanmazalp et al.., 2019[Demir Kanmazalp, S., Macit, M. & Dege, N. (2019). J. Mol. Struct. 1179, 181-191.]). One of the hy­droxy groups (O2) makes a strong intra­molecular O—H⋯N bond to the imine N atom (Fig. 1[link], Table 2[link]) with an S(6) ring motif, characteristic of o-hy­droxy­salicyl­idene systems. Other intra­molecular hydrogen bonding inter­actions involve the disordered –CF3 group and adjacent aromatic H atoms bonded to C9 and C11 (Table 2[link]). As a result of the strongly bent C—H⋯F angles of about 100°, these contributions are of minor importance.

Table 1
Selected geometric parameters (Å, °)

O1—C2 1.368 (6) C1—C6 1.394 (8)
O2—C1 1.350 (7) C6—C5 1.385 (8)
N1—C7 1.269 (8) C6—C7 1.462 (9)
N1—C8 1.409 (8)    
       
C12—O3—C14 116.5 (6) C9—C8—N1 125.6 (7)
C7—N1—C8 123.1 (6) N1—C7—C6 122.1 (6)
       
C7—N1—C8—C9 −5.5 (11) C1—C6—C7—N1 2.0 (10)
C5—C6—C7—N1 −178.7 (7)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 1.99 2.770 (4) 159
O1—H1⋯O2i 0.82 2.72 3.190 (6) 118
O2—H2⋯N1 0.82 1.85 2.581 (7) 147
C9—H9⋯F2A 0.93 2.44 2.757 (12) 100
C11—H11⋯F3B 0.93 2.39 2.725 (18) 101
Symmetry code: (i) [-x-1, -y, z-{\script{1\over 2}}].

3. Supra­molecular features

Between adjacent mol­ecules there are bifurcated inter­molecular O1—H⋯(O1,O2) hydrogen bonds with an [R_{1}^{2}](5) graph-set motif (Fig. 2[link], Table 2[link]), leading to the formation of chains parallel to [001]. Despite the presence of aromatic systems, the mol­ecule is arranged in such a way that ππ or C—H⋯π inter­actions are not favoured.

[Figure 2]
Figure 2
Unit-cell packing diagram for the title compound. Intra- and inter­molecular hydrogen bonds are shown as dashed lines. [Symmetry code: (i) −x − 1, −y, z − [1\over2].]

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update Nov 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the (Z)-1-phenyl-N-[3-(tri­fluoro­meth­yl)phen­yl]methanimine skeleton yielded eight matches. Distinctive bond lengths (here N1=C7, C1—O2) in the Schiff base structure are the same within standard uncertainties as those of the corresponding bond lengths in the structures of 4N-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-3-meth­oxy­salicylaldimine (Karadayı et al., 2003[Karadayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466-o467.]), 2-{[3,5-bis­(tri­fluoro­meth­yl)phen­yl]carbonoimido­yl}phenol (Yıldız et al., 2015[Yıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148-160.]), 2-{[3,5-bis­(tri­fluoro­meth­yl)phen­yl]carbonoimido­yl}phenol (Ünver et al., 2016[Ünver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162-176.]), (E)-3-{[3-(tri­fluoro­meth­yl)phenyl­imino]­meth­yl}benzene-1,2-diol (Koşar et al., 2010[Koşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481-487.]), 2-fluoro-N-(3-nitro­benzyl­idene)-5-(tri­fluoro­meth­yl)aniline (Yang et al., 2007[Yang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.]), (E)-2-methyl-6-[3-(tri­fluoro­meth­yl)-phen­yl­imino­meth­yl]phenol (Akkaya et al., 2007[Akkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555.]), (E)-2-[(4-chloro­phen­yl)imino­meth­yl]-4-(tri­fluoro­meth­oxy)phenol (Tüf­ekçi et al., 2009[Tüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704.]) and (E)-4-methyl-2-[3-(tri­fluoro­meth­yl)phen­yl­imino­meth­yl]phenol (Gül et al., 2007[Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.]). The C=N bond lengths in these structures vary from 1.270 (3) to 1.295 (5) Å and the C—O bond lengths from 1.336 (5) to 1.366 (2) Å. The mol­ecular conformations of these structures are also not planar, with dihedral angles between the phenyl rings varying between 5.00 (5) and 47.62 (9)°. It is likely that the intra­molecular O—H⋯N hydrogen bond, where the imine N atom acts as an hydrogen-bond acceptor, is an important prerequisite for the tautomeric shift toward the phenol–imine form. In fact, in all eight structures of the phenol–imine tautomers, hydrogen bonds of this type are observed.

5. Hirshfeld surface analysis

Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The three-dimensional dnorm surface is a useful tool for analysing and visualizing the inter­molecular inter­actions and utilizes the function of the normalized distances de and di, where de and di are the distances from a given point on the surface to the nearest atom outside and inside, respectively. The blue, white and red colour convention used for the dnorm-mapped Hirshfeld surfaces indicates the inter­atomic contacts longer, equal to or shorter than the van der Waals separations. The standard-resolution mol­ecular 3D (dnorm) plot with de and di for the title compound is shown in Fig. 3[link]. The bright-red spots near the oxygen and hydrogen atoms indicate donors and acceptors of a potential O—H⋯O inter­action. As can be seen from the two-dimensional fingerprint plots (scattering points spread up to de = di = 1.5 Å; Fig. 4[link]), the dominant inter­action in the title compound originates from H⋯H contacts, which are the major contributor (25.1%) to the total Hirshfeld surface. The contribution from the O⋯H/H⋯O contacts, corresponding to medium O1—H1⋯O1 and O1—H1⋯O2 inter­molecular inter­actions (9.6% + 8.2% = 17.8%), is represented by a pair of sharp spikes that are the characteristics of hydrogen-bonding inter­actions (Fig. 4[link]). Other significant inter­actions are F⋯H/H⋯F (20.6%) and C⋯H/H⋯C (15.4%). While it is likely there are other identifiable points of contact that can be highlighted in the crystal, these may be of limited significance and do not require detailed discussion nor illustration. The inter­actions are visualized in Fig. 5[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm (in the range −0.211 to 1.077 a.u.), de and di.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the crystal with the relative contributions of the atom pairs to the Hirshfeld surface.
[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm to visualize the inter­molecular inter­actions.

6. Synthesis and crystallization

The title compound was prepared by refluxing mixed solutions of 2,3-di­hydroxy­benzaldehyde (34.5 mg, 0.25 mmol) in ethanol (15 ml) and 3-meth­oxy-5-(tri­fluoro­meth­yl)aniline (47.8 mg, 0.25 mmol) in ethanol (15 ml). The reaction mixture was stirred for 5 h under reflux. Single crystals of the title compound for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 65%, m.p. 396–398 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The carbon-bound H atoms were positioned with idealized geometry and refined isotropically with C—H distances of 0.93–0.96 Å and Uiso(H) set to 1.2–1.5Ueq(C), and with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The three F atoms of the tri­fluoro­methyl group are disordered over two sets of sites, with occupancy factors of 0.578 (8) for F atoms with suffix A and 0.422 (8) for those with suffix B (Fig. 1[link]). A similar behaviour for a disordered –CF3 group was observed in a previous study (Demir et al., 2006[Demir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298-o299.]). Restraints (SIMU, DELU and ISOR; Sheldrick et al., 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) were finally applied to the disordered tri­fluoro­methyl group. As a result of missing anomalous dispersion, the absolute structure of the title compound could not be determined reliably (Table 3[link]).

Table 3
Experimental details

Crystal data
Chemical formula C15H12F3NO3
Mr 311.26
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 30.790 (3), 9.0703 (6), 4.8579 (3)
V3) 1356.69 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.79 × 0.32 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.957, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 7150, 2140, 1110
Rint 0.099
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.088, 0.95
No. of reflections 2140
No. of parameters 231
No. of restraints 73
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Absolute structure Refined as an inversion twin
Absolute structure parameter 3 (3)
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(Z)-3-({[3-Methoxy-5-(trifluoromethyl)phenyl]imino}methyl)benzene-1,2-diol top
Crystal data top
C15H12F3NO3Dx = 1.524 Mg m3
Mr = 311.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 5897 reflections
a = 30.790 (3) Åθ = 2.2–27.0°
b = 9.0703 (6) ŵ = 0.13 mm1
c = 4.8579 (3) ÅT = 296 K
V = 1356.69 (17) Å3Prism, red
Z = 40.79 × 0.32 × 0.05 mm
F(000) = 640
Data collection top
Stoe IPDS 2
diffractometer
2140 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1110 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.099
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 2.3°
rotation method scansh = 3036
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.957, Tmax = 0.995l = 45
7150 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.0144P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.14 e Å3
2140 reflectionsΔρmin = 0.16 e Å3
231 parametersAbsolute structure: Refined as an inversion twin.
73 restraintsAbsolute structure parameter: 3 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.2587 (3)0.7222 (12)0.112 (3)0.109 (3)0.578 (8)
F2A0.2437 (3)0.4973 (12)0.058 (4)0.110 (3)0.578 (8)
F3A0.2630 (4)0.6345 (18)0.281 (3)0.117 (4)0.578 (8)
F1B0.2486 (5)0.605 (3)0.165 (4)0.115 (4)0.422 (8)
F2B0.2558 (4)0.4953 (17)0.212 (5)0.111 (4)0.422 (8)
F3B0.2668 (6)0.7256 (19)0.191 (5)0.112 (4)0.422 (8)
O10.48182 (12)0.0397 (5)1.1221 (12)0.0559 (13)
H10.4880610.0021471.2664050.084*
O20.45187 (14)0.2219 (5)0.7485 (11)0.0566 (13)
H20.4393560.2731230.6342830.085*
O30.42289 (17)0.6770 (5)0.2365 (12)0.0675 (15)
N10.38682 (18)0.3355 (6)0.4892 (13)0.0462 (15)
C130.4043 (2)0.5057 (6)0.1300 (19)0.0429 (18)
H130.4333390.4855210.1653590.051*
C80.3718 (2)0.4343 (7)0.2864 (14)0.0422 (17)
C20.4376 (2)0.0449 (7)1.0943 (16)0.0444 (18)
C120.3936 (2)0.6048 (7)0.0740 (16)0.050 (2)
C10.4223 (2)0.1434 (7)0.8926 (14)0.0383 (17)
C60.37787 (19)0.1545 (7)0.8426 (13)0.0367 (17)
C70.3617 (2)0.2539 (7)0.6293 (16)0.0453 (18)
H70.3319500.2575230.5951140.054*
C100.3189 (2)0.5665 (8)0.0246 (15)0.0475 (19)
C50.3498 (2)0.0686 (7)0.9968 (15)0.0477 (19)
H50.3200850.0750950.9629020.057*
C110.3506 (3)0.6359 (7)0.1267 (16)0.056 (2)
H110.3431620.7032000.2631090.067*
C90.3286 (2)0.4645 (7)0.2283 (15)0.051 (2)
H90.3064710.4171960.3243520.061*
C30.4091 (2)0.0371 (7)1.2431 (17)0.054 (2)
H30.4194220.1016631.3765540.065*
C40.3642 (2)0.0258 (7)1.1982 (16)0.053 (2)
H40.3446740.0807761.3021700.064*
C150.2733 (3)0.5977 (14)0.035 (2)0.088 (3)
C140.4674 (2)0.6454 (10)0.189 (2)0.087 (3)
H14A0.4759300.6850030.0137420.130*
H14B0.4716870.5405450.1888610.130*
H14C0.4846660.6891700.3315670.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.078 (5)0.107 (7)0.142 (8)0.048 (5)0.008 (6)0.030 (8)
F2A0.055 (5)0.125 (7)0.148 (9)0.008 (6)0.018 (6)0.015 (8)
F3A0.080 (5)0.155 (10)0.116 (8)0.043 (8)0.034 (6)0.014 (8)
F1B0.074 (6)0.138 (9)0.133 (9)0.034 (8)0.001 (7)0.003 (9)
F2B0.059 (6)0.136 (8)0.138 (8)0.018 (7)0.034 (7)0.017 (9)
F3B0.087 (6)0.118 (9)0.132 (9)0.042 (7)0.029 (8)0.010 (9)
O10.041 (3)0.075 (4)0.051 (3)0.014 (2)0.006 (3)0.009 (3)
O20.043 (3)0.067 (3)0.060 (4)0.002 (2)0.003 (3)0.012 (3)
O30.072 (4)0.067 (3)0.063 (4)0.011 (3)0.002 (4)0.012 (3)
N10.045 (3)0.049 (3)0.044 (4)0.009 (3)0.004 (3)0.000 (3)
C130.042 (4)0.037 (4)0.050 (5)0.005 (3)0.009 (4)0.000 (4)
C80.042 (4)0.052 (4)0.032 (5)0.001 (3)0.006 (4)0.003 (4)
C20.039 (4)0.047 (4)0.047 (5)0.013 (3)0.004 (4)0.004 (4)
C120.046 (5)0.049 (4)0.057 (6)0.002 (3)0.000 (5)0.002 (4)
C10.035 (4)0.044 (4)0.036 (4)0.002 (3)0.004 (4)0.002 (3)
C60.040 (4)0.036 (4)0.034 (5)0.001 (3)0.002 (4)0.000 (4)
C70.030 (3)0.055 (4)0.051 (5)0.000 (3)0.004 (4)0.004 (4)
C100.048 (5)0.053 (4)0.042 (5)0.016 (4)0.003 (4)0.005 (4)
C50.045 (5)0.050 (4)0.048 (5)0.008 (4)0.007 (4)0.000 (4)
C110.077 (6)0.042 (4)0.049 (5)0.009 (4)0.005 (5)0.002 (4)
C90.053 (4)0.051 (4)0.048 (5)0.007 (3)0.005 (5)0.001 (4)
C30.061 (5)0.049 (4)0.051 (5)0.009 (4)0.002 (5)0.007 (4)
C40.056 (5)0.052 (4)0.052 (6)0.011 (3)0.008 (5)0.006 (4)
C150.070 (7)0.136 (10)0.059 (7)0.044 (6)0.004 (7)0.029 (7)
C140.051 (5)0.113 (7)0.096 (9)0.017 (5)0.008 (6)0.026 (6)
Geometric parameters (Å, º) top
F1A—C151.410 (14)C2—C11.407 (9)
F2A—C151.364 (14)C12—C111.377 (9)
F3A—C151.282 (15)C1—C61.394 (8)
F1B—C151.236 (19)C6—C51.385 (8)
F2B—C151.375 (19)C6—C71.462 (9)
F3B—C151.40 (2)C7—H70.9300
O1—C21.368 (6)C10—C111.376 (9)
O1—H10.8200C10—C91.387 (8)
O2—C11.350 (7)C10—C151.462 (10)
O2—H20.8200C5—C41.374 (9)
O3—C121.366 (8)C5—H50.9300
O3—C141.419 (8)C11—H110.9300
N1—C71.269 (8)C9—H90.9300
N1—C81.409 (8)C3—C41.403 (9)
C13—C121.377 (9)C3—H30.9300
C13—C81.412 (9)C4—H40.9300
C13—H130.9300C14—H14A0.9600
C8—C91.389 (8)C14—H14B0.9600
C2—C31.360 (9)C14—H14C0.9600
C2—O1—H1109.5C10—C11—C12119.3 (7)
C1—O2—H2109.5C10—C11—H11120.3
C12—O3—C14116.5 (6)C12—C11—H11120.3
C7—N1—C8123.1 (6)C10—C9—C8118.9 (7)
C12—C13—C8121.2 (6)C10—C9—H9120.6
C12—C13—H13119.4C8—C9—H9120.6
C8—C13—H13119.4C2—C3—C4120.9 (7)
C9—C8—N1125.6 (7)C2—C3—H3119.5
C9—C8—C13118.5 (7)C4—C3—H3119.5
N1—C8—C13115.9 (6)C5—C4—C3118.4 (7)
C3—C2—O1124.9 (7)C5—C4—H4120.8
C3—C2—C1120.1 (6)C3—C4—H4120.8
O1—C2—C1115.0 (6)F3A—C15—F2A108.6 (13)
O3—C12—C11115.4 (6)F1B—C15—F2B106.8 (16)
O3—C12—C13124.9 (6)F1B—C15—F3B107.0 (14)
C11—C12—C13119.7 (7)F2B—C15—F3B99.5 (14)
O2—C1—C6122.2 (6)F3A—C15—F1A100.6 (11)
O2—C1—C2118.1 (6)F2A—C15—F1A98.8 (11)
C6—C1—C2119.7 (6)F1B—C15—C10116.4 (12)
C5—C6—C1118.6 (6)F3A—C15—C10118.3 (10)
C5—C6—C7121.1 (6)F2A—C15—C10116.5 (9)
C1—C6—C7120.2 (6)F2B—C15—C10111.7 (10)
N1—C7—C6122.1 (6)F3B—C15—C10113.9 (13)
N1—C7—H7119.0F1A—C15—C10111.1 (10)
C6—C7—H7119.0O3—C14—H14A109.5
C11—C10—C9122.2 (7)O3—C14—H14B109.5
C11—C10—C15119.2 (8)H14A—C14—H14B109.5
C9—C10—C15118.5 (8)O3—C14—H14C109.5
C4—C5—C6122.2 (7)H14A—C14—H14C109.5
C4—C5—H5118.9H14B—C14—H14C109.5
C6—C5—H5118.9
C7—N1—C8—C95.5 (11)O3—C12—C11—C10179.1 (6)
C7—N1—C8—C13173.7 (7)C13—C12—C11—C100.5 (11)
C12—C13—C8—C90.8 (11)C11—C10—C9—C81.7 (11)
C12—C13—C8—N1179.9 (6)C15—C10—C9—C8180.0 (8)
C14—O3—C12—C11179.2 (7)N1—C8—C9—C10179.0 (6)
C14—O3—C12—C130.3 (11)C13—C8—C9—C101.7 (11)
C8—C13—C12—O3179.1 (7)O1—C2—C3—C4179.2 (7)
C8—C13—C12—C110.3 (11)C1—C2—C3—C40.2 (12)
C3—C2—C1—O2179.6 (7)C6—C5—C4—C31.5 (11)
O1—C2—C1—O20.0 (9)C2—C3—C4—C51.0 (12)
C3—C2—C1—C61.1 (11)C11—C10—C15—F1B141.8 (17)
O1—C2—C1—C6178.4 (6)C9—C10—C15—F1B40 (2)
O2—C1—C6—C5179.1 (6)C11—C10—C15—F3A28.9 (18)
C2—C1—C6—C50.7 (10)C9—C10—C15—F3A149.5 (13)
O2—C1—C6—C70.3 (10)C11—C10—C15—F2A161.1 (11)
C2—C1—C6—C7178.6 (6)C9—C10—C15—F2A17.3 (17)
C8—N1—C7—C6178.7 (6)C11—C10—C15—F2B95.2 (15)
C5—C6—C7—N1178.7 (7)C9—C10—C15—F2B83.2 (14)
C1—C6—C7—N12.0 (10)C11—C10—C15—F3B16.6 (18)
C1—C6—C5—C40.6 (11)C9—C10—C15—F3B165.0 (13)
C7—C6—C5—C4179.9 (6)C11—C10—C15—F1A86.8 (12)
C9—C10—C11—C120.6 (11)C9—C10—C15—F1A94.9 (13)
C15—C10—C11—C12178.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.821.992.770 (4)159
O1—H1···O2i0.822.723.190 (6)118
O2—H2···N10.821.852.581 (7)147
C9—H9···F2A0.932.442.757 (12)100
C11—H11···F3B0.932.392.725 (18)101
Symmetry code: (i) x1, y, z1/2.
 

Funding information

The authors are grateful to the Scientific Research Project Office of Ondokuz Mayıs University, Turkey, for a research grant (project No. PYO·FEN.1904.18.019).

References

First citationAkkaya, A., Erşahin, F., Ağar, E., Şenel, İ. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDemir, S., Dinçer, M., Çukurovalı, A. & Yılmaz, I. (2006). Acta Cryst. E62, o298–o299.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDemir Kanmazalp, S., Macit, M. & Dege, N. (2019). J. Mol. Struct. 1179, 181–191.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrigoras, M., Catanescu, O. & Simonescu, C. I. (2001). Rev. Roum. Chim. 46, 927–939.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKaradayı, N., Şahin, S., Köysal, Y., Coşkun, E. & Büyükgüngör, O. (2015). Acta Cryst. E71, o466–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Albayrak, C., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). Turk. J. Chem. 34, 481–487.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchiff, H. (1881). Justus Liebigs Ann. Chem. 210, 114–123.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTüfekçi, M., Bingöl Alpaslan, Y., Macit, M. & Erdönmez, A. (2009). Acta Cryst. E65, o2704.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationÜnver, H., Boyacıoğlu, B., Zeyrek, C. T., Yıldız, M., Demir, N., Yıldırım, N., Karaosmanoğlu, O., Sivas, H. & Elmalı, A. (2016). J. Mol. Struct. 1125, 162–176.  Google Scholar
First citationVančo, J., Švajlenová, O., Račanská, E. J., Muselík, J. & Valentová, J. (2004). J. Trace Elem. Med. Biol. 18, 155–161.  Web of Science PubMed Google Scholar
First citationYang, M.-H., Yan, G.-B. & Zheng, Y.-F. (2007). Acta Cryst. E63, o3202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYıldız, M., Karpuz, O., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., Yıldırım, N. & Ünver, H. (2015). J. Mol. Struct. 1094, 148–160.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds