research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of binuclear complexes of gadolinium(III) and dysprosium(III) with oxalate bridges and chelating N,N′-bis­­(2-oxido­benz­yl)-N,N′-bis­­(pyridin-2-ylmeth­yl)ethyl­enedi­amine (bbpen2−)

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidade Federal do Paraná, Centro, Politécnico, Jardim das Américas, 81530-900, Curitiba-PR, Brazil
*Correspondence e-mail: jaisa@quimica.ufpr.br

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 February 2019; accepted 26 February 2019; online 5 March 2019)

The reaction between mononuclear [Ln(bbpen)Cl] [Ln = Gd or Dy; H2bbpen = N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine, C28H30N4O2] and potassium oxalate monohydrate in water/methanol produced the solvated centrosymmetric isostructural binuclear (μ-oxalato)bis­{[N,N′-bis­(2-oxidobenzyl-κO)-N,N′-bis­(pyridin-2-ylmethyl-κN)ethyl­enedi­amine-κ2N,N′]dilanthanide(III)}–methanol–water (1/4/4) complexes, [Ln2(C28H28N4O2)2(C2O4)]·4CH3OH·4H2O, with lanthanide(III) = gadolinium(III) (Ln = Gd) and dysprosium(III) (Ln = Dy), in high yields (ca 70%) directly from the reaction mixtures. In both complexes, the lanthanide ion is eight-coordinate and adopts a distorted square-anti­prismatic coordination environment. The triclinic (P[\overline{1}]) unit cell contains one dimeric unit together with four water and four methanol mol­ecules; in the final structural model, two of each type of solvating mol­ecule refine well. In each lanthanide(III) dimeric mol­ecule, the medium-strength O⋯H—O hydrogen-bonding pattern involves four oxygen atoms, two of them from the phenolate groups that are `bridged' by one water and one methanol mol­ecule. These inter­actions seem to contribute to the stabilization of the relatively compact shape of the dimer. Electron densities associated with an additional water and methanol mol­ecule were removed with the SQUEEZE procedure in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. These two new compounds are of inter­est with respect to magnetic properties.

1. Chemical context

Since the discovery, in 2003, of the first lanthanide(III)-based single-ion magnets (SIM), namely (Bu4N)[LnPc2] (H2Pc = phthalocyanine; Ln = Tb and Dy; Ishikawa et al., 2003[Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694-8695.]), a number of lanthanide(III) complexes have been prepared for magnetic studies because of their intrinsically high magnetic anisotropy barrier. Heterometallic 3d–4f single-mol­ecule magnets (SMM) have also been sought, particularly in the early 2000s, mainly because of the possibility of improving magnetic response when compared to d-block-only metal complexes such as those of manganese(III), cobalt(II) and nickel(II) (Piquer & Sañudo, 2015[Piquer, L. P. & Sañudo, E. C. (2015). Dalton Trans. 44, 8771-8780.]).

Among the 3d–4f heterometallic systems of higher nuclearity, two tetra­nuclear compounds formulated as [M(μ-dto)3{Dy(HBpz3)2}3]·4CH3CN·2CH2Cl2 (M = FeIII or CoIII; HBpz = hydro­tris­(pyrazol­yl)borate; dto2– = di­thio­oxalate) presented slow relaxation of the magnetization under applied magnetic field (Xu et al., 2012[Xu, G. F., Gamez, P., Tang, J., Clérac, R., Guo, Y. N. & Guo, Y. (2012). Inorg. Chem. 51, 5693-5698.]). In this three-blade propeller framework, the tris-chelate [M(dto)3]3– complex forms the central unit, which is bridged to the [Dy(HBpz3)2]+ peripheral positions by the di­thio­oxalate ions. The lanthanide cations assume square-anti­prismatic coordination environments while the d-block metal is octa­hedrally coordinated (Xu et al., 2012[Xu, G. F., Gamez, P., Tang, J., Clérac, R., Guo, Y. N. & Guo, Y. (2012). Inorg. Chem. 51, 5693-5698.]). The same monocationic [Dy(HBpz3)2]+ complex had previously been employed to produce binuclear [Dy2(μ-ox)(HBpz3)4]·2CH3CN·CH2Cl2, this time with oxalate (ox2–) as the bridging ligand. Direct current (DC) magnetic susceptibility measurements performed with this dimeric compound revealed the presence of an intra­molecular ferromagnetic inter­action between the DyIII cations (Xu et al., 2010[Xu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). Chem. Commun. 46, 1506-1508.]). Other oxalate-bridged lanthanide(III) complexes have also shown field-induced slow magnetic relaxation (Zhang et al., 2015[Zhang, S., Ke, H., Liu, X., Wei, Q., Xie, G. & Chen, S. (2015). Chem. Commun. 51, 15188-15191.]) or weak (anti­ferro)magnetic exchange inter­actions (Feng et al., 2014[Feng, X., Chen, J., Wang, L., Xie, S.-Y., Yang, S., Huo, S. & Ng, S. (2014). CrystEngComm, 16, 1334-1343.]). In all cases mentioned above, the products were obtained by self-assembly in one-pot reactions, sometimes under hydro­thermal conditions.

In our research group, we first attempted to prepare heterometallic complexes of general formula [MIII(μ-ox)3{Ln(bbpen)}3] (H2bbpen = N,N′-bis­(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­enedi­amine) via modular synthesis employing [Ln(bbpen)Cl] (LnIII = Gd or Dy) and K3[M(ox)3] (MIII = Cr or Co) as building blocks in a 3:1 proportion. The syntheses with gadolinium(III) and chromium(III) produced colourless crystals of the binuclear complex [{Gd(bbpen)}2(μ-ox)]·4CH3OH·4H2O, as revealed by single crystal X-ray diffraction analysis. The formation of this dimer is explained by dissociation of [Cr(ox)3]3– into {Cr(ox)2(OH2)2} and ox2– in aqueous solution (Krishnamurty & Harris, 1960[Krishnamurty, K. V. & Harris, G. M. (1960). J. Phys. Chem. 64, 346-349.]), followed by inter­action of the ox2– anion with Gd(bbpen)+. Structural elucidation of this otherwise unexpected product prompted us to try and perform its targeted preparation with both gadolinium(III) and dysprosium(III) in good yields.

[Scheme 1]

In this paper we report the rational synthesis and the crystal and mol­ecular structures of the two binuclear and solvated [{Ln(bbpen)}2(μ-ox)] products [Ln = Gd (1) or Dy (2)], prepared from the direct reaction between [Ln(bbpen)Cl] and K2C2O4·H2O in water/methanol media.

2. Structural commentary

Compounds 1 and 2 are isostructural and crystallize in the P[\overline{1}] space group, with four methanol and four water mol­ecules per lanthanide dimer. Crystals contain the neutral [Ln2(μ-ox)(bbpen)2] mol­ecules (Fig. 1[link]) in which gadolinium(III) (1) or dysprosium(III) (2) are eight-coordinate; the [Ln(bbpen)]+ units are connected to one another by oxalate bridging in the usual bis­(bidentate) coordination mode. The ox2– ligand lies about an inversion centre. The coordination sphere of the lanthanide(III) ion is formed by an N4O2 donor set from the bbpen2– ligand and two oxygen atoms from the bridging oxalate. In 1 and 2 each metal cation has a distorted square-anti­prismatic coordination environment (Fig. 2[link]), as indicated by general inspection of atom positions and bond angles, and confirmed from the crystallographic data by the use of the SHAPE program (Llunell et al., 2005[Llunell, M., Casanova, D., Cirera, J., Bofill, J. M., Alemany, P., Alvarez, S., Pinsky, M. & Avnir, D. (2005). SHAPE. University of Barcelona and The Hebrew University of Jerusalem, Barcelona, Spain.]). The average Ln—N bonds are ca 2.60 and 2.58 Å for 1 and 2, respectively, while the average Ln—O distances are ca 2.27 (1) and 2.24 Å (2). The non-bonding Dy⋯Dy distance in 2, 6.1488 (17) Å, is close to the analogous distance of 6.14 Å in [Dy2(μ-ox)(HBpz3)4]·2CH3CN·CH2Cl2 (Xu et al., 2010[Xu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). Chem. Commun. 46, 1506-1508.]). The O3—Ln—O4i angles of approximately 68° in both 1 and 2 [symmetry code: (i) −x, 1 − y, 1 − z] are also similar to those reported for the dysprosium(III)–hydro­tris(pirazolylborate) dimer mentioned above. The slightly decreased crystal volume of the Dy compound [1626.3 (7) Å3] compared with that of the Gd compound [1633.7 (3) Å3] is a perfect match with the smaller effective ionic radius of eight-coordinate DyIII versus GdIII (1.027 and 1.053 Å, respectively; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]), and is in line with the lanthanide contraction. Structural representations provided in this paper are for compound 1; the dysprosium(III) product 2 gives rise to very similar results.

[Figure 1]
Figure 1
View of [{Gd(bbpen)}2(μ-ox)]·4CH3OH·4H2O (compound 1), with the atom-numbering scheme. Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level Unlabelled atoms are generated by the symmetry operationx, −y + 1, −z + 1.
[Figure 2]
Figure 2
Plot of the coordination sphere about the lanthanide(III) atom in the structure of 1 [symmetry code: (i) −x, −y + 1, −z + 1].

3. Supra­molecular features

In both structures, the hydrogen atoms from the crystallizing solvents (water and methanol) participate in an extensive three-dimensional hydrogen-bonding network that may be described as medium-strength inter­molecular inter­actions (Tables 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O30—H30⋯O1 0.84 1.80 2.643 (3) 177
C1—H1B⋯O1Wii 0.99 2.59 3.459 (3) 147
O1W—H1W⋯O2iii 0.83 (2) 1.96 (2) 2.786 (3) 170 (3)
O1W—H2W⋯O30 0.88 (2) 1.87 (2) 2.745 (3) 171 (4)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O30—H30⋯O1 0.84 1.80 2.636 (4) 178
C1—H1B⋯O1Wii 0.99 2.58 3.448 (4) 146
O1W—H1W⋯O2iii 0.82 (2) 1.97 (2) 2.785 (4) 167 (5)
O1W—H2W⋯O30 0.86 (2) 1.95 (3) 2.759 (5) 158 (5)
Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1.

The solvating (methanol and water) mol­ecules, half of which refine well and are depicted in Fig. 3[link], participate in inter­molecular inter­actions with the dimeric complexes 1 and 2. As seen in Fig. 3[link], one water and one methanol mol­ecule are hydrogen-bonded to one another and to the phenolate oxygen atoms in the ligands, generating an O1⋯H—O30⋯H–O1W—H⋯O2iii `bridge', as well as a symmetry-related chain on both sides of the plane formed by the metal and oxalate ions. The water mol­ecules in these chains also connect one dimer to another through weak C1—H1B⋯O1Wii inter­actions (Fig. 4[link]; Tables 1[link] and 2[link]).

[Figure 3]
Figure 3
ORTEP representation of hydrogen-bonding inter­actions for compound 1 involving solvating methanol and water mol­ecules, with hydrogen bonds indicated by double-dashed lines. Displacement ellipsoid are drawn at the 50% probability level [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.].
[Figure 4]
Figure 4
Representation of the dimeric mol­ecules of 1 viewed approximately down the b axis of the unit cell. The binuclear complexes are linked through medium-strength hydrogen bonds to solvating water and methanol mol­ecules, and through weak C1—H1B⋯O1Wii—H⋯Ophenolate inter­actions to one another [symmetry code: (ii) −x + 1, −y + 1, −z + 1.].

The other half of the solvent mol­ecules in the unit cell, the electron densities of which have been removed with the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) because of being highly disordered, also contribute to the overall hydrogen-bonding network. This is inferred from the positions of the four main electron-density peaks, which have been assigned to oxygen atoms from the disordered solvents and may give rise to medium-strength to weak hydrogen-bond inter­actions. For 1, O⋯O distances involving three of these peaks amount to 2.66–2.78 Å as far as O⋯O1W contacts are concerned, with O1W acting as a potential electron-density acceptor, and are larger than 3.1 Å for O⋯O30 (numbering scheme in Fig. 3[link]). For 2, in turn, the corresponding distances are longer than for 1 at 2.88–3.84 Å for O⋯O1W, and even larger (> 4.6 Å) for O⋯O30. On the other hand, any possible inter­action involving the phenolate oxygen atoms would be very weak, with the shortest O⋯O contact with the disordered solvents being longer than 4.0 Å.

4. Database survey

Examples of mononuclear lanthanide(III) complexes with bbpen2– and related ligands appear in the literature (Molloy et al., 2017[Molloy, J., Jarjayes, O., Philouze, C., Fedele, L., Imbert, D. & Thomas, F. (2017). Chem. Commun. 53, 605-608.]; Liu et al., 2016[Liu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441-5450.]; Yamada et al., 2016[Yamada, Y., Koori, D., Mori, K. & Oshikawa, Y. (2016). J. Coord. Chem. 69, 3735-3744.]; Gregório et al., 2015[Gregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65-68.]; Qin et al., 2014[Qin, J., Wang, P., Li, Q., Zhang, Y., Yuan, D. & Yao, Y. (2014). Chem. Commun. 50, 10952-10955.]; Yamada et al., 2010[Yamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996-1012.]; Morss & Rogers, 1997[Morss, L. & Rogers, R. (1997). Inorg. Chim. Acta, 255, 193-197.]). Binuclear structures with these hexa­dentate ligands have been reported by Chatterton et al. (2005[Chatterton, N. Y., Bretonnière, J., Pécaut, J. & Mazzanti, M. (2005). Angew. Chem. Int. Ed. 44, 7595-7598.]), and by Setyawati et al. (2000[Setyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496-507.]).

5. Synthesis and crystallization

LnCl3·6H2O (LnIII = Gd or Dy) and K2C2O4·H2O were purchased from Aldrich and used without purification. N,N′-Bis(2-hy­droxy­benz­yl)-N,N′-bis­(pyridin-2-ylmeth­yl)ethyl­ene­di­amine (H2bbpen) (Neves et al., 1992[Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749-4755.]) and the [Ln(bbpen)Cl] precursors, with Ln = Gd or Dy (Liu et al., 2016[Liu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441-5450.]), were prepared using adapted procedures described in the literature. Methanol and diethyl ether (Vetec) were used without treatment. Ultrapure water (Milli-Q, Millipore type 1, resistivity of 18.2 MΩ cm at 298 K) was employed as described below.

Synthesis of [{Gd(bbpen)}2(μ–ox)]·4CH3OH·4H2O (compound 1)

A solution of 8.11 mg (0.0440 mmol) of K2C2O4·H2O in 1.0 ml of water was slowly added to a methanol solution of 61.1 mg (0.0947 mmol) of [Gd(bbpen)Cl]. The colourless reaction mixture was stirred at room temperature for ca 5 min, and was then cooled down to 277 K to give block-shaped colourless crystals after four days. These were isolated by filtration, washed with diethyl ether and dried. Total yield: 49.0 mg (68.6%) based on the [{Gd(bbpen)}2(μ–ox)]·4CH3OH·4H2O formulation, compound 1. FTIR (emulsion in mineral oil): 3362, 3198 [s, ν(OH)]; 1655 [s, ν(CO)ox]; 1590, 1568 [s, ν(C=N) + ν(C=C)], 1290 [s, ν(CO)phenolate], 762 and 768 [m, δ(C—H)Ar+py]. Product 1 is soluble in aceto­nitrile, 1,2-di­meth­oxy­ethane (dme), di­chloro­methane and tetra­hydro­furan. Elemental analysis: calculated for 1 (C62H80Gd2N8O16) C 49.39, H 5.35, N 7.43%. Found: C 48.56, H 5.49, N 7.45%.

Synthesis of [{Dy(bbpen)}2(μ–ox)]·4CH3OH·4H2O (compound 2)

A mixture of 61.0 mg (0.0938 mmol) of [Dy(bbpen)Cl] in 9.0 ml of methanol and 8.90 mg (0.0483 mmol) of K2C2O4·H2O in 1.0 ml of water was prepared as described for 1. The resulting solution was cooled at 277 K to produce colourless block-shaped crystals, which were recovered by filtration and washed with diethyl ether. Total yield: 53.9 mg (75.7%) based on the [{Dy(bbpen)}2(μ–ox)]·4CH3OH·4H2O formulation, compound 2. FTIR (emulsion in mineral oil): 3363, 3198 [s, ν(OH)], 1590 [s, ν(CO)ox]; 1570 (m), 1481 (s), 1459 [s, ν(C=N) + ν(C=C)]; 1290 [s, ν(CO)Ph], 762 and 768 [m, δ(C—H)Ar+ py]. The product solubility is similar to that described for 1. Elemental analysis: calculated for 2 (C62H80Dy2N8O16) C 49.04, H 5.31, N 7.38%. Found: C 49.02, H 5.71, N 7.56%.

6. Refinement

Crystal data, data collection and structure refinement details for the two structures are summarized in Table 3[link]. Both 1 and 2 showed high susceptibility to the loss of the crystallization solvent mol­ecules once removed from the mother liquor. Hydrogen atoms in 1 and 2 were included in idealized positions with methyl, methyl­ene and aromatic C—H distances set at 0.98, 0.99 and 0.95 Å, respectively, and O—H at 0.84 Å and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,O). Hydrogen atoms on the water mol­ecules were located in difference-Fourier maps and were refined with distance restraints (DFIX O—H = 0.82 Å for 1 and 2, DANG = 1.45 Å for 2).

Table 3
Experimental details

  1 2
Crystal data
Chemical formula [Gd2(C28H28N4O2)2(C2O4)]·4CH4O·4H2O [Dy2(C28H28N4O2)2(C2O4)]·4CH4O·4H2O
Mr 1507.84 1518.34
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 9.8778 (11), 12.8720 (16), 14.8025 (18) 9.883 (2), 12.838 (3), 14.832 (4)
α, β, γ (°) 69.092 (4), 74.786 (4), 70.324 (4) 68.213 (9), 74.653 (8), 70.552 (8)
V3) 1633.7 (3) 1626.3 (7)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.08 2.35
Crystal size (mm) 0.30 × 0.28 × 0.15 0.35 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.613, 0.746 0.629, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 101878, 7108, 6476 93133, 7091, 6385
Rint 0.052 0.059
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.046, 1.07 0.025, 0.060, 1.06
No. of reflections 7108 7091
No. of parameters 380 380
No. of restraints 2 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.20, −0.55 1.94, −0.63
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017/1 (Sheldrick 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.] and Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.], 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Both structures present four methanol and four water mol­ecules per unit cell; two of each were treated as diffuse contribution to the overall scattering without specific atom positions and were eventually removed by the use of the SQUEEZE procedure in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The proposed identity of these highly disordered mol­ecules as `2H2O + 2MeOH' per unit cell finds support in the total calculated count of 58 and 59 electrons provided by SQUEEZE for 1 and 2, respectively, as compared with the expected count of 56 electrons. The volume of the void filled by the disordered solvent amounts to 269 and 260 Å3 for 1 and 2, respectively, and corresponds to 16.0–16.5% of the unit cell, in very good agreement with the volume expected for small mol­ecules such as water and methanol. The ratio between the total solvent-accessible void volume and the experimental electron count is of ca 4.5 Å3 per electron.

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT2015 (Sheldrick 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick 2015b); molecular graphics: ORTEP (Johnson, 1976 and Farrugia, 2012) and DIAMOND (Brandenburg, 2006). Software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999, 2012) for (1); SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999, Farrugia, 2012) for (2).

(µ-Oxalato)bis{[N,N'-bis(2-oxidobenzyl-κO)-N,N'-bis(pyridin-2-ylmethyl-κN)ethylenediamine-κ2N,N']gadolinium(III)}–methanol–water (1/4/4) (1) top
Crystal data top
[Gd2(C28H28N4O2)2(C2O4)]·4CH4O·4H2OZ = 1
Mr = 1507.84F(000) = 764
Triclinic, P1Dx = 1.533 Mg m3
a = 9.8778 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8720 (16) ÅCell parameters from 9519 reflections
c = 14.8025 (18) Åθ = 3.0–27.9°
α = 69.092 (4)°µ = 2.08 mm1
β = 74.786 (4)°T = 100 K
γ = 70.324 (4)°Prism, colourless
V = 1633.7 (3) Å30.30 × 0.28 × 0.14 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
7108 independent reflections
Radiation source: fine-focus sealed tube6476 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.4167 pixels mm-1θmax = 27.0°, θmin = 3.0°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.613, Tmax = 0.746l = 1818
101878 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: mixed
wR(F2) = 0.046H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0132P)2 + 1.5506P]
where P = (Fo2 + 2Fc2)/3
7108 reflections(Δ/σ)max = 0.001
380 parametersΔρmax = 1.20 e Å3
2 restraintsΔρmin = 0.55 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.14723 (2)0.64026 (2)0.30503 (2)0.02451 (4)
N10.3709 (2)0.68776 (16)0.33127 (13)0.0308 (4)
N20.26964 (19)0.76071 (16)0.13842 (13)0.0302 (4)
N30.0847 (2)0.83950 (16)0.33400 (14)0.0345 (4)
N40.1895 (2)0.56231 (17)0.16178 (14)0.0341 (4)
O10.32272 (17)0.47047 (14)0.33368 (13)0.0384 (4)
O20.04416 (16)0.74756 (14)0.22275 (11)0.0348 (4)
O30.10169 (17)0.59622 (14)0.47919 (11)0.0326 (3)
O40.00913 (17)0.48457 (14)0.62012 (11)0.0317 (3)
O300.2560 (3)0.2853 (2)0.46553 (17)0.0708 (6)
H300.2798920.3424510.4225300.106*
C10.4553 (3)0.7393 (2)0.23546 (17)0.0366 (5)
H1A0.5265480.6760650.2110060.044*
H1B0.5108100.7839560.2462330.044*
C20.3634 (3)0.8170 (2)0.15829 (17)0.0356 (5)
H2A0.3005460.8854000.1790710.043*
H2B0.4280670.8444840.0967250.043*
C30.4722 (3)0.5828 (2)0.38753 (18)0.0371 (5)
H3A0.5458170.6075220.4031340.045*
H3B0.4156690.5475430.4504000.045*
C40.5499 (3)0.4925 (2)0.33652 (18)0.0376 (5)
C50.7021 (3)0.4568 (3)0.3171 (2)0.0530 (7)
H50.7575870.4926280.3341150.064*
C60.7724 (3)0.3699 (3)0.2734 (3)0.0662 (9)
H60.8758020.3455780.2609540.079*
C70.6921 (3)0.3189 (3)0.2482 (2)0.0595 (8)
H70.7408150.2596770.2176480.071*
C80.5402 (3)0.3526 (2)0.2666 (2)0.0473 (6)
H80.4858060.3169150.2483610.057*
C90.4686 (3)0.4392 (2)0.31219 (17)0.0359 (5)
C100.1601 (3)0.8573 (2)0.08153 (18)0.0361 (5)
H10A0.2136400.8989960.0203970.043*
H10B0.1092740.9121350.1203740.043*
C110.0468 (2)0.82508 (19)0.05439 (17)0.0327 (5)
C120.0333 (3)0.8522 (2)0.04292 (19)0.0419 (6)
H120.1034110.8840250.0930120.050*
C130.0798 (3)0.8339 (2)0.0688 (2)0.0483 (7)
H130.0873220.8529860.1358190.058*
C140.1812 (3)0.7878 (3)0.0040 (2)0.0514 (7)
H140.2600800.7761150.0129860.062*
C150.1695 (3)0.7584 (2)0.1014 (2)0.0438 (6)
H150.2395310.7252640.1504920.053*
C160.0560 (2)0.77657 (19)0.12913 (17)0.0318 (5)
C170.3155 (3)0.7667 (2)0.39309 (19)0.0399 (6)
H17A0.3938280.8010430.3886040.048*
H17B0.2939760.7206190.4621400.048*
C180.1824 (3)0.8622 (2)0.36726 (18)0.0379 (5)
C190.1574 (4)0.9676 (3)0.3832 (2)0.0555 (7)
H190.2300100.9831820.4038040.067*
C200.0264 (4)1.0490 (3)0.3690 (3)0.0643 (9)
H200.0066861.1206910.3812540.077*
C210.0753 (3)1.0259 (2)0.3370 (2)0.0537 (7)
H210.1670551.0804850.3274930.064*
C220.0409 (3)0.9211 (2)0.31884 (19)0.0427 (6)
H220.1100290.9061240.2943430.051*
C230.3579 (3)0.6806 (2)0.08111 (18)0.0379 (5)
H23A0.4483350.6349540.1090170.046*
H23B0.3862810.7260140.0129060.046*
C240.2797 (2)0.5989 (2)0.07971 (17)0.0339 (5)
C250.3037 (3)0.5614 (2)0.00088 (19)0.0468 (6)
H250.3694570.5875950.0577760.056*
C260.2311 (3)0.4857 (3)0.0022 (2)0.0563 (8)
H260.2458960.4591360.0527560.068*
C270.1367 (3)0.4485 (3)0.0856 (2)0.0547 (7)
H270.0848980.3965460.0891890.066*
C280.1195 (3)0.4888 (2)0.1637 (2)0.0452 (6)
H280.0549650.4631380.2215970.054*
C290.0323 (2)0.52339 (19)0.52893 (15)0.0270 (4)
C300.1948 (4)0.2316 (3)0.4227 (3)0.0712 (10)
H30A0.1856410.1565990.4686530.107*
H30B0.2583990.2203440.3619430.107*
H30C0.0983120.2810010.4082130.107*
O1W0.3109 (2)0.2151 (2)0.65369 (19)0.0644 (6)
H1W0.236 (3)0.229 (3)0.694 (2)0.058 (10)*
H2W0.290 (4)0.245 (3)0.5939 (16)0.080 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.02416 (5)0.02753 (6)0.02339 (6)0.01192 (4)0.00064 (4)0.00698 (4)
N10.0324 (10)0.0350 (10)0.0268 (9)0.0153 (8)0.0065 (7)0.0041 (8)
N20.0287 (9)0.0350 (10)0.0276 (10)0.0149 (8)0.0022 (7)0.0059 (8)
N30.0390 (11)0.0297 (10)0.0347 (11)0.0105 (8)0.0042 (8)0.0096 (8)
N40.0412 (11)0.0324 (10)0.0293 (10)0.0113 (8)0.0030 (8)0.0104 (8)
O10.0309 (8)0.0337 (9)0.0529 (11)0.0067 (7)0.0099 (7)0.0151 (8)
O20.0288 (8)0.0438 (9)0.0317 (9)0.0098 (7)0.0044 (6)0.0112 (7)
O30.0387 (9)0.0427 (9)0.0272 (8)0.0279 (7)0.0007 (6)0.0112 (7)
O40.0386 (8)0.0444 (9)0.0215 (8)0.0259 (7)0.0012 (6)0.0097 (7)
O300.1006 (19)0.0616 (15)0.0601 (14)0.0466 (14)0.0135 (13)0.0058 (11)
C10.0330 (12)0.0437 (14)0.0358 (13)0.0222 (10)0.0053 (10)0.0042 (11)
C20.0369 (12)0.0364 (13)0.0316 (12)0.0202 (10)0.0003 (9)0.0022 (10)
C30.0353 (12)0.0414 (14)0.0365 (13)0.0137 (10)0.0160 (10)0.0032 (11)
C40.0310 (12)0.0391 (13)0.0351 (13)0.0071 (10)0.0087 (10)0.0019 (10)
C50.0336 (14)0.0506 (17)0.0624 (19)0.0070 (12)0.0130 (12)0.0027 (14)
C60.0333 (15)0.062 (2)0.073 (2)0.0010 (14)0.0003 (14)0.0043 (17)
C70.0556 (18)0.0416 (16)0.0500 (17)0.0096 (14)0.0026 (14)0.0065 (13)
C80.0543 (16)0.0352 (14)0.0424 (15)0.0020 (12)0.0084 (12)0.0091 (12)
C90.0345 (12)0.0324 (12)0.0318 (12)0.0021 (10)0.0082 (9)0.0033 (10)
C100.0411 (13)0.0301 (12)0.0344 (13)0.0143 (10)0.0081 (10)0.0006 (10)
C110.0339 (12)0.0268 (11)0.0347 (12)0.0047 (9)0.0081 (9)0.0073 (9)
C120.0500 (15)0.0333 (13)0.0361 (13)0.0061 (11)0.0109 (11)0.0047 (11)
C130.0592 (17)0.0458 (15)0.0416 (15)0.0034 (13)0.0221 (13)0.0149 (12)
C140.0476 (16)0.0574 (18)0.0617 (19)0.0079 (13)0.0215 (14)0.0290 (15)
C150.0333 (12)0.0560 (16)0.0490 (15)0.0134 (11)0.0070 (11)0.0220 (13)
C160.0293 (11)0.0301 (11)0.0355 (12)0.0030 (9)0.0067 (9)0.0127 (10)
C170.0421 (13)0.0437 (14)0.0435 (14)0.0163 (11)0.0125 (11)0.0156 (12)
C180.0475 (14)0.0371 (13)0.0337 (13)0.0179 (11)0.0023 (10)0.0127 (10)
C190.074 (2)0.0444 (16)0.0619 (19)0.0200 (15)0.0167 (16)0.0240 (14)
C200.090 (2)0.0409 (16)0.070 (2)0.0141 (16)0.0138 (18)0.0284 (16)
C210.0620 (18)0.0353 (14)0.0529 (17)0.0005 (13)0.0088 (14)0.0135 (13)
C220.0426 (14)0.0375 (14)0.0446 (15)0.0077 (11)0.0046 (11)0.0128 (11)
C230.0324 (12)0.0463 (14)0.0311 (12)0.0132 (10)0.0023 (9)0.0097 (11)
C240.0326 (12)0.0341 (12)0.0291 (12)0.0005 (9)0.0064 (9)0.0102 (10)
C250.0471 (15)0.0544 (17)0.0348 (14)0.0071 (13)0.0002 (11)0.0192 (12)
C260.0669 (19)0.0640 (19)0.0470 (17)0.0125 (15)0.0055 (14)0.0342 (15)
C270.0655 (19)0.0513 (17)0.0620 (19)0.0211 (14)0.0082 (15)0.0301 (15)
C280.0586 (16)0.0432 (15)0.0410 (14)0.0220 (13)0.0014 (12)0.0178 (12)
C290.0263 (10)0.0321 (11)0.0270 (11)0.0126 (9)0.0008 (8)0.0119 (9)
C300.094 (3)0.0534 (19)0.076 (2)0.0322 (18)0.001 (2)0.0293 (18)
O1W0.0331 (11)0.1015 (19)0.0682 (16)0.0197 (11)0.0019 (11)0.0393 (15)
Geometric parameters (Å, º) top
Gd1—O12.2659 (16)C10—C111.501 (3)
Gd1—O22.2835 (16)C10—H10A0.9900
Gd1—O32.3855 (15)C10—H10B0.9900
Gd1—O4i2.3869 (14)C11—C121.388 (3)
Gd1—N42.5394 (19)C11—C161.410 (3)
Gd1—N32.5926 (19)C12—C131.384 (4)
Gd1—N22.6299 (18)C12—H120.9500
Gd1—N12.6334 (18)C13—C141.376 (4)
N1—C171.482 (3)C13—H130.9500
N1—C11.492 (3)C14—C151.379 (4)
N1—C31.498 (3)C14—H140.9500
N2—C231.475 (3)C15—C161.403 (3)
N2—C21.489 (3)C15—H150.9500
N2—C101.500 (3)C17—C181.492 (4)
N3—C221.339 (3)C17—H17A0.9900
N3—C181.343 (3)C17—H17B0.9900
N4—C281.336 (3)C18—C191.389 (4)
N4—C241.340 (3)C19—C201.374 (5)
O1—C91.342 (3)C19—H190.9500
O2—C161.327 (3)C20—C211.369 (5)
O3—C291.252 (3)C20—H200.9500
O4—C291.248 (3)C21—C221.382 (4)
O30—C301.429 (4)C21—H210.9500
O30—H300.8400C22—H220.9500
C1—C21.499 (3)C23—C241.508 (3)
C1—H1A0.9900C23—H23A0.9900
C1—H1B0.9900C23—H23B0.9900
C2—H2A0.9900C24—C251.377 (3)
C2—H2B0.9900C25—C261.375 (4)
C3—C41.494 (4)C25—H250.9500
C3—H3A0.9900C26—C271.377 (4)
C3—H3B0.9900C26—H260.9500
C4—C91.393 (4)C27—C281.379 (4)
C4—C51.399 (3)C27—H270.9500
C5—C61.382 (5)C28—H280.9500
C5—H50.9500C29—C29i1.554 (4)
C6—C71.371 (5)C30—H30A0.9800
C6—H60.9500C30—H30B0.9800
C7—C81.395 (4)C30—H30C0.9800
C7—H70.9500O1W—H1W0.831 (18)
C8—C91.398 (4)O1W—H2W0.879 (18)
C8—H80.9500
O1—Gd1—O2144.65 (6)C7—C8—H8120.3
O1—Gd1—O383.85 (6)C9—C8—H8120.3
O2—Gd1—O3117.78 (6)O1—C9—C4119.8 (2)
O1—Gd1—O4i82.26 (6)O1—C9—C8120.6 (2)
O2—Gd1—O4i81.09 (6)C4—C9—C8119.6 (2)
O3—Gd1—O4i68.12 (5)N2—C10—C11117.04 (19)
O1—Gd1—N472.72 (6)N2—C10—H10A108.0
O2—Gd1—N474.51 (6)C11—C10—H10A108.0
O3—Gd1—N4145.21 (6)N2—C10—H10B108.0
O4i—Gd1—N483.25 (6)C11—C10—H10B108.0
O1—Gd1—N3137.96 (6)H10A—C10—H10B107.3
O2—Gd1—N376.82 (6)C12—C11—C16119.5 (2)
O3—Gd1—N376.31 (6)C12—C11—C10120.9 (2)
O4i—Gd1—N3121.96 (6)C16—C11—C10119.3 (2)
N4—Gd1—N3137.77 (6)C13—C12—C11121.6 (3)
O1—Gd1—N2101.15 (6)C13—C12—H12119.2
O2—Gd1—N276.69 (6)C11—C12—H12119.2
O3—Gd1—N2146.18 (5)C14—C13—C12119.0 (3)
O4i—Gd1—N2145.50 (5)C14—C13—H13120.5
N4—Gd1—N265.63 (6)C12—C13—H13120.5
N3—Gd1—N278.07 (6)C13—C14—C15120.7 (3)
O1—Gd1—N174.44 (6)C13—C14—H14119.6
O2—Gd1—N1133.51 (6)C15—C14—H14119.6
O3—Gd1—N180.10 (5)C14—C15—C16121.1 (3)
O4i—Gd1—N1142.30 (5)C14—C15—H15119.4
N4—Gd1—N1116.30 (6)C16—C15—H15119.4
N3—Gd1—N165.93 (6)O2—C16—C15121.1 (2)
N2—Gd1—N169.43 (6)O2—C16—C11120.8 (2)
C17—N1—C1111.49 (19)C15—C16—C11118.0 (2)
C17—N1—C3105.29 (18)N1—C17—C18115.3 (2)
C1—N1—C3108.47 (18)N1—C17—H17A108.5
C17—N1—Gd1108.34 (13)C18—C17—H17A108.5
C1—N1—Gd1110.98 (13)N1—C17—H17B108.5
C3—N1—Gd1112.16 (13)C18—C17—H17B108.5
C23—N2—C2110.38 (18)H17A—C17—H17B107.5
C23—N2—C10110.90 (18)N3—C18—C19121.8 (3)
C2—N2—C10105.60 (17)N3—C18—C17117.3 (2)
C23—N2—Gd1107.83 (13)C19—C18—C17120.8 (2)
C2—N2—Gd1109.63 (13)C20—C19—C18119.3 (3)
C10—N2—Gd1112.50 (13)C20—C19—H19120.4
C22—N3—C18117.8 (2)C18—C19—H19120.4
C22—N3—Gd1123.69 (17)C21—C20—C19119.4 (3)
C18—N3—Gd1118.52 (15)C21—C20—H20120.3
C28—N4—C24118.3 (2)C19—C20—H20120.3
C28—N4—Gd1121.90 (16)C20—C21—C22118.2 (3)
C24—N4—Gd1119.79 (15)C20—C21—H21120.9
C9—O1—Gd1135.00 (15)C22—C21—H21120.9
C16—O2—Gd1131.61 (13)N3—C22—C21123.4 (3)
C29—O3—Gd1119.02 (13)N3—C22—H22118.3
C29—O4—Gd1i119.12 (13)C21—C22—H22118.3
C30—O30—H30109.5N2—C23—C24113.32 (18)
N1—C1—C2114.19 (18)N2—C23—H23A108.9
N1—C1—H1A108.7C24—C23—H23A108.9
C2—C1—H1A108.7N2—C23—H23B108.9
N1—C1—H1B108.7C24—C23—H23B108.9
C2—C1—H1B108.7H23A—C23—H23B107.7
H1A—C1—H1B107.6N4—C24—C25122.1 (2)
N2—C2—C1113.77 (19)N4—C24—C23116.5 (2)
N2—C2—H2A108.8C25—C24—C23121.4 (2)
C1—C2—H2A108.8C26—C25—C24119.0 (3)
N2—C2—H2B108.8C26—C25—H25120.5
C1—C2—H2B108.8C24—C25—H25120.5
H2A—C2—H2B107.7C25—C26—C27119.5 (3)
C4—C3—N1115.32 (19)C25—C26—H26120.2
C4—C3—H3A108.4C27—C26—H26120.2
N1—C3—H3A108.4C26—C27—C28118.1 (3)
C4—C3—H3B108.4C26—C27—H27120.9
N1—C3—H3B108.4C28—C27—H27120.9
H3A—C3—H3B107.5N4—C28—C27123.0 (3)
C9—C4—C5119.6 (3)N4—C28—H28118.5
C9—C4—C3119.0 (2)C27—C28—H28118.5
C5—C4—C3121.3 (2)O4—C29—O3126.83 (19)
C6—C5—C4120.6 (3)O4—C29—C29i116.6 (2)
C6—C5—H5119.7O3—C29—C29i116.6 (2)
C4—C5—H5119.7O30—C30—H30A109.5
C7—C6—C5119.6 (3)O30—C30—H30B109.5
C7—C6—H6120.2H30A—C30—H30B109.5
C5—C6—H6120.2O30—C30—H30C109.5
C6—C7—C8121.1 (3)H30A—C30—H30C109.5
C6—C7—H7119.4H30B—C30—H30C109.5
C8—C7—H7119.4H1W—O1W—H2W110 (3)
C7—C8—C9119.4 (3)
C17—N1—C1—C285.0 (2)C10—C11—C16—O27.4 (3)
C3—N1—C1—C2159.5 (2)C12—C11—C16—C150.5 (3)
Gd1—N1—C1—C235.9 (2)C10—C11—C16—C15173.5 (2)
C23—N2—C2—C174.8 (2)C1—N1—C17—C1879.1 (2)
C10—N2—C2—C1165.3 (2)C3—N1—C17—C18163.5 (2)
Gd1—N2—C2—C143.8 (2)Gd1—N1—C17—C1843.3 (2)
N1—C1—C2—N256.1 (3)C22—N3—C18—C191.7 (4)
C17—N1—C3—C4176.3 (2)Gd1—N3—C18—C19179.1 (2)
C1—N1—C3—C456.9 (2)C22—N3—C18—C17174.2 (2)
Gd1—N1—C3—C466.1 (2)Gd1—N3—C18—C175.0 (3)
N1—C3—C4—C961.9 (3)N1—C17—C18—N334.3 (3)
N1—C3—C4—C5121.1 (2)N1—C17—C18—C19149.8 (2)
C9—C4—C5—C60.5 (4)N3—C18—C19—C203.0 (4)
C3—C4—C5—C6177.4 (3)C17—C18—C19—C20172.8 (3)
C4—C5—C6—C70.5 (5)C18—C19—C20—C211.6 (5)
C5—C6—C7—C80.6 (5)C19—C20—C21—C220.9 (5)
C6—C7—C8—C90.4 (4)C18—N3—C22—C211.0 (4)
Gd1—O1—C9—C452.5 (3)Gd1—N3—C22—C21178.2 (2)
Gd1—O1—C9—C8128.3 (2)C20—C21—C22—N32.3 (4)
C5—C4—C9—O1177.8 (2)C2—N2—C23—C24165.50 (19)
C3—C4—C9—O10.8 (3)C10—N2—C23—C2477.8 (2)
C5—C4—C9—C81.5 (4)Gd1—N2—C23—C2445.8 (2)
C3—C4—C9—C8178.4 (2)C28—N4—C24—C251.2 (4)
C7—C8—C9—O1177.8 (2)Gd1—N4—C24—C25178.42 (18)
C7—C8—C9—C41.4 (4)C28—N4—C24—C23179.2 (2)
C23—N2—C10—C1162.5 (3)Gd1—N4—C24—C233.6 (3)
C2—N2—C10—C11177.9 (2)N2—C23—C24—N435.2 (3)
Gd1—N2—C10—C1158.3 (2)N2—C23—C24—C25146.8 (2)
N2—C10—C11—C12120.9 (2)N4—C24—C25—C261.1 (4)
N2—C10—C11—C1665.2 (3)C23—C24—C25—C26179.1 (3)
C16—C11—C12—C130.7 (4)C24—C25—C26—C270.3 (4)
C10—C11—C12—C13173.2 (2)C25—C26—C27—C280.4 (5)
C11—C12—C13—C140.0 (4)C24—N4—C28—C270.5 (4)
C12—C13—C14—C151.0 (4)Gd1—N4—C28—C27177.6 (2)
C13—C14—C15—C161.2 (4)C26—C27—C28—N40.3 (5)
Gd1—O2—C16—C15128.8 (2)Gd1i—O4—C29—O3174.05 (18)
Gd1—O2—C16—C1150.2 (3)Gd1i—O4—C29—C29i5.8 (3)
C14—C15—C16—O2179.5 (2)Gd1—O3—C29—O4174.16 (17)
C14—C15—C16—C110.5 (4)Gd1—O3—C29—C29i6.0 (3)
C12—C11—C16—O2178.6 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···O10.841.802.643 (3)177
C1—H1B···O1Wii0.992.593.459 (3)147
O1W—H1W···O2i0.83 (2)1.96 (2)2.786 (3)170 (3)
O1W—H2W···O300.88 (2)1.87 (2)2.745 (3)171 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
(µ-Oxalato)bis{[N,N'-bis(2-oxidobenzyl-κO)-N,N'-bis(pyridin-2-ylmethyl-κN)ethylenediamine-κ2N,N']dysprosium(III)}–methanol–water (1/4/4) (2) top
Crystal data top
[Dy2(C28H28N4O2)2(C2O4)]·4CH4O·4H2OZ = 1
Mr = 1518.34F(000) = 768
Triclinic, P1Dx = 1.550 Mg m3
a = 9.883 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.838 (3) ÅCell parameters from 9284 reflections
c = 14.832 (4) Åθ = 3.0–27.7°
α = 68.213 (9)°µ = 2.35 mm1
β = 74.653 (8)°T = 100 K
γ = 70.552 (8)°Prism, colourless
V = 1626.3 (7) Å30.35 × 0.16 × 0.12 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
7091 independent reflections
Radiation source: fine-focus sealed tube6385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 10.4167 pixels mm-1θmax = 27.0°, θmin = 3.0°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1616
Tmin = 0.629, Tmax = 0.746l = 1818
93133 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0244P)2 + 1.9868P]
where P = (Fo2 + 2Fc2)/3
7091 reflections(Δ/σ)max = 0.002
380 parametersΔρmax = 1.94 e Å3
3 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.85062 (2)0.36072 (2)0.69594 (2)0.02699 (5)
N10.6306 (3)0.3122 (2)0.66909 (18)0.0352 (5)
N20.7282 (3)0.2394 (2)0.86207 (18)0.0351 (5)
N30.9135 (3)0.1612 (2)0.66925 (19)0.0383 (6)
N40.8096 (3)0.4397 (2)0.83619 (18)0.0370 (6)
O10.6811 (2)0.52962 (19)0.66391 (17)0.0430 (5)
O21.0390 (2)0.25545 (19)0.77711 (15)0.0370 (5)
O30.8993 (2)0.40098 (19)0.52306 (14)0.0370 (5)
O40.9940 (2)0.51292 (19)0.38014 (14)0.0362 (5)
O300.7330 (4)0.7243 (3)0.5351 (2)0.0764 (9)
H300.7184960.6619410.5767250.115*
C10.5449 (3)0.2587 (3)0.7655 (2)0.0439 (8)
H1A0.4729080.3216930.7893040.053*
H1B0.4905450.2131830.7547470.053*
C20.6350 (4)0.1817 (3)0.8429 (2)0.0420 (7)
H2A0.6980790.1131650.8230440.050*
H2B0.5701440.1535960.9047530.050*
C30.5280 (3)0.4178 (3)0.6129 (2)0.0425 (7)
H3A0.5830810.4541370.5489880.051*
H3B0.4535000.3925790.5988370.051*
C40.4534 (3)0.5066 (3)0.6633 (2)0.0429 (7)
C50.3007 (4)0.5435 (4)0.6832 (3)0.0612 (10)
H50.2440130.5088350.6661330.073*
C60.2325 (5)0.6292 (4)0.7271 (4)0.0755 (14)
H60.1293310.6534940.7398760.091*
C70.3137 (5)0.6797 (4)0.7526 (3)0.0699 (13)
H70.2660940.7380510.7837160.084*
C80.4657 (4)0.6458 (3)0.7330 (3)0.0541 (9)
H80.5213000.6806380.7509400.065*
C90.5350 (3)0.5603 (3)0.6870 (2)0.0414 (7)
C100.8356 (4)0.1433 (3)0.9201 (2)0.0403 (7)
H10A0.8853520.0874250.8826250.048*
H10B0.7814160.1020000.9820740.048*
C110.9506 (3)0.1755 (3)0.9460 (2)0.0367 (6)
C120.9649 (4)0.1478 (3)1.0434 (2)0.0462 (8)
H120.8947430.1157141.0943050.055*
C131.0791 (4)0.1657 (3)1.0681 (3)0.0538 (9)
H131.0877270.1458291.1351180.065*
C141.1796 (4)0.2126 (3)0.9944 (3)0.0552 (9)
H141.2592340.2240581.0107390.066*
C151.1668 (4)0.2435 (3)0.8968 (3)0.0458 (8)
H151.2363470.2775430.8469140.055*
C161.0523 (3)0.2253 (3)0.8705 (2)0.0354 (6)
C170.6850 (4)0.2350 (3)0.6072 (2)0.0435 (7)
H17A0.7061530.2826580.5378940.052*
H17B0.6068770.2000920.6119620.052*
C180.8178 (4)0.1396 (3)0.6332 (2)0.0423 (7)
C190.8446 (5)0.0344 (3)0.6155 (3)0.0616 (10)
H190.7734840.0191320.5933050.074*
C200.9743 (5)0.0461 (4)0.6304 (3)0.0690 (12)
H200.9951520.1171330.6168860.083*
C211.0750 (5)0.0245 (3)0.6651 (3)0.0605 (10)
H211.1663970.0792640.6750280.073*
C221.0391 (4)0.0793 (3)0.6851 (3)0.0477 (8)
H221.1067710.0934680.7112930.057*
C230.6396 (3)0.3207 (3)0.9182 (2)0.0432 (7)
H23A0.6097330.2751360.9868650.052*
H23B0.5503070.3670320.8891210.052*
C240.7191 (3)0.4020 (3)0.9188 (2)0.0382 (7)
C250.6957 (4)0.4392 (3)0.9992 (3)0.0525 (9)
H250.6296820.4127431.0564750.063*
C260.7693 (5)0.5151 (4)0.9953 (3)0.0623 (10)
H260.7560920.5406261.0502500.075*
C270.8620 (5)0.5537 (4)0.9110 (3)0.0611 (10)
H270.9126480.6072460.9061830.073*
C280.8803 (4)0.5130 (3)0.8334 (3)0.0491 (8)
H280.9459970.5384710.7755760.059*
C290.9690 (3)0.4748 (3)0.4720 (2)0.0312 (6)
C300.8049 (6)0.7736 (4)0.5747 (4)0.0874 (16)
H30A0.7946940.8558290.5365200.131*
H30B0.9082750.7320380.5711850.131*
H30C0.7610490.7667250.6434230.131*
O1W0.6925 (3)0.7827 (4)0.3435 (3)0.0742 (9)
H1W0.768 (3)0.763 (4)0.307 (3)0.090 (17)*
H2W0.711 (6)0.746 (4)0.4022 (18)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.02658 (7)0.03170 (7)0.02368 (7)0.01256 (5)0.00064 (4)0.00858 (5)
N10.0363 (13)0.0385 (14)0.0313 (12)0.0163 (11)0.0087 (10)0.0036 (10)
N20.0336 (12)0.0423 (14)0.0304 (12)0.0180 (11)0.0002 (10)0.0087 (11)
N30.0425 (14)0.0350 (13)0.0359 (14)0.0110 (11)0.0056 (11)0.0093 (11)
N40.0407 (14)0.0359 (13)0.0323 (13)0.0075 (11)0.0023 (10)0.0128 (11)
O10.0384 (12)0.0367 (12)0.0539 (14)0.0058 (9)0.0119 (10)0.0147 (10)
O20.0304 (10)0.0478 (12)0.0321 (11)0.0086 (9)0.0052 (8)0.0131 (9)
O30.0450 (12)0.0477 (12)0.0279 (10)0.0287 (10)0.0019 (9)0.0130 (9)
O40.0443 (11)0.0502 (12)0.0235 (10)0.0289 (10)0.0004 (8)0.0114 (9)
O300.101 (2)0.0593 (18)0.070 (2)0.0406 (18)0.0105 (18)0.0069 (15)
C10.0382 (16)0.055 (2)0.0406 (17)0.0265 (15)0.0046 (13)0.0054 (15)
C20.0447 (17)0.0437 (18)0.0367 (16)0.0230 (15)0.0010 (13)0.0054 (14)
C30.0405 (17)0.0515 (19)0.0359 (16)0.0180 (15)0.0163 (13)0.0018 (14)
C40.0380 (16)0.0435 (18)0.0363 (17)0.0063 (14)0.0113 (13)0.0005 (14)
C50.0369 (18)0.064 (3)0.065 (3)0.0081 (18)0.0109 (17)0.004 (2)
C60.041 (2)0.069 (3)0.079 (3)0.005 (2)0.000 (2)0.005 (2)
C70.065 (3)0.051 (2)0.054 (2)0.014 (2)0.002 (2)0.0050 (19)
C80.059 (2)0.0417 (19)0.047 (2)0.0006 (17)0.0085 (17)0.0100 (16)
C90.0391 (16)0.0387 (17)0.0331 (16)0.0033 (13)0.0080 (13)0.0013 (13)
C100.0472 (18)0.0344 (16)0.0356 (16)0.0159 (14)0.0071 (13)0.0021 (13)
C110.0384 (16)0.0292 (15)0.0391 (16)0.0056 (12)0.0068 (13)0.0093 (12)
C120.055 (2)0.0376 (17)0.0387 (17)0.0062 (15)0.0128 (15)0.0054 (14)
C130.067 (2)0.052 (2)0.046 (2)0.0057 (18)0.0245 (18)0.0162 (17)
C140.052 (2)0.063 (2)0.061 (2)0.0081 (18)0.0208 (18)0.029 (2)
C150.0351 (16)0.059 (2)0.0495 (19)0.0113 (15)0.0069 (14)0.0251 (17)
C160.0334 (15)0.0344 (15)0.0368 (16)0.0017 (12)0.0071 (12)0.0147 (13)
C170.0513 (19)0.0443 (18)0.0423 (18)0.0168 (15)0.0141 (15)0.0132 (15)
C180.0545 (19)0.0415 (17)0.0352 (16)0.0192 (15)0.0043 (14)0.0129 (14)
C190.083 (3)0.051 (2)0.064 (2)0.019 (2)0.016 (2)0.0283 (19)
C200.096 (3)0.048 (2)0.069 (3)0.014 (2)0.011 (2)0.032 (2)
C210.069 (3)0.042 (2)0.056 (2)0.0030 (18)0.0085 (19)0.0170 (18)
C220.0507 (19)0.0397 (18)0.048 (2)0.0061 (15)0.0073 (15)0.0143 (15)
C230.0352 (16)0.054 (2)0.0325 (16)0.0134 (14)0.0043 (12)0.0098 (14)
C240.0368 (15)0.0381 (16)0.0290 (15)0.0035 (13)0.0053 (12)0.0105 (13)
C250.054 (2)0.061 (2)0.0399 (19)0.0074 (18)0.0015 (15)0.0234 (17)
C260.075 (3)0.071 (3)0.048 (2)0.012 (2)0.0042 (19)0.036 (2)
C270.073 (3)0.060 (2)0.064 (3)0.023 (2)0.004 (2)0.035 (2)
C280.061 (2)0.0468 (19)0.0449 (19)0.0197 (17)0.0011 (16)0.0204 (16)
C290.0299 (14)0.0376 (15)0.0295 (14)0.0142 (12)0.0009 (11)0.0134 (12)
C300.111 (4)0.073 (3)0.093 (4)0.046 (3)0.016 (3)0.044 (3)
O1W0.0373 (14)0.123 (3)0.079 (2)0.0221 (16)0.0020 (15)0.056 (2)
Geometric parameters (Å, º) top
Dy1—O12.230 (2)C10—C111.508 (4)
Dy1—O22.246 (2)C10—H10A0.9900
Dy1—O32.367 (2)C10—H10B0.9900
Dy1—O4i2.3762 (19)C11—C121.388 (5)
Dy1—N42.523 (3)C11—C161.405 (4)
Dy1—N32.581 (3)C12—C131.384 (5)
Dy1—N22.606 (2)C12—H120.9500
Dy1—N12.612 (2)C13—C141.371 (6)
N1—C171.473 (4)C13—H130.9500
N1—C11.500 (4)C14—C151.381 (5)
N1—C31.501 (4)C14—H140.9500
N2—C231.483 (4)C15—C161.402 (4)
N2—C101.488 (4)C15—H150.9500
N2—C21.492 (4)C17—C181.490 (5)
N3—C221.343 (4)C17—H17A0.9900
N3—C181.345 (4)C17—H17B0.9900
N4—C281.330 (4)C18—C191.398 (5)
N4—C241.343 (4)C19—C201.363 (6)
O1—C91.348 (4)C19—H190.9500
O2—C161.324 (4)C20—C211.376 (6)
O3—C291.254 (3)C20—H200.9500
O4—C291.251 (3)C21—C221.384 (5)
O30—C301.431 (6)C21—H210.9500
O30—H300.8400C22—H220.9500
C1—C21.483 (5)C23—C241.506 (5)
C1—H1A0.9900C23—H23A0.9900
C1—H1B0.9900C23—H23B0.9900
C2—H2A0.9900C24—C251.381 (5)
C2—H2B0.9900C25—C261.374 (6)
C3—C41.479 (5)C25—H250.9500
C3—H3A0.9900C26—C271.373 (6)
C3—H3B0.9900C26—H260.9500
C4—C91.396 (5)C27—C281.379 (5)
C4—C51.407 (5)C27—H270.9500
C5—C61.376 (7)C28—H280.9500
C5—H50.9500C29—C29i1.555 (5)
C6—C71.377 (7)C30—H30A0.9800
C6—H60.9500C30—H30B0.9800
C7—C81.400 (6)C30—H30C0.9800
C7—H70.9500O1W—H1W0.824 (19)
C8—C91.395 (5)O1W—H2W0.859 (19)
C8—H80.9500
O1—Dy1—O2144.63 (8)C9—C8—H8120.3
O1—Dy1—O384.42 (8)C7—C8—H8120.3
O2—Dy1—O3116.58 (8)O1—C9—C8120.5 (3)
O1—Dy1—O4i81.35 (8)O1—C9—C4119.3 (3)
O2—Dy1—O4i80.87 (8)C8—C9—C4120.2 (3)
O3—Dy1—O4i68.63 (6)N2—C10—C11117.3 (2)
O1—Dy1—N472.89 (8)N2—C10—H10A108.0
O2—Dy1—N474.69 (8)C11—C10—H10A108.0
O3—Dy1—N4145.79 (8)N2—C10—H10B108.0
O4i—Dy1—N482.64 (8)C11—C10—H10B108.0
O1—Dy1—N3138.31 (8)H10A—C10—H10B107.2
O2—Dy1—N376.73 (8)C12—C11—C16119.5 (3)
O3—Dy1—N375.05 (8)C12—C11—C10120.9 (3)
O4i—Dy1—N3121.88 (8)C16—C11—C10119.4 (3)
N4—Dy1—N3138.23 (8)C13—C12—C11121.5 (3)
O1—Dy1—N2102.00 (8)C13—C12—H12119.2
O2—Dy1—N277.22 (8)C11—C12—H12119.2
O3—Dy1—N2145.35 (7)C14—C13—C12119.0 (3)
O4i—Dy1—N2145.73 (7)C14—C13—H13120.5
N4—Dy1—N266.38 (8)C12—C13—H13120.5
N3—Dy1—N278.08 (8)C13—C14—C15120.9 (3)
O1—Dy1—N175.09 (8)C13—C14—H14119.6
O2—Dy1—N1133.82 (8)C15—C14—H14119.6
O3—Dy1—N179.56 (7)C14—C15—C16120.8 (3)
O4i—Dy1—N1141.93 (7)C14—C15—H15119.6
N4—Dy1—N1117.22 (8)C16—C15—H15119.6
N3—Dy1—N165.83 (8)O2—C16—C15121.0 (3)
N2—Dy1—N169.63 (8)O2—C16—C11120.7 (3)
C17—N1—C1111.6 (3)C15—C16—C11118.3 (3)
C17—N1—C3105.0 (2)N1—C17—C18114.9 (3)
C1—N1—C3107.6 (2)N1—C17—H17A108.5
C17—N1—Dy1108.94 (18)C18—C17—H17A108.5
C1—N1—Dy1111.06 (17)N1—C17—H17B108.5
C3—N1—Dy1112.49 (17)C18—C17—H17B108.5
C23—N2—C10110.9 (2)H17A—C17—H17B107.5
C23—N2—C2110.7 (2)N3—C18—C19121.8 (3)
C10—N2—C2105.4 (2)N3—C18—C17117.4 (3)
C23—N2—Dy1107.39 (18)C19—C18—C17120.7 (3)
C10—N2—Dy1112.67 (17)C20—C19—C18119.1 (4)
C2—N2—Dy1109.85 (17)C20—C19—H19120.5
C22—N3—C18117.8 (3)C18—C19—H19120.5
C22—N3—Dy1123.9 (2)C19—C20—C21120.0 (4)
C18—N3—Dy1118.3 (2)C19—C20—H20120.0
C28—N4—C24118.4 (3)C21—C20—H20120.0
C28—N4—Dy1122.3 (2)C20—C21—C22118.0 (4)
C24—N4—Dy1119.1 (2)C20—C21—H21121.0
C9—O1—Dy1133.9 (2)C22—C21—H21121.0
C16—O2—Dy1132.11 (18)N3—C22—C21123.4 (4)
C29—O3—Dy1118.66 (17)N3—C22—H22118.3
C29—O4—Dy1i119.02 (17)C21—C22—H22118.3
C30—O30—H30109.5N2—C23—C24113.1 (2)
C2—C1—N1114.0 (3)N2—C23—H23A109.0
C2—C1—H1A108.8C24—C23—H23A109.0
N1—C1—H1A108.8N2—C23—H23B109.0
C2—C1—H1B108.8C24—C23—H23B109.0
N1—C1—H1B108.8H23A—C23—H23B107.8
H1A—C1—H1B107.7N4—C24—C25121.9 (3)
C1—C2—N2113.7 (3)N4—C24—C23116.7 (3)
C1—C2—H2A108.8C25—C24—C23121.4 (3)
N2—C2—H2A108.8C26—C25—C24119.1 (3)
C1—C2—H2B108.8C26—C25—H25120.5
N2—C2—H2B108.8C24—C25—H25120.5
H2A—C2—H2B107.7C27—C26—C25119.2 (3)
C4—C3—N1115.0 (3)C27—C26—H26120.4
C4—C3—H3A108.5C25—C26—H26120.4
N1—C3—H3A108.5C26—C27—C28118.7 (4)
C4—C3—H3B108.5C26—C27—H27120.7
N1—C3—H3B108.5C28—C27—H27120.7
H3A—C3—H3B107.5N4—C28—C27122.7 (3)
C9—C4—C5118.8 (3)N4—C28—H28118.7
C9—C4—C3119.7 (3)C27—C28—H28118.7
C5—C4—C3121.4 (3)O4—C29—O3126.9 (3)
C6—C5—C4120.9 (4)O4—C29—C29i116.1 (3)
C6—C5—H5119.5O3—C29—C29i117.0 (3)
C4—C5—H5119.5O30—C30—H30A109.5
C5—C6—C7120.0 (4)O30—C30—H30B109.5
C5—C6—H6120.0H30A—C30—H30B109.5
C7—C6—H6120.0O30—C30—H30C109.5
C6—C7—C8120.5 (4)H30A—C30—H30C109.5
C6—C7—H7119.7H30B—C30—H30C109.5
C8—C7—H7119.7H1W—O1W—H2W105 (4)
C9—C8—C7119.5 (4)
C17—N1—C1—C286.2 (3)C10—C11—C16—O27.2 (4)
C3—N1—C1—C2159.1 (3)C12—C11—C16—C151.0 (4)
Dy1—N1—C1—C235.6 (3)C10—C11—C16—C15173.6 (3)
N1—C1—C2—N255.5 (4)C1—N1—C17—C1879.8 (3)
C23—N2—C2—C174.6 (3)C3—N1—C17—C18163.9 (3)
C10—N2—C2—C1165.5 (3)Dy1—N1—C17—C1843.2 (3)
Dy1—N2—C2—C143.9 (3)C22—N3—C18—C192.1 (5)
C17—N1—C3—C4177.2 (3)Dy1—N3—C18—C19179.2 (3)
C1—N1—C3—C458.2 (3)C22—N3—C18—C17174.5 (3)
Dy1—N1—C3—C464.4 (3)Dy1—N3—C18—C172.6 (4)
N1—C3—C4—C961.3 (4)N1—C17—C18—N332.3 (4)
N1—C3—C4—C5122.4 (3)N1—C17—C18—C19151.0 (3)
C9—C4—C5—C61.4 (5)N3—C18—C19—C203.4 (6)
C3—C4—C5—C6177.7 (4)C17—C18—C19—C20173.1 (4)
C4—C5—C6—C70.3 (6)C18—C19—C20—C211.8 (7)
C5—C6—C7—C80.9 (7)C19—C20—C21—C220.9 (6)
C6—C7—C8—C90.2 (6)C18—N3—C22—C210.8 (5)
Dy1—O1—C9—C8126.2 (3)Dy1—N3—C22—C21176.1 (3)
Dy1—O1—C9—C454.6 (4)C20—C21—C22—N32.3 (6)
C7—C8—C9—O1177.3 (3)C10—N2—C23—C2477.3 (3)
C7—C8—C9—C41.9 (5)C2—N2—C23—C24166.1 (3)
C5—C4—C9—O1176.8 (3)Dy1—N2—C23—C2446.2 (3)
C3—C4—C9—O10.4 (4)C28—N4—C24—C251.4 (5)
C5—C4—C9—C82.4 (5)Dy1—N4—C24—C25178.0 (2)
C3—C4—C9—C8178.9 (3)C28—N4—C24—C23179.0 (3)
C23—N2—C10—C1163.2 (3)Dy1—N4—C24—C234.4 (3)
C2—N2—C10—C11176.9 (3)N2—C23—C24—N436.1 (4)
Dy1—N2—C10—C1157.1 (3)N2—C23—C24—C25146.3 (3)
N2—C10—C11—C12121.6 (3)N4—C24—C25—C261.3 (5)
N2—C10—C11—C1663.9 (4)C23—C24—C25—C26178.8 (3)
C16—C11—C12—C131.4 (5)C24—C25—C26—C271.2 (6)
C10—C11—C12—C13173.1 (3)C25—C26—C27—C281.2 (6)
C11—C12—C13—C140.4 (5)C24—N4—C28—C271.4 (5)
C12—C13—C14—C151.0 (6)Dy1—N4—C28—C27177.8 (3)
C13—C14—C15—C161.4 (6)C26—C27—C28—N41.3 (6)
Dy1—O2—C16—C15129.4 (3)Dy1i—O4—C29—O3174.1 (2)
Dy1—O2—C16—C1149.8 (4)Dy1i—O4—C29—C29i6.2 (4)
C14—C15—C16—O2179.6 (3)Dy1—O3—C29—O4173.9 (2)
C14—C15—C16—C110.4 (5)Dy1—O3—C29—C29i5.8 (4)
C12—C11—C16—O2178.2 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···O10.841.802.636 (4)178
C1—H1B···O1Wii0.992.583.448 (4)146
O1W—H1W···O2i0.82 (2)1.97 (2)2.785 (4)167 (5)
O1W—H2W···O300.86 (2)1.95 (3)2.759 (5)158 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

GAB and JFS thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships. The authors thank Dr David L. Hughes (University of East Anglia, UK) for training and discussions, and the late Professor Sueli M. Drechsel for helpful suggestions.

Funding information

Funding for this research was provided by: Fundação Araucária (grant No. 283/2014 - protocol 37509); Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (grant No. 308426/2016-9); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (grant No. 001).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatterton, N. Y., Bretonnière, J., Pécaut, J. & Mazzanti, M. (2005). Angew. Chem. Int. Ed. 44, 7595–7598.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeng, X., Chen, J., Wang, L., Xie, S.-Y., Yang, S., Huo, S. & Ng, S. (2014). CrystEngComm, 16, 1334–1343.  CrossRef CAS Google Scholar
First citationGregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65–68.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIshikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695.  CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrishnamurty, K. V. & Harris, G. M. (1960). J. Phys. Chem. 64, 346–349.  CrossRef CAS Google Scholar
First citationLiu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441–5450.  CrossRef CAS Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Bofill, J. M., Alemany, P., Alvarez, S., Pinsky, M. & Avnir, D. (2005). SHAPE. University of Barcelona and The Hebrew University of Jerusalem, Barcelona, Spain.  Google Scholar
First citationMolloy, J., Jarjayes, O., Philouze, C., Fedele, L., Imbert, D. & Thomas, F. (2017). Chem. Commun. 53, 605–608.  CrossRef CAS Google Scholar
First citationMorss, L. & Rogers, R. (1997). Inorg. Chim. Acta, 255, 193–197.  CrossRef CAS Google Scholar
First citationNeves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749–4755.  CrossRef CAS Web of Science Google Scholar
First citationPiquer, L. P. & Sañudo, E. C. (2015). Dalton Trans. 44, 8771–8780.  Google Scholar
First citationQin, J., Wang, P., Li, Q., Zhang, Y., Yuan, D. & Yao, Y. (2014). Chem. Commun. 50, 10952–10955.  CrossRef CAS Google Scholar
First citationSetyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496–507.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, G. F., Gamez, P., Tang, J., Clérac, R., Guo, Y. N. & Guo, Y. (2012). Inorg. Chem. 51, 5693–5698.  CrossRef CAS Google Scholar
First citationXu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). Chem. Commun. 46, 1506–1508.  CrossRef CAS Google Scholar
First citationYamada, Y., Koori, D., Mori, K. & Oshikawa, Y. (2016). J. Coord. Chem. 69, 3735–3744.  CrossRef CAS Google Scholar
First citationYamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996–1012.  Web of Science CrossRef CAS Google Scholar
First citationZhang, S., Ke, H., Liu, X., Wei, Q., Xie, G. & Chen, S. (2015). Chem. Commun. 51, 15188–15191.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds