research communications
Crystal structures of binuclear complexes of gadolinium(III) and dysprosium(III) with oxalate bridges and chelating N,N′-bis(2-oxidobenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine (bbpen2−)
aDepartamento de Química, Universidade Federal do Paraná, Centro, Politécnico, Jardim das Américas, 81530-900, Curitiba-PR, Brazil
*Correspondence e-mail: jaisa@quimica.ufpr.br
The reaction between mononuclear [Ln(bbpen)Cl] [Ln = Gd or Dy; H2bbpen = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine, C28H30N4O2] and potassium oxalate monohydrate in water/methanol produced the solvated centrosymmetric isostructural binuclear (μ-oxalato)bis{[N,N′-bis(2-oxidobenzyl-κO)-N,N′-bis(pyridin-2-ylmethyl-κN)ethylenediamine-κ2N,N′]dilanthanide(III)}–methanol–water (1/4/4) complexes, [Ln2(C28H28N4O2)2(C2O4)]·4CH3OH·4H2O, with lanthanide(III) = gadolinium(III) (Ln = Gd) and dysprosium(III) (Ln = Dy), in high yields (ca 70%) directly from the reaction mixtures. In both complexes, the lanthanide ion is eight-coordinate and adopts a distorted square-antiprismatic coordination environment. The triclinic (P) contains one dimeric unit together with four water and four methanol molecules; in the final structural model, two of each type of solvating molecule refine well. In each lanthanide(III) dimeric molecule, the medium-strength O⋯H—O hydrogen-bonding pattern involves four oxygen atoms, two of them from the phenolate groups that are `bridged' by one water and one methanol molecule. These interactions seem to contribute to the stabilization of the relatively compact shape of the dimer. Electron densities associated with an additional water and methanol molecule were removed with the SQUEEZE procedure in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. These two new compounds are of interest with respect to magnetic properties.
1. Chemical context
Since the discovery, in 2003, of the first lanthanide(III)-based single-ion magnets (SIM), namely (Bu4N)[LnPc2] (H2Pc = phthalocyanine; Ln = Tb and Dy; Ishikawa et al., 2003), a number of lanthanide(III) complexes have been prepared for magnetic studies because of their intrinsically high magnetic anisotropy barrier. Heterometallic 3d–4f single-molecule magnets (SMM) have also been sought, particularly in the early 2000s, mainly because of the possibility of improving magnetic response when compared to d-block-only metal complexes such as those of manganese(III), cobalt(II) and nickel(II) (Piquer & Sañudo, 2015).
Among the 3d–4f heterometallic systems of higher nuclearity, two tetranuclear compounds formulated as [M(μ-dto)3{Dy(HBpz3)2}3]·4CH3CN·2CH2Cl2 (M = FeIII or CoIII; HBpz− = hydrotris(pyrazolyl)borate; dto2– = dithiooxalate) presented slow relaxation of the magnetization under applied magnetic field (Xu et al., 2012). In this three-blade propeller framework, the tris-chelate [M(dto)3]3– complex forms the central unit, which is bridged to the [Dy(HBpz3)2]+ peripheral positions by the dithiooxalate ions. The lanthanide cations assume square-antiprismatic coordination environments while the d-block metal is octahedrally coordinated (Xu et al., 2012). The same monocationic [Dy(HBpz3)2]+ complex had previously been employed to produce binuclear [Dy2(μ-ox)(HBpz3)4]·2CH3CN·CH2Cl2, this time with oxalate (ox2–) as the bridging ligand. Direct current (DC) measurements performed with this dimeric compound revealed the presence of an intramolecular ferromagnetic interaction between the DyIII cations (Xu et al., 2010). Other oxalate-bridged lanthanide(III) complexes have also shown field-induced slow magnetic relaxation (Zhang et al., 2015) or weak (antiferro)magnetic exchange interactions (Feng et al., 2014). In all cases mentioned above, the products were obtained by self-assembly in one-pot reactions, sometimes under hydrothermal conditions.
In our research group, we first attempted to prepare heterometallic complexes of general formula [MIII(μ-ox)3{Ln(bbpen)}3] (H2bbpen = N,N′-bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine) via modular synthesis employing [Ln(bbpen)Cl] (LnIII = Gd or Dy) and K3[M(ox)3] (MIII = Cr or Co) as building blocks in a 3:1 proportion. The syntheses with gadolinium(III) and chromium(III) produced colourless crystals of the binuclear complex [{Gd(bbpen)}2(μ-ox)]·4CH3OH·4H2O, as revealed by single crystal X-ray The formation of this dimer is explained by dissociation of [Cr(ox)3]3– into {Cr(ox)2(OH2)2}− and ox2– in aqueous solution (Krishnamurty & Harris, 1960), followed by interaction of the ox2– anion with Gd(bbpen)+. Structural elucidation of this otherwise unexpected product prompted us to try and perform its targeted preparation with both gadolinium(III) and dysprosium(III) in good yields.
In this paper we report the rational synthesis and the crystal and molecular structures of the two binuclear and solvated [{Ln(bbpen)}2(μ-ox)] products [Ln = Gd (1) or Dy (2)], prepared from the direct reaction between [Ln(bbpen)Cl] and K2C2O4·H2O in water/methanol media.
2. Structural commentary
Compounds 1 and 2 are isostructural and crystallize in the P with four methanol and four water molecules per lanthanide dimer. Crystals contain the neutral [Ln2(μ-ox)(bbpen)2] molecules (Fig. 1) in which gadolinium(III) (1) or dysprosium(III) (2) are eight-coordinate; the [Ln(bbpen)]+ units are connected to one another by oxalate bridging in the usual bis(bidentate) coordination mode. The ox2– ligand lies about an inversion centre. The coordination sphere of the lanthanide(III) ion is formed by an N4O2 donor set from the bbpen2– ligand and two oxygen atoms from the bridging oxalate. In 1 and 2 each metal cation has a distorted square-antiprismatic coordination environment (Fig. 2), as indicated by general inspection of atom positions and bond angles, and confirmed from the crystallographic data by the use of the SHAPE program (Llunell et al., 2005). The average Ln—N bonds are ca 2.60 and 2.58 Å for 1 and 2, respectively, while the average Ln—O distances are ca 2.27 (1) and 2.24 Å (2). The non-bonding Dy⋯Dy distance in 2, 6.1488 (17) Å, is close to the analogous distance of 6.14 Å in [Dy2(μ-ox)(HBpz3)4]·2CH3CN·CH2Cl2 (Xu et al., 2010). The O3—Ln—O4i angles of approximately 68° in both 1 and 2 [symmetry code: (i) −x, 1 − y, 1 − z] are also similar to those reported for the dysprosium(III)–hydrotris(pirazolylborate) dimer mentioned above. The slightly decreased crystal volume of the Dy compound [1626.3 (7) Å3] compared with that of the Gd compound [1633.7 (3) Å3] is a perfect match with the smaller effective ionic radius of eight-coordinate DyIII versus GdIII (1.027 and 1.053 Å, respectively; Shannon, 1976), and is in line with the lanthanide contraction. Structural representations provided in this paper are for compound 1; the dysprosium(III) product 2 gives rise to very similar results.
3. Supramolecular features
In both structures, the hydrogen atoms from the crystallizing solvents (water and methanol) participate in an extensive three-dimensional hydrogen-bonding network that may be described as medium-strength intermolecular interactions (Tables 1 and 2).
|
The solvating (methanol and water) molecules, half of which refine well and are depicted in Fig. 3, participate in intermolecular interactions with the dimeric complexes 1 and 2. As seen in Fig. 3, one water and one methanol molecule are hydrogen-bonded to one another and to the phenolate oxygen atoms in the ligands, generating an O1⋯H—O30⋯H–O1W—H⋯O2iii `bridge', as well as a symmetry-related chain on both sides of the plane formed by the metal and oxalate ions. The water molecules in these chains also connect one dimer to another through weak C1—H1B⋯O1Wii interactions (Fig. 4; Tables 1 and 2).
The other half of the solvent molecules in the PLATON (Spek, 2015) because of being highly disordered, also contribute to the overall hydrogen-bonding network. This is inferred from the positions of the four main electron-density peaks, which have been assigned to oxygen atoms from the disordered solvents and may give rise to medium-strength to weak hydrogen-bond interactions. For 1, O⋯O distances involving three of these peaks amount to 2.66–2.78 Å as far as O⋯O1W contacts are concerned, with O1W acting as a potential electron-density acceptor, and are larger than 3.1 Å for O⋯O30 (numbering scheme in Fig. 3). For 2, in turn, the corresponding distances are longer than for 1 at 2.88–3.84 Å for O⋯O1W, and even larger (> 4.6 Å) for O⋯O30. On the other hand, any possible interaction involving the phenolate oxygen atoms would be very weak, with the shortest O⋯O contact with the disordered solvents being longer than 4.0 Å.
the electron densities of which have been removed with the SQUEEZE routine in4. Database survey
Examples of mononuclear lanthanide(III) complexes with bbpen2– and related ligands appear in the literature (Molloy et al., 2017; Liu et al., 2016; Yamada et al., 2016; Gregório et al., 2015; Qin et al., 2014; Yamada et al., 2010; Morss & Rogers, 1997). Binuclear structures with these hexadentate ligands have been reported by Chatterton et al. (2005), and by Setyawati et al. (2000).
5. Synthesis and crystallization
LnCl3·6H2O (LnIII = Gd or Dy) and K2C2O4·H2O were purchased from Aldrich and used without purification. N,N′-Bis(2-hydroxybenzyl)-N,N′-bis(pyridin-2-ylmethyl)ethylenediamine (H2bbpen) (Neves et al., 1992) and the [Ln(bbpen)Cl] precursors, with Ln = Gd or Dy (Liu et al., 2016), were prepared using adapted procedures described in the literature. Methanol and diethyl ether (Vetec) were used without treatment. Ultrapure water (Milli-Q, Millipore type 1, resistivity of 18.2 MΩ cm at 298 K) was employed as described below.
Synthesis of [{Gd(bbpen)}2(μ–ox)]·4CH3OH·4H2O (compound 1)
A solution of 8.11 mg (0.0440 mmol) of K2C2O4·H2O in 1.0 ml of water was slowly added to a methanol solution of 61.1 mg (0.0947 mmol) of [Gd(bbpen)Cl]. The colourless reaction mixture was stirred at room temperature for ca 5 min, and was then cooled down to 277 K to give block-shaped colourless crystals after four days. These were isolated by filtration, washed with diethyl ether and dried. Total yield: 49.0 mg (68.6%) based on the [{Gd(bbpen)}2(μ–ox)]·4CH3OH·4H2O formulation, compound 1. FTIR (emulsion in mineral oil): 3362, 3198 [s, ν(OH)]; 1655 [s, ν(CO)ox]; 1590, 1568 [s, ν(C=N) + ν(C=C)], 1290 [s, ν(CO)phenolate], 762 and 768 [m, δ(C—H)Ar+py]. Product 1 is soluble in acetonitrile, 1,2-dimethoxyethane (dme), dichloromethane and tetrahydrofuran. Elemental analysis: calculated for 1 (C62H80Gd2N8O16) C 49.39, H 5.35, N 7.43%. Found: C 48.56, H 5.49, N 7.45%.
Synthesis of [{Dy(bbpen)}2(μ–ox)]·4CH3OH·4H2O (compound 2)
A mixture of 61.0 mg (0.0938 mmol) of [Dy(bbpen)Cl] in 9.0 ml of methanol and 8.90 mg (0.0483 mmol) of K2C2O4·H2O in 1.0 ml of water was prepared as described for 1. The resulting solution was cooled at 277 K to produce colourless block-shaped crystals, which were recovered by filtration and washed with diethyl ether. Total yield: 53.9 mg (75.7%) based on the [{Dy(bbpen)}2(μ–ox)]·4CH3OH·4H2O formulation, compound 2. FTIR (emulsion in mineral oil): 3363, 3198 [s, ν(OH)], 1590 [s, ν(CO)ox]; 1570 (m), 1481 (s), 1459 [s, ν(C=N) + ν(C=C)]; 1290 [s, ν(CO)Ph], 762 and 768 [m, δ(C—H)Ar+ py]. The product solubility is similar to that described for 1. Elemental analysis: calculated for 2 (C62H80Dy2N8O16) C 49.04, H 5.31, N 7.38%. Found: C 49.02, H 5.71, N 7.56%.
6. Refinement
Crystal data, data collection and structure . Both 1 and 2 showed high susceptibility to the loss of the crystallization solvent molecules once removed from the mother liquor. Hydrogen atoms in 1 and 2 were included in idealized positions with methyl, methylene and aromatic C—H distances set at 0.98, 0.99 and 0.95 Å, respectively, and O—H at 0.84 Å and refined as riding with Uiso(H) = 1.2–1.5Ueq(C,O). Hydrogen atoms on the water molecules were located in difference-Fourier maps and were refined with distance restraints (DFIX O—H = 0.82 Å for 1 and 2, DANG = 1.45 Å for 2).
details for the two structures are summarized in Table 3
|
Both structures present four methanol and four water molecules per PLATON (Spek, 2015). The proposed identity of these highly disordered molecules as `2H2O + 2MeOH' per finds support in the total calculated count of 58 and 59 electrons provided by SQUEEZE for 1 and 2, respectively, as compared with the expected count of 56 electrons. The volume of the void filled by the disordered solvent amounts to 269 and 260 Å3 for 1 and 2, respectively, and corresponds to 16.0–16.5% of the in very good agreement with the volume expected for small molecules such as water and methanol. The ratio between the total solvent-accessible void volume and the experimental electron count is of ca 4.5 Å3 per electron.
two of each were treated as diffuse contribution to the overall scattering without specific atom positions and were eventually removed by the use of the SQUEEZE procedure inSupporting information
https://doi.org/10.1107/S2056989019002998/wm5489sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989019002998/wm54891sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989019002998/wm54892sup3.hkl
For both structures, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT2015 (Sheldrick 2015a); program(s) used to refine structure: SHELXL2017/1 (Sheldrick 2015b); molecular graphics: ORTEP (Johnson, 1976 and Farrugia, 2012) and DIAMOND (Brandenburg, 2006). Software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999, 2012) for (1); SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999, Farrugia, 2012) for (2).[Gd2(C28H28N4O2)2(C2O4)]·4CH4O·4H2O | Z = 1 |
Mr = 1507.84 | F(000) = 764 |
Triclinic, P1 | Dx = 1.533 Mg m−3 |
a = 9.8778 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.8720 (16) Å | Cell parameters from 9519 reflections |
c = 14.8025 (18) Å | θ = 3.0–27.9° |
α = 69.092 (4)° | µ = 2.08 mm−1 |
β = 74.786 (4)° | T = 100 K |
γ = 70.324 (4)° | Prism, colourless |
V = 1633.7 (3) Å3 | 0.30 × 0.28 × 0.14 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 7108 independent reflections |
Radiation source: fine-focus sealed tube | 6476 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.613, Tmax = 0.746 | l = −18→18 |
101878 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: mixed |
wR(F2) = 0.046 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0132P)2 + 1.5506P] where P = (Fo2 + 2Fc2)/3 |
7108 reflections | (Δ/σ)max = 0.001 |
380 parameters | Δρmax = 1.20 e Å−3 |
2 restraints | Δρmin = −0.55 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Gd1 | 0.14723 (2) | 0.64026 (2) | 0.30503 (2) | 0.02451 (4) | |
N1 | 0.3709 (2) | 0.68776 (16) | 0.33127 (13) | 0.0308 (4) | |
N2 | 0.26964 (19) | 0.76071 (16) | 0.13842 (13) | 0.0302 (4) | |
N3 | 0.0847 (2) | 0.83950 (16) | 0.33400 (14) | 0.0345 (4) | |
N4 | 0.1895 (2) | 0.56231 (17) | 0.16178 (14) | 0.0341 (4) | |
O1 | 0.32272 (17) | 0.47047 (14) | 0.33368 (13) | 0.0384 (4) | |
O2 | −0.04416 (16) | 0.74756 (14) | 0.22275 (11) | 0.0348 (4) | |
O3 | 0.10169 (17) | 0.59622 (14) | 0.47919 (11) | 0.0326 (3) | |
O4 | 0.00913 (17) | 0.48457 (14) | 0.62012 (11) | 0.0317 (3) | |
O30 | 0.2560 (3) | 0.2853 (2) | 0.46553 (17) | 0.0708 (6) | |
H30 | 0.279892 | 0.342451 | 0.422530 | 0.106* | |
C1 | 0.4553 (3) | 0.7393 (2) | 0.23546 (17) | 0.0366 (5) | |
H1A | 0.526548 | 0.676065 | 0.211006 | 0.044* | |
H1B | 0.510810 | 0.783956 | 0.246233 | 0.044* | |
C2 | 0.3634 (3) | 0.8170 (2) | 0.15829 (17) | 0.0356 (5) | |
H2A | 0.300546 | 0.885400 | 0.179071 | 0.043* | |
H2B | 0.428067 | 0.844484 | 0.096725 | 0.043* | |
C3 | 0.4722 (3) | 0.5828 (2) | 0.38753 (18) | 0.0371 (5) | |
H3A | 0.545817 | 0.607522 | 0.403134 | 0.045* | |
H3B | 0.415669 | 0.547543 | 0.450400 | 0.045* | |
C4 | 0.5499 (3) | 0.4925 (2) | 0.33652 (18) | 0.0376 (5) | |
C5 | 0.7021 (3) | 0.4568 (3) | 0.3171 (2) | 0.0530 (7) | |
H5 | 0.757587 | 0.492628 | 0.334115 | 0.064* | |
C6 | 0.7724 (3) | 0.3699 (3) | 0.2734 (3) | 0.0662 (9) | |
H6 | 0.875802 | 0.345578 | 0.260954 | 0.079* | |
C7 | 0.6921 (3) | 0.3189 (3) | 0.2482 (2) | 0.0595 (8) | |
H7 | 0.740815 | 0.259677 | 0.217648 | 0.071* | |
C8 | 0.5402 (3) | 0.3526 (2) | 0.2666 (2) | 0.0473 (6) | |
H8 | 0.485806 | 0.316915 | 0.248361 | 0.057* | |
C9 | 0.4686 (3) | 0.4392 (2) | 0.31219 (17) | 0.0359 (5) | |
C10 | 0.1601 (3) | 0.8573 (2) | 0.08153 (18) | 0.0361 (5) | |
H10A | 0.213640 | 0.898996 | 0.020397 | 0.043* | |
H10B | 0.109274 | 0.912135 | 0.120374 | 0.043* | |
C11 | 0.0468 (2) | 0.82508 (19) | 0.05439 (17) | 0.0327 (5) | |
C12 | 0.0333 (3) | 0.8522 (2) | −0.04292 (19) | 0.0419 (6) | |
H12 | 0.103411 | 0.884025 | −0.093012 | 0.050* | |
C13 | −0.0798 (3) | 0.8339 (2) | −0.0688 (2) | 0.0483 (7) | |
H13 | −0.087322 | 0.852986 | −0.135819 | 0.058* | |
C14 | −0.1812 (3) | 0.7878 (3) | 0.0040 (2) | 0.0514 (7) | |
H14 | −0.260080 | 0.776115 | −0.012986 | 0.062* | |
C15 | −0.1695 (3) | 0.7584 (2) | 0.1014 (2) | 0.0438 (6) | |
H15 | −0.239531 | 0.725264 | 0.150492 | 0.053* | |
C16 | −0.0560 (2) | 0.77657 (19) | 0.12913 (17) | 0.0318 (5) | |
C17 | 0.3155 (3) | 0.7667 (2) | 0.39309 (19) | 0.0399 (6) | |
H17A | 0.393828 | 0.801043 | 0.388604 | 0.048* | |
H17B | 0.293976 | 0.720619 | 0.462140 | 0.048* | |
C18 | 0.1824 (3) | 0.8622 (2) | 0.36726 (18) | 0.0379 (5) | |
C19 | 0.1574 (4) | 0.9676 (3) | 0.3832 (2) | 0.0555 (7) | |
H19 | 0.230010 | 0.983182 | 0.403804 | 0.067* | |
C20 | 0.0264 (4) | 1.0490 (3) | 0.3690 (3) | 0.0643 (9) | |
H20 | 0.006686 | 1.120691 | 0.381254 | 0.077* | |
C21 | −0.0753 (3) | 1.0259 (2) | 0.3370 (2) | 0.0537 (7) | |
H21 | −0.167055 | 1.080485 | 0.327493 | 0.064* | |
C22 | −0.0409 (3) | 0.9211 (2) | 0.31884 (19) | 0.0427 (6) | |
H22 | −0.110029 | 0.906124 | 0.294343 | 0.051* | |
C23 | 0.3579 (3) | 0.6806 (2) | 0.08111 (18) | 0.0379 (5) | |
H23A | 0.448335 | 0.634954 | 0.109017 | 0.046* | |
H23B | 0.386281 | 0.726014 | 0.012906 | 0.046* | |
C24 | 0.2797 (2) | 0.5989 (2) | 0.07971 (17) | 0.0339 (5) | |
C25 | 0.3037 (3) | 0.5614 (2) | −0.00088 (19) | 0.0468 (6) | |
H25 | 0.369457 | 0.587595 | −0.057776 | 0.056* | |
C26 | 0.2311 (3) | 0.4857 (3) | 0.0022 (2) | 0.0563 (8) | |
H26 | 0.245896 | 0.459136 | −0.052756 | 0.068* | |
C27 | 0.1367 (3) | 0.4485 (3) | 0.0856 (2) | 0.0547 (7) | |
H27 | 0.084898 | 0.396546 | 0.089189 | 0.066* | |
C28 | 0.1195 (3) | 0.4888 (2) | 0.1637 (2) | 0.0452 (6) | |
H28 | 0.054965 | 0.463138 | 0.221597 | 0.054* | |
C29 | 0.0323 (2) | 0.52339 (19) | 0.52893 (15) | 0.0270 (4) | |
C30 | 0.1948 (4) | 0.2316 (3) | 0.4227 (3) | 0.0712 (10) | |
H30A | 0.185641 | 0.156599 | 0.468653 | 0.107* | |
H30B | 0.258399 | 0.220344 | 0.361943 | 0.107* | |
H30C | 0.098312 | 0.281001 | 0.408213 | 0.107* | |
O1W | 0.3109 (2) | 0.2151 (2) | 0.65369 (19) | 0.0644 (6) | |
H1W | 0.236 (3) | 0.229 (3) | 0.694 (2) | 0.058 (10)* | |
H2W | 0.290 (4) | 0.245 (3) | 0.5939 (16) | 0.080 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd1 | 0.02416 (5) | 0.02753 (6) | 0.02339 (6) | −0.01192 (4) | −0.00064 (4) | −0.00698 (4) |
N1 | 0.0324 (10) | 0.0350 (10) | 0.0268 (9) | −0.0153 (8) | −0.0065 (7) | −0.0041 (8) |
N2 | 0.0287 (9) | 0.0350 (10) | 0.0276 (10) | −0.0149 (8) | −0.0022 (7) | −0.0059 (8) |
N3 | 0.0390 (11) | 0.0297 (10) | 0.0347 (11) | −0.0105 (8) | −0.0042 (8) | −0.0096 (8) |
N4 | 0.0412 (11) | 0.0324 (10) | 0.0293 (10) | −0.0113 (8) | −0.0030 (8) | −0.0104 (8) |
O1 | 0.0309 (8) | 0.0337 (9) | 0.0529 (11) | −0.0067 (7) | −0.0099 (7) | −0.0151 (8) |
O2 | 0.0288 (8) | 0.0438 (9) | 0.0317 (9) | −0.0098 (7) | −0.0044 (6) | −0.0112 (7) |
O3 | 0.0387 (9) | 0.0427 (9) | 0.0272 (8) | −0.0279 (7) | 0.0007 (6) | −0.0112 (7) |
O4 | 0.0386 (8) | 0.0444 (9) | 0.0215 (8) | −0.0259 (7) | −0.0012 (6) | −0.0097 (7) |
O30 | 0.1006 (19) | 0.0616 (15) | 0.0601 (14) | −0.0466 (14) | −0.0135 (13) | −0.0058 (11) |
C1 | 0.0330 (12) | 0.0437 (14) | 0.0358 (13) | −0.0222 (10) | −0.0053 (10) | −0.0042 (11) |
C2 | 0.0369 (12) | 0.0364 (13) | 0.0316 (12) | −0.0202 (10) | −0.0003 (9) | −0.0022 (10) |
C3 | 0.0353 (12) | 0.0414 (14) | 0.0365 (13) | −0.0137 (10) | −0.0160 (10) | −0.0032 (11) |
C4 | 0.0310 (12) | 0.0391 (13) | 0.0351 (13) | −0.0071 (10) | −0.0087 (10) | −0.0019 (10) |
C5 | 0.0336 (14) | 0.0506 (17) | 0.0624 (19) | −0.0070 (12) | −0.0130 (12) | −0.0027 (14) |
C6 | 0.0333 (15) | 0.062 (2) | 0.073 (2) | 0.0010 (14) | 0.0003 (14) | −0.0043 (17) |
C7 | 0.0556 (18) | 0.0416 (16) | 0.0500 (17) | 0.0096 (14) | 0.0026 (14) | −0.0065 (13) |
C8 | 0.0543 (16) | 0.0352 (14) | 0.0424 (15) | −0.0020 (12) | −0.0084 (12) | −0.0091 (12) |
C9 | 0.0345 (12) | 0.0324 (12) | 0.0318 (12) | −0.0021 (10) | −0.0082 (9) | −0.0033 (10) |
C10 | 0.0411 (13) | 0.0301 (12) | 0.0344 (13) | −0.0143 (10) | −0.0081 (10) | −0.0006 (10) |
C11 | 0.0339 (12) | 0.0268 (11) | 0.0347 (12) | −0.0047 (9) | −0.0081 (9) | −0.0073 (9) |
C12 | 0.0500 (15) | 0.0333 (13) | 0.0361 (13) | −0.0061 (11) | −0.0109 (11) | −0.0047 (11) |
C13 | 0.0592 (17) | 0.0458 (15) | 0.0416 (15) | −0.0034 (13) | −0.0221 (13) | −0.0149 (12) |
C14 | 0.0476 (16) | 0.0574 (18) | 0.0617 (19) | −0.0079 (13) | −0.0215 (14) | −0.0290 (15) |
C15 | 0.0333 (12) | 0.0560 (16) | 0.0490 (15) | −0.0134 (11) | −0.0070 (11) | −0.0220 (13) |
C16 | 0.0293 (11) | 0.0301 (11) | 0.0355 (12) | −0.0030 (9) | −0.0067 (9) | −0.0127 (10) |
C17 | 0.0421 (13) | 0.0437 (14) | 0.0435 (14) | −0.0163 (11) | −0.0125 (11) | −0.0156 (12) |
C18 | 0.0475 (14) | 0.0371 (13) | 0.0337 (13) | −0.0179 (11) | −0.0023 (10) | −0.0127 (10) |
C19 | 0.074 (2) | 0.0444 (16) | 0.0619 (19) | −0.0200 (15) | −0.0167 (16) | −0.0240 (14) |
C20 | 0.090 (2) | 0.0409 (16) | 0.070 (2) | −0.0141 (16) | −0.0138 (18) | −0.0284 (16) |
C21 | 0.0620 (18) | 0.0353 (14) | 0.0529 (17) | 0.0005 (13) | −0.0088 (14) | −0.0135 (13) |
C22 | 0.0426 (14) | 0.0375 (14) | 0.0446 (15) | −0.0077 (11) | −0.0046 (11) | −0.0128 (11) |
C23 | 0.0324 (12) | 0.0463 (14) | 0.0311 (12) | −0.0132 (10) | 0.0023 (9) | −0.0097 (11) |
C24 | 0.0326 (12) | 0.0341 (12) | 0.0291 (12) | 0.0005 (9) | −0.0064 (9) | −0.0102 (10) |
C25 | 0.0471 (15) | 0.0544 (17) | 0.0348 (14) | −0.0071 (13) | 0.0002 (11) | −0.0192 (12) |
C26 | 0.0669 (19) | 0.0640 (19) | 0.0470 (17) | −0.0125 (15) | −0.0055 (14) | −0.0342 (15) |
C27 | 0.0655 (19) | 0.0513 (17) | 0.0620 (19) | −0.0211 (14) | −0.0082 (15) | −0.0301 (15) |
C28 | 0.0586 (16) | 0.0432 (15) | 0.0410 (14) | −0.0220 (13) | −0.0014 (12) | −0.0178 (12) |
C29 | 0.0263 (10) | 0.0321 (11) | 0.0270 (11) | −0.0126 (9) | −0.0008 (8) | −0.0119 (9) |
C30 | 0.094 (3) | 0.0534 (19) | 0.076 (2) | −0.0322 (18) | 0.001 (2) | −0.0293 (18) |
O1W | 0.0331 (11) | 0.1015 (19) | 0.0682 (16) | −0.0197 (11) | −0.0019 (11) | −0.0393 (15) |
Gd1—O1 | 2.2659 (16) | C10—C11 | 1.501 (3) |
Gd1—O2 | 2.2835 (16) | C10—H10A | 0.9900 |
Gd1—O3 | 2.3855 (15) | C10—H10B | 0.9900 |
Gd1—O4i | 2.3869 (14) | C11—C12 | 1.388 (3) |
Gd1—N4 | 2.5394 (19) | C11—C16 | 1.410 (3) |
Gd1—N3 | 2.5926 (19) | C12—C13 | 1.384 (4) |
Gd1—N2 | 2.6299 (18) | C12—H12 | 0.9500 |
Gd1—N1 | 2.6334 (18) | C13—C14 | 1.376 (4) |
N1—C17 | 1.482 (3) | C13—H13 | 0.9500 |
N1—C1 | 1.492 (3) | C14—C15 | 1.379 (4) |
N1—C3 | 1.498 (3) | C14—H14 | 0.9500 |
N2—C23 | 1.475 (3) | C15—C16 | 1.403 (3) |
N2—C2 | 1.489 (3) | C15—H15 | 0.9500 |
N2—C10 | 1.500 (3) | C17—C18 | 1.492 (4) |
N3—C22 | 1.339 (3) | C17—H17A | 0.9900 |
N3—C18 | 1.343 (3) | C17—H17B | 0.9900 |
N4—C28 | 1.336 (3) | C18—C19 | 1.389 (4) |
N4—C24 | 1.340 (3) | C19—C20 | 1.374 (5) |
O1—C9 | 1.342 (3) | C19—H19 | 0.9500 |
O2—C16 | 1.327 (3) | C20—C21 | 1.369 (5) |
O3—C29 | 1.252 (3) | C20—H20 | 0.9500 |
O4—C29 | 1.248 (3) | C21—C22 | 1.382 (4) |
O30—C30 | 1.429 (4) | C21—H21 | 0.9500 |
O30—H30 | 0.8400 | C22—H22 | 0.9500 |
C1—C2 | 1.499 (3) | C23—C24 | 1.508 (3) |
C1—H1A | 0.9900 | C23—H23A | 0.9900 |
C1—H1B | 0.9900 | C23—H23B | 0.9900 |
C2—H2A | 0.9900 | C24—C25 | 1.377 (3) |
C2—H2B | 0.9900 | C25—C26 | 1.375 (4) |
C3—C4 | 1.494 (4) | C25—H25 | 0.9500 |
C3—H3A | 0.9900 | C26—C27 | 1.377 (4) |
C3—H3B | 0.9900 | C26—H26 | 0.9500 |
C4—C9 | 1.393 (4) | C27—C28 | 1.379 (4) |
C4—C5 | 1.399 (3) | C27—H27 | 0.9500 |
C5—C6 | 1.382 (5) | C28—H28 | 0.9500 |
C5—H5 | 0.9500 | C29—C29i | 1.554 (4) |
C6—C7 | 1.371 (5) | C30—H30A | 0.9800 |
C6—H6 | 0.9500 | C30—H30B | 0.9800 |
C7—C8 | 1.395 (4) | C30—H30C | 0.9800 |
C7—H7 | 0.9500 | O1W—H1W | 0.831 (18) |
C8—C9 | 1.398 (4) | O1W—H2W | 0.879 (18) |
C8—H8 | 0.9500 | ||
O1—Gd1—O2 | 144.65 (6) | C7—C8—H8 | 120.3 |
O1—Gd1—O3 | 83.85 (6) | C9—C8—H8 | 120.3 |
O2—Gd1—O3 | 117.78 (6) | O1—C9—C4 | 119.8 (2) |
O1—Gd1—O4i | 82.26 (6) | O1—C9—C8 | 120.6 (2) |
O2—Gd1—O4i | 81.09 (6) | C4—C9—C8 | 119.6 (2) |
O3—Gd1—O4i | 68.12 (5) | N2—C10—C11 | 117.04 (19) |
O1—Gd1—N4 | 72.72 (6) | N2—C10—H10A | 108.0 |
O2—Gd1—N4 | 74.51 (6) | C11—C10—H10A | 108.0 |
O3—Gd1—N4 | 145.21 (6) | N2—C10—H10B | 108.0 |
O4i—Gd1—N4 | 83.25 (6) | C11—C10—H10B | 108.0 |
O1—Gd1—N3 | 137.96 (6) | H10A—C10—H10B | 107.3 |
O2—Gd1—N3 | 76.82 (6) | C12—C11—C16 | 119.5 (2) |
O3—Gd1—N3 | 76.31 (6) | C12—C11—C10 | 120.9 (2) |
O4i—Gd1—N3 | 121.96 (6) | C16—C11—C10 | 119.3 (2) |
N4—Gd1—N3 | 137.77 (6) | C13—C12—C11 | 121.6 (3) |
O1—Gd1—N2 | 101.15 (6) | C13—C12—H12 | 119.2 |
O2—Gd1—N2 | 76.69 (6) | C11—C12—H12 | 119.2 |
O3—Gd1—N2 | 146.18 (5) | C14—C13—C12 | 119.0 (3) |
O4i—Gd1—N2 | 145.50 (5) | C14—C13—H13 | 120.5 |
N4—Gd1—N2 | 65.63 (6) | C12—C13—H13 | 120.5 |
N3—Gd1—N2 | 78.07 (6) | C13—C14—C15 | 120.7 (3) |
O1—Gd1—N1 | 74.44 (6) | C13—C14—H14 | 119.6 |
O2—Gd1—N1 | 133.51 (6) | C15—C14—H14 | 119.6 |
O3—Gd1—N1 | 80.10 (5) | C14—C15—C16 | 121.1 (3) |
O4i—Gd1—N1 | 142.30 (5) | C14—C15—H15 | 119.4 |
N4—Gd1—N1 | 116.30 (6) | C16—C15—H15 | 119.4 |
N3—Gd1—N1 | 65.93 (6) | O2—C16—C15 | 121.1 (2) |
N2—Gd1—N1 | 69.43 (6) | O2—C16—C11 | 120.8 (2) |
C17—N1—C1 | 111.49 (19) | C15—C16—C11 | 118.0 (2) |
C17—N1—C3 | 105.29 (18) | N1—C17—C18 | 115.3 (2) |
C1—N1—C3 | 108.47 (18) | N1—C17—H17A | 108.5 |
C17—N1—Gd1 | 108.34 (13) | C18—C17—H17A | 108.5 |
C1—N1—Gd1 | 110.98 (13) | N1—C17—H17B | 108.5 |
C3—N1—Gd1 | 112.16 (13) | C18—C17—H17B | 108.5 |
C23—N2—C2 | 110.38 (18) | H17A—C17—H17B | 107.5 |
C23—N2—C10 | 110.90 (18) | N3—C18—C19 | 121.8 (3) |
C2—N2—C10 | 105.60 (17) | N3—C18—C17 | 117.3 (2) |
C23—N2—Gd1 | 107.83 (13) | C19—C18—C17 | 120.8 (2) |
C2—N2—Gd1 | 109.63 (13) | C20—C19—C18 | 119.3 (3) |
C10—N2—Gd1 | 112.50 (13) | C20—C19—H19 | 120.4 |
C22—N3—C18 | 117.8 (2) | C18—C19—H19 | 120.4 |
C22—N3—Gd1 | 123.69 (17) | C21—C20—C19 | 119.4 (3) |
C18—N3—Gd1 | 118.52 (15) | C21—C20—H20 | 120.3 |
C28—N4—C24 | 118.3 (2) | C19—C20—H20 | 120.3 |
C28—N4—Gd1 | 121.90 (16) | C20—C21—C22 | 118.2 (3) |
C24—N4—Gd1 | 119.79 (15) | C20—C21—H21 | 120.9 |
C9—O1—Gd1 | 135.00 (15) | C22—C21—H21 | 120.9 |
C16—O2—Gd1 | 131.61 (13) | N3—C22—C21 | 123.4 (3) |
C29—O3—Gd1 | 119.02 (13) | N3—C22—H22 | 118.3 |
C29—O4—Gd1i | 119.12 (13) | C21—C22—H22 | 118.3 |
C30—O30—H30 | 109.5 | N2—C23—C24 | 113.32 (18) |
N1—C1—C2 | 114.19 (18) | N2—C23—H23A | 108.9 |
N1—C1—H1A | 108.7 | C24—C23—H23A | 108.9 |
C2—C1—H1A | 108.7 | N2—C23—H23B | 108.9 |
N1—C1—H1B | 108.7 | C24—C23—H23B | 108.9 |
C2—C1—H1B | 108.7 | H23A—C23—H23B | 107.7 |
H1A—C1—H1B | 107.6 | N4—C24—C25 | 122.1 (2) |
N2—C2—C1 | 113.77 (19) | N4—C24—C23 | 116.5 (2) |
N2—C2—H2A | 108.8 | C25—C24—C23 | 121.4 (2) |
C1—C2—H2A | 108.8 | C26—C25—C24 | 119.0 (3) |
N2—C2—H2B | 108.8 | C26—C25—H25 | 120.5 |
C1—C2—H2B | 108.8 | C24—C25—H25 | 120.5 |
H2A—C2—H2B | 107.7 | C25—C26—C27 | 119.5 (3) |
C4—C3—N1 | 115.32 (19) | C25—C26—H26 | 120.2 |
C4—C3—H3A | 108.4 | C27—C26—H26 | 120.2 |
N1—C3—H3A | 108.4 | C26—C27—C28 | 118.1 (3) |
C4—C3—H3B | 108.4 | C26—C27—H27 | 120.9 |
N1—C3—H3B | 108.4 | C28—C27—H27 | 120.9 |
H3A—C3—H3B | 107.5 | N4—C28—C27 | 123.0 (3) |
C9—C4—C5 | 119.6 (3) | N4—C28—H28 | 118.5 |
C9—C4—C3 | 119.0 (2) | C27—C28—H28 | 118.5 |
C5—C4—C3 | 121.3 (2) | O4—C29—O3 | 126.83 (19) |
C6—C5—C4 | 120.6 (3) | O4—C29—C29i | 116.6 (2) |
C6—C5—H5 | 119.7 | O3—C29—C29i | 116.6 (2) |
C4—C5—H5 | 119.7 | O30—C30—H30A | 109.5 |
C7—C6—C5 | 119.6 (3) | O30—C30—H30B | 109.5 |
C7—C6—H6 | 120.2 | H30A—C30—H30B | 109.5 |
C5—C6—H6 | 120.2 | O30—C30—H30C | 109.5 |
C6—C7—C8 | 121.1 (3) | H30A—C30—H30C | 109.5 |
C6—C7—H7 | 119.4 | H30B—C30—H30C | 109.5 |
C8—C7—H7 | 119.4 | H1W—O1W—H2W | 110 (3) |
C7—C8—C9 | 119.4 (3) | ||
C17—N1—C1—C2 | −85.0 (2) | C10—C11—C16—O2 | −7.4 (3) |
C3—N1—C1—C2 | 159.5 (2) | C12—C11—C16—C15 | −0.5 (3) |
Gd1—N1—C1—C2 | 35.9 (2) | C10—C11—C16—C15 | 173.5 (2) |
C23—N2—C2—C1 | −74.8 (2) | C1—N1—C17—C18 | 79.1 (2) |
C10—N2—C2—C1 | 165.3 (2) | C3—N1—C17—C18 | −163.5 (2) |
Gd1—N2—C2—C1 | 43.8 (2) | Gd1—N1—C17—C18 | −43.3 (2) |
N1—C1—C2—N2 | −56.1 (3) | C22—N3—C18—C19 | −1.7 (4) |
C17—N1—C3—C4 | −176.3 (2) | Gd1—N3—C18—C19 | 179.1 (2) |
C1—N1—C3—C4 | −56.9 (2) | C22—N3—C18—C17 | 174.2 (2) |
Gd1—N1—C3—C4 | 66.1 (2) | Gd1—N3—C18—C17 | −5.0 (3) |
N1—C3—C4—C9 | −61.9 (3) | N1—C17—C18—N3 | 34.3 (3) |
N1—C3—C4—C5 | 121.1 (2) | N1—C17—C18—C19 | −149.8 (2) |
C9—C4—C5—C6 | 0.5 (4) | N3—C18—C19—C20 | 3.0 (4) |
C3—C4—C5—C6 | 177.4 (3) | C17—C18—C19—C20 | −172.8 (3) |
C4—C5—C6—C7 | 0.5 (5) | C18—C19—C20—C21 | −1.6 (5) |
C5—C6—C7—C8 | −0.6 (5) | C19—C20—C21—C22 | −0.9 (5) |
C6—C7—C8—C9 | −0.4 (4) | C18—N3—C22—C21 | −1.0 (4) |
Gd1—O1—C9—C4 | 52.5 (3) | Gd1—N3—C22—C21 | 178.2 (2) |
Gd1—O1—C9—C8 | −128.3 (2) | C20—C21—C22—N3 | 2.3 (4) |
C5—C4—C9—O1 | 177.8 (2) | C2—N2—C23—C24 | 165.50 (19) |
C3—C4—C9—O1 | 0.8 (3) | C10—N2—C23—C24 | −77.8 (2) |
C5—C4—C9—C8 | −1.5 (4) | Gd1—N2—C23—C24 | 45.8 (2) |
C3—C4—C9—C8 | −178.4 (2) | C28—N4—C24—C25 | −1.2 (4) |
C7—C8—C9—O1 | −177.8 (2) | Gd1—N4—C24—C25 | −178.42 (18) |
C7—C8—C9—C4 | 1.4 (4) | C28—N4—C24—C23 | −179.2 (2) |
C23—N2—C10—C11 | 62.5 (3) | Gd1—N4—C24—C23 | 3.6 (3) |
C2—N2—C10—C11 | −177.9 (2) | N2—C23—C24—N4 | −35.2 (3) |
Gd1—N2—C10—C11 | −58.3 (2) | N2—C23—C24—C25 | 146.8 (2) |
N2—C10—C11—C12 | −120.9 (2) | N4—C24—C25—C26 | 1.1 (4) |
N2—C10—C11—C16 | 65.2 (3) | C23—C24—C25—C26 | 179.1 (3) |
C16—C11—C12—C13 | 0.7 (4) | C24—C25—C26—C27 | −0.3 (4) |
C10—C11—C12—C13 | −173.2 (2) | C25—C26—C27—C28 | −0.4 (5) |
C11—C12—C13—C14 | 0.0 (4) | C24—N4—C28—C27 | 0.5 (4) |
C12—C13—C14—C15 | −1.0 (4) | Gd1—N4—C28—C27 | 177.6 (2) |
C13—C14—C15—C16 | 1.2 (4) | C26—C27—C28—N4 | 0.3 (5) |
Gd1—O2—C16—C15 | 128.8 (2) | Gd1i—O4—C29—O3 | 174.05 (18) |
Gd1—O2—C16—C11 | −50.2 (3) | Gd1i—O4—C29—C29i | −5.8 (3) |
C14—C15—C16—O2 | −179.5 (2) | Gd1—O3—C29—O4 | 174.16 (17) |
C14—C15—C16—C11 | −0.5 (4) | Gd1—O3—C29—C29i | −6.0 (3) |
C12—C11—C16—O2 | 178.6 (2) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O30—H30···O1 | 0.84 | 1.80 | 2.643 (3) | 177 |
C1—H1B···O1Wii | 0.99 | 2.59 | 3.459 (3) | 147 |
O1W—H1W···O2i | 0.83 (2) | 1.96 (2) | 2.786 (3) | 170 (3) |
O1W—H2W···O30 | 0.88 (2) | 1.87 (2) | 2.745 (3) | 171 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
[Dy2(C28H28N4O2)2(C2O4)]·4CH4O·4H2O | Z = 1 |
Mr = 1518.34 | F(000) = 768 |
Triclinic, P1 | Dx = 1.550 Mg m−3 |
a = 9.883 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.838 (3) Å | Cell parameters from 9284 reflections |
c = 14.832 (4) Å | θ = 3.0–27.7° |
α = 68.213 (9)° | µ = 2.35 mm−1 |
β = 74.653 (8)° | T = 100 K |
γ = 70.552 (8)° | Prism, colourless |
V = 1626.3 (7) Å3 | 0.35 × 0.16 × 0.12 mm |
Bruker D8 Venture/Photon 100 CMOS diffractometer | 7091 independent reflections |
Radiation source: fine-focus sealed tube | 6385 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.0°, θmin = 3.0° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −16→16 |
Tmin = 0.629, Tmax = 0.746 | l = −18→18 |
93133 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: mixed |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0244P)2 + 1.9868P] where P = (Fo2 + 2Fc2)/3 |
7091 reflections | (Δ/σ)max = 0.002 |
380 parameters | Δρmax = 1.94 e Å−3 |
3 restraints | Δρmin = −0.63 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Dy1 | 0.85062 (2) | 0.36072 (2) | 0.69594 (2) | 0.02699 (5) | |
N1 | 0.6306 (3) | 0.3122 (2) | 0.66909 (18) | 0.0352 (5) | |
N2 | 0.7282 (3) | 0.2394 (2) | 0.86207 (18) | 0.0351 (5) | |
N3 | 0.9135 (3) | 0.1612 (2) | 0.66925 (19) | 0.0383 (6) | |
N4 | 0.8096 (3) | 0.4397 (2) | 0.83619 (18) | 0.0370 (6) | |
O1 | 0.6811 (2) | 0.52962 (19) | 0.66391 (17) | 0.0430 (5) | |
O2 | 1.0390 (2) | 0.25545 (19) | 0.77711 (15) | 0.0370 (5) | |
O3 | 0.8993 (2) | 0.40098 (19) | 0.52306 (14) | 0.0370 (5) | |
O4 | 0.9940 (2) | 0.51292 (19) | 0.38014 (14) | 0.0362 (5) | |
O30 | 0.7330 (4) | 0.7243 (3) | 0.5351 (2) | 0.0764 (9) | |
H30 | 0.718496 | 0.661941 | 0.576725 | 0.115* | |
C1 | 0.5449 (3) | 0.2587 (3) | 0.7655 (2) | 0.0439 (8) | |
H1A | 0.472908 | 0.321693 | 0.789304 | 0.053* | |
H1B | 0.490545 | 0.213183 | 0.754747 | 0.053* | |
C2 | 0.6350 (4) | 0.1817 (3) | 0.8429 (2) | 0.0420 (7) | |
H2A | 0.698079 | 0.113165 | 0.823044 | 0.050* | |
H2B | 0.570144 | 0.153596 | 0.904753 | 0.050* | |
C3 | 0.5280 (3) | 0.4178 (3) | 0.6129 (2) | 0.0425 (7) | |
H3A | 0.583081 | 0.454137 | 0.548988 | 0.051* | |
H3B | 0.453500 | 0.392579 | 0.598837 | 0.051* | |
C4 | 0.4534 (3) | 0.5066 (3) | 0.6633 (2) | 0.0429 (7) | |
C5 | 0.3007 (4) | 0.5435 (4) | 0.6832 (3) | 0.0612 (10) | |
H5 | 0.244013 | 0.508835 | 0.666133 | 0.073* | |
C6 | 0.2325 (5) | 0.6292 (4) | 0.7271 (4) | 0.0755 (14) | |
H6 | 0.129331 | 0.653494 | 0.739876 | 0.091* | |
C7 | 0.3137 (5) | 0.6797 (4) | 0.7526 (3) | 0.0699 (13) | |
H7 | 0.266094 | 0.738051 | 0.783716 | 0.084* | |
C8 | 0.4657 (4) | 0.6458 (3) | 0.7330 (3) | 0.0541 (9) | |
H8 | 0.521300 | 0.680638 | 0.750940 | 0.065* | |
C9 | 0.5350 (3) | 0.5603 (3) | 0.6870 (2) | 0.0414 (7) | |
C10 | 0.8356 (4) | 0.1433 (3) | 0.9201 (2) | 0.0403 (7) | |
H10A | 0.885352 | 0.087425 | 0.882625 | 0.048* | |
H10B | 0.781416 | 0.102000 | 0.982074 | 0.048* | |
C11 | 0.9506 (3) | 0.1755 (3) | 0.9460 (2) | 0.0367 (6) | |
C12 | 0.9649 (4) | 0.1478 (3) | 1.0434 (2) | 0.0462 (8) | |
H12 | 0.894743 | 0.115714 | 1.094305 | 0.055* | |
C13 | 1.0791 (4) | 0.1657 (3) | 1.0681 (3) | 0.0538 (9) | |
H13 | 1.087727 | 0.145829 | 1.135118 | 0.065* | |
C14 | 1.1796 (4) | 0.2126 (3) | 0.9944 (3) | 0.0552 (9) | |
H14 | 1.259234 | 0.224058 | 1.010739 | 0.066* | |
C15 | 1.1668 (4) | 0.2435 (3) | 0.8968 (3) | 0.0458 (8) | |
H15 | 1.236347 | 0.277543 | 0.846914 | 0.055* | |
C16 | 1.0523 (3) | 0.2253 (3) | 0.8705 (2) | 0.0354 (6) | |
C17 | 0.6850 (4) | 0.2350 (3) | 0.6072 (2) | 0.0435 (7) | |
H17A | 0.706153 | 0.282658 | 0.537894 | 0.052* | |
H17B | 0.606877 | 0.200092 | 0.611962 | 0.052* | |
C18 | 0.8178 (4) | 0.1396 (3) | 0.6332 (2) | 0.0423 (7) | |
C19 | 0.8446 (5) | 0.0344 (3) | 0.6155 (3) | 0.0616 (10) | |
H19 | 0.773484 | 0.019132 | 0.593305 | 0.074* | |
C20 | 0.9743 (5) | −0.0461 (4) | 0.6304 (3) | 0.0690 (12) | |
H20 | 0.995152 | −0.117133 | 0.616886 | 0.083* | |
C21 | 1.0750 (5) | −0.0245 (3) | 0.6651 (3) | 0.0605 (10) | |
H21 | 1.166397 | −0.079264 | 0.675028 | 0.073* | |
C22 | 1.0391 (4) | 0.0793 (3) | 0.6851 (3) | 0.0477 (8) | |
H22 | 1.106771 | 0.093468 | 0.711293 | 0.057* | |
C23 | 0.6396 (3) | 0.3207 (3) | 0.9182 (2) | 0.0432 (7) | |
H23A | 0.609733 | 0.275136 | 0.986865 | 0.052* | |
H23B | 0.550307 | 0.367032 | 0.889121 | 0.052* | |
C24 | 0.7191 (3) | 0.4020 (3) | 0.9188 (2) | 0.0382 (7) | |
C25 | 0.6957 (4) | 0.4392 (3) | 0.9992 (3) | 0.0525 (9) | |
H25 | 0.629682 | 0.412743 | 1.056475 | 0.063* | |
C26 | 0.7693 (5) | 0.5151 (4) | 0.9953 (3) | 0.0623 (10) | |
H26 | 0.756092 | 0.540626 | 1.050250 | 0.075* | |
C27 | 0.8620 (5) | 0.5537 (4) | 0.9110 (3) | 0.0611 (10) | |
H27 | 0.912648 | 0.607246 | 0.906183 | 0.073* | |
C28 | 0.8803 (4) | 0.5130 (3) | 0.8334 (3) | 0.0491 (8) | |
H28 | 0.945997 | 0.538471 | 0.775576 | 0.059* | |
C29 | 0.9690 (3) | 0.4748 (3) | 0.4720 (2) | 0.0312 (6) | |
C30 | 0.8049 (6) | 0.7736 (4) | 0.5747 (4) | 0.0874 (16) | |
H30A | 0.794694 | 0.855829 | 0.536520 | 0.131* | |
H30B | 0.908275 | 0.732038 | 0.571185 | 0.131* | |
H30C | 0.761049 | 0.766725 | 0.643423 | 0.131* | |
O1W | 0.6925 (3) | 0.7827 (4) | 0.3435 (3) | 0.0742 (9) | |
H1W | 0.768 (3) | 0.763 (4) | 0.307 (3) | 0.090 (17)* | |
H2W | 0.711 (6) | 0.746 (4) | 0.4022 (18) | 0.10 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy1 | 0.02658 (7) | 0.03170 (7) | 0.02368 (7) | −0.01256 (5) | 0.00064 (4) | −0.00858 (5) |
N1 | 0.0363 (13) | 0.0385 (14) | 0.0313 (12) | −0.0163 (11) | −0.0087 (10) | −0.0036 (10) |
N2 | 0.0336 (12) | 0.0423 (14) | 0.0304 (12) | −0.0180 (11) | −0.0002 (10) | −0.0087 (11) |
N3 | 0.0425 (14) | 0.0350 (13) | 0.0359 (14) | −0.0110 (11) | −0.0056 (11) | −0.0093 (11) |
N4 | 0.0407 (14) | 0.0359 (13) | 0.0323 (13) | −0.0075 (11) | −0.0023 (10) | −0.0128 (11) |
O1 | 0.0384 (12) | 0.0367 (12) | 0.0539 (14) | −0.0058 (9) | −0.0119 (10) | −0.0147 (10) |
O2 | 0.0304 (10) | 0.0478 (12) | 0.0321 (11) | −0.0086 (9) | −0.0052 (8) | −0.0131 (9) |
O3 | 0.0450 (12) | 0.0477 (12) | 0.0279 (10) | −0.0287 (10) | 0.0019 (9) | −0.0130 (9) |
O4 | 0.0443 (11) | 0.0502 (12) | 0.0235 (10) | −0.0289 (10) | 0.0004 (8) | −0.0114 (9) |
O30 | 0.101 (2) | 0.0593 (18) | 0.070 (2) | −0.0406 (18) | −0.0105 (18) | −0.0069 (15) |
C1 | 0.0382 (16) | 0.055 (2) | 0.0406 (17) | −0.0265 (15) | −0.0046 (13) | −0.0054 (15) |
C2 | 0.0447 (17) | 0.0437 (18) | 0.0367 (16) | −0.0230 (15) | −0.0010 (13) | −0.0054 (14) |
C3 | 0.0405 (17) | 0.0515 (19) | 0.0359 (16) | −0.0180 (15) | −0.0163 (13) | −0.0018 (14) |
C4 | 0.0380 (16) | 0.0435 (18) | 0.0363 (17) | −0.0063 (14) | −0.0113 (13) | −0.0005 (14) |
C5 | 0.0369 (18) | 0.064 (3) | 0.065 (3) | −0.0081 (18) | −0.0109 (17) | −0.004 (2) |
C6 | 0.041 (2) | 0.069 (3) | 0.079 (3) | 0.005 (2) | 0.000 (2) | −0.005 (2) |
C7 | 0.065 (3) | 0.051 (2) | 0.054 (2) | 0.014 (2) | 0.002 (2) | −0.0050 (19) |
C8 | 0.059 (2) | 0.0417 (19) | 0.047 (2) | 0.0006 (17) | −0.0085 (17) | −0.0100 (16) |
C9 | 0.0391 (16) | 0.0387 (17) | 0.0331 (16) | −0.0033 (13) | −0.0080 (13) | −0.0013 (13) |
C10 | 0.0472 (18) | 0.0344 (16) | 0.0356 (16) | −0.0159 (14) | −0.0071 (13) | −0.0021 (13) |
C11 | 0.0384 (16) | 0.0292 (15) | 0.0391 (16) | −0.0056 (12) | −0.0068 (13) | −0.0093 (12) |
C12 | 0.055 (2) | 0.0376 (17) | 0.0387 (17) | −0.0062 (15) | −0.0128 (15) | −0.0054 (14) |
C13 | 0.067 (2) | 0.052 (2) | 0.046 (2) | −0.0057 (18) | −0.0245 (18) | −0.0162 (17) |
C14 | 0.052 (2) | 0.063 (2) | 0.061 (2) | −0.0081 (18) | −0.0208 (18) | −0.029 (2) |
C15 | 0.0351 (16) | 0.059 (2) | 0.0495 (19) | −0.0113 (15) | −0.0069 (14) | −0.0251 (17) |
C16 | 0.0334 (15) | 0.0344 (15) | 0.0368 (16) | −0.0017 (12) | −0.0071 (12) | −0.0147 (13) |
C17 | 0.0513 (19) | 0.0443 (18) | 0.0423 (18) | −0.0168 (15) | −0.0141 (15) | −0.0132 (15) |
C18 | 0.0545 (19) | 0.0415 (17) | 0.0352 (16) | −0.0192 (15) | −0.0043 (14) | −0.0129 (14) |
C19 | 0.083 (3) | 0.051 (2) | 0.064 (2) | −0.019 (2) | −0.016 (2) | −0.0283 (19) |
C20 | 0.096 (3) | 0.048 (2) | 0.069 (3) | −0.014 (2) | −0.011 (2) | −0.032 (2) |
C21 | 0.069 (3) | 0.042 (2) | 0.056 (2) | 0.0030 (18) | −0.0085 (19) | −0.0170 (18) |
C22 | 0.0507 (19) | 0.0397 (18) | 0.048 (2) | −0.0061 (15) | −0.0073 (15) | −0.0143 (15) |
C23 | 0.0352 (16) | 0.054 (2) | 0.0325 (16) | −0.0134 (14) | 0.0043 (12) | −0.0098 (14) |
C24 | 0.0368 (15) | 0.0381 (16) | 0.0290 (15) | 0.0035 (13) | −0.0053 (12) | −0.0105 (13) |
C25 | 0.054 (2) | 0.061 (2) | 0.0399 (19) | −0.0074 (18) | −0.0015 (15) | −0.0234 (17) |
C26 | 0.075 (3) | 0.071 (3) | 0.048 (2) | −0.012 (2) | −0.0042 (19) | −0.036 (2) |
C27 | 0.073 (3) | 0.060 (2) | 0.064 (3) | −0.023 (2) | −0.004 (2) | −0.035 (2) |
C28 | 0.061 (2) | 0.0468 (19) | 0.0449 (19) | −0.0197 (17) | −0.0011 (16) | −0.0204 (16) |
C29 | 0.0299 (14) | 0.0376 (15) | 0.0295 (14) | −0.0142 (12) | 0.0009 (11) | −0.0134 (12) |
C30 | 0.111 (4) | 0.073 (3) | 0.093 (4) | −0.046 (3) | 0.016 (3) | −0.044 (3) |
O1W | 0.0373 (14) | 0.123 (3) | 0.079 (2) | −0.0221 (16) | 0.0020 (15) | −0.056 (2) |
Dy1—O1 | 2.230 (2) | C10—C11 | 1.508 (4) |
Dy1—O2 | 2.246 (2) | C10—H10A | 0.9900 |
Dy1—O3 | 2.367 (2) | C10—H10B | 0.9900 |
Dy1—O4i | 2.3762 (19) | C11—C12 | 1.388 (5) |
Dy1—N4 | 2.523 (3) | C11—C16 | 1.405 (4) |
Dy1—N3 | 2.581 (3) | C12—C13 | 1.384 (5) |
Dy1—N2 | 2.606 (2) | C12—H12 | 0.9500 |
Dy1—N1 | 2.612 (2) | C13—C14 | 1.371 (6) |
N1—C17 | 1.473 (4) | C13—H13 | 0.9500 |
N1—C1 | 1.500 (4) | C14—C15 | 1.381 (5) |
N1—C3 | 1.501 (4) | C14—H14 | 0.9500 |
N2—C23 | 1.483 (4) | C15—C16 | 1.402 (4) |
N2—C10 | 1.488 (4) | C15—H15 | 0.9500 |
N2—C2 | 1.492 (4) | C17—C18 | 1.490 (5) |
N3—C22 | 1.343 (4) | C17—H17A | 0.9900 |
N3—C18 | 1.345 (4) | C17—H17B | 0.9900 |
N4—C28 | 1.330 (4) | C18—C19 | 1.398 (5) |
N4—C24 | 1.343 (4) | C19—C20 | 1.363 (6) |
O1—C9 | 1.348 (4) | C19—H19 | 0.9500 |
O2—C16 | 1.324 (4) | C20—C21 | 1.376 (6) |
O3—C29 | 1.254 (3) | C20—H20 | 0.9500 |
O4—C29 | 1.251 (3) | C21—C22 | 1.384 (5) |
O30—C30 | 1.431 (6) | C21—H21 | 0.9500 |
O30—H30 | 0.8400 | C22—H22 | 0.9500 |
C1—C2 | 1.483 (5) | C23—C24 | 1.506 (5) |
C1—H1A | 0.9900 | C23—H23A | 0.9900 |
C1—H1B | 0.9900 | C23—H23B | 0.9900 |
C2—H2A | 0.9900 | C24—C25 | 1.381 (5) |
C2—H2B | 0.9900 | C25—C26 | 1.374 (6) |
C3—C4 | 1.479 (5) | C25—H25 | 0.9500 |
C3—H3A | 0.9900 | C26—C27 | 1.373 (6) |
C3—H3B | 0.9900 | C26—H26 | 0.9500 |
C4—C9 | 1.396 (5) | C27—C28 | 1.379 (5) |
C4—C5 | 1.407 (5) | C27—H27 | 0.9500 |
C5—C6 | 1.376 (7) | C28—H28 | 0.9500 |
C5—H5 | 0.9500 | C29—C29i | 1.555 (5) |
C6—C7 | 1.377 (7) | C30—H30A | 0.9800 |
C6—H6 | 0.9500 | C30—H30B | 0.9800 |
C7—C8 | 1.400 (6) | C30—H30C | 0.9800 |
C7—H7 | 0.9500 | O1W—H1W | 0.824 (19) |
C8—C9 | 1.395 (5) | O1W—H2W | 0.859 (19) |
C8—H8 | 0.9500 | ||
O1—Dy1—O2 | 144.63 (8) | C9—C8—H8 | 120.3 |
O1—Dy1—O3 | 84.42 (8) | C7—C8—H8 | 120.3 |
O2—Dy1—O3 | 116.58 (8) | O1—C9—C8 | 120.5 (3) |
O1—Dy1—O4i | 81.35 (8) | O1—C9—C4 | 119.3 (3) |
O2—Dy1—O4i | 80.87 (8) | C8—C9—C4 | 120.2 (3) |
O3—Dy1—O4i | 68.63 (6) | N2—C10—C11 | 117.3 (2) |
O1—Dy1—N4 | 72.89 (8) | N2—C10—H10A | 108.0 |
O2—Dy1—N4 | 74.69 (8) | C11—C10—H10A | 108.0 |
O3—Dy1—N4 | 145.79 (8) | N2—C10—H10B | 108.0 |
O4i—Dy1—N4 | 82.64 (8) | C11—C10—H10B | 108.0 |
O1—Dy1—N3 | 138.31 (8) | H10A—C10—H10B | 107.2 |
O2—Dy1—N3 | 76.73 (8) | C12—C11—C16 | 119.5 (3) |
O3—Dy1—N3 | 75.05 (8) | C12—C11—C10 | 120.9 (3) |
O4i—Dy1—N3 | 121.88 (8) | C16—C11—C10 | 119.4 (3) |
N4—Dy1—N3 | 138.23 (8) | C13—C12—C11 | 121.5 (3) |
O1—Dy1—N2 | 102.00 (8) | C13—C12—H12 | 119.2 |
O2—Dy1—N2 | 77.22 (8) | C11—C12—H12 | 119.2 |
O3—Dy1—N2 | 145.35 (7) | C14—C13—C12 | 119.0 (3) |
O4i—Dy1—N2 | 145.73 (7) | C14—C13—H13 | 120.5 |
N4—Dy1—N2 | 66.38 (8) | C12—C13—H13 | 120.5 |
N3—Dy1—N2 | 78.08 (8) | C13—C14—C15 | 120.9 (3) |
O1—Dy1—N1 | 75.09 (8) | C13—C14—H14 | 119.6 |
O2—Dy1—N1 | 133.82 (8) | C15—C14—H14 | 119.6 |
O3—Dy1—N1 | 79.56 (7) | C14—C15—C16 | 120.8 (3) |
O4i—Dy1—N1 | 141.93 (7) | C14—C15—H15 | 119.6 |
N4—Dy1—N1 | 117.22 (8) | C16—C15—H15 | 119.6 |
N3—Dy1—N1 | 65.83 (8) | O2—C16—C15 | 121.0 (3) |
N2—Dy1—N1 | 69.63 (8) | O2—C16—C11 | 120.7 (3) |
C17—N1—C1 | 111.6 (3) | C15—C16—C11 | 118.3 (3) |
C17—N1—C3 | 105.0 (2) | N1—C17—C18 | 114.9 (3) |
C1—N1—C3 | 107.6 (2) | N1—C17—H17A | 108.5 |
C17—N1—Dy1 | 108.94 (18) | C18—C17—H17A | 108.5 |
C1—N1—Dy1 | 111.06 (17) | N1—C17—H17B | 108.5 |
C3—N1—Dy1 | 112.49 (17) | C18—C17—H17B | 108.5 |
C23—N2—C10 | 110.9 (2) | H17A—C17—H17B | 107.5 |
C23—N2—C2 | 110.7 (2) | N3—C18—C19 | 121.8 (3) |
C10—N2—C2 | 105.4 (2) | N3—C18—C17 | 117.4 (3) |
C23—N2—Dy1 | 107.39 (18) | C19—C18—C17 | 120.7 (3) |
C10—N2—Dy1 | 112.67 (17) | C20—C19—C18 | 119.1 (4) |
C2—N2—Dy1 | 109.85 (17) | C20—C19—H19 | 120.5 |
C22—N3—C18 | 117.8 (3) | C18—C19—H19 | 120.5 |
C22—N3—Dy1 | 123.9 (2) | C19—C20—C21 | 120.0 (4) |
C18—N3—Dy1 | 118.3 (2) | C19—C20—H20 | 120.0 |
C28—N4—C24 | 118.4 (3) | C21—C20—H20 | 120.0 |
C28—N4—Dy1 | 122.3 (2) | C20—C21—C22 | 118.0 (4) |
C24—N4—Dy1 | 119.1 (2) | C20—C21—H21 | 121.0 |
C9—O1—Dy1 | 133.9 (2) | C22—C21—H21 | 121.0 |
C16—O2—Dy1 | 132.11 (18) | N3—C22—C21 | 123.4 (4) |
C29—O3—Dy1 | 118.66 (17) | N3—C22—H22 | 118.3 |
C29—O4—Dy1i | 119.02 (17) | C21—C22—H22 | 118.3 |
C30—O30—H30 | 109.5 | N2—C23—C24 | 113.1 (2) |
C2—C1—N1 | 114.0 (3) | N2—C23—H23A | 109.0 |
C2—C1—H1A | 108.8 | C24—C23—H23A | 109.0 |
N1—C1—H1A | 108.8 | N2—C23—H23B | 109.0 |
C2—C1—H1B | 108.8 | C24—C23—H23B | 109.0 |
N1—C1—H1B | 108.8 | H23A—C23—H23B | 107.8 |
H1A—C1—H1B | 107.7 | N4—C24—C25 | 121.9 (3) |
C1—C2—N2 | 113.7 (3) | N4—C24—C23 | 116.7 (3) |
C1—C2—H2A | 108.8 | C25—C24—C23 | 121.4 (3) |
N2—C2—H2A | 108.8 | C26—C25—C24 | 119.1 (3) |
C1—C2—H2B | 108.8 | C26—C25—H25 | 120.5 |
N2—C2—H2B | 108.8 | C24—C25—H25 | 120.5 |
H2A—C2—H2B | 107.7 | C27—C26—C25 | 119.2 (3) |
C4—C3—N1 | 115.0 (3) | C27—C26—H26 | 120.4 |
C4—C3—H3A | 108.5 | C25—C26—H26 | 120.4 |
N1—C3—H3A | 108.5 | C26—C27—C28 | 118.7 (4) |
C4—C3—H3B | 108.5 | C26—C27—H27 | 120.7 |
N1—C3—H3B | 108.5 | C28—C27—H27 | 120.7 |
H3A—C3—H3B | 107.5 | N4—C28—C27 | 122.7 (3) |
C9—C4—C5 | 118.8 (3) | N4—C28—H28 | 118.7 |
C9—C4—C3 | 119.7 (3) | C27—C28—H28 | 118.7 |
C5—C4—C3 | 121.4 (3) | O4—C29—O3 | 126.9 (3) |
C6—C5—C4 | 120.9 (4) | O4—C29—C29i | 116.1 (3) |
C6—C5—H5 | 119.5 | O3—C29—C29i | 117.0 (3) |
C4—C5—H5 | 119.5 | O30—C30—H30A | 109.5 |
C5—C6—C7 | 120.0 (4) | O30—C30—H30B | 109.5 |
C5—C6—H6 | 120.0 | H30A—C30—H30B | 109.5 |
C7—C6—H6 | 120.0 | O30—C30—H30C | 109.5 |
C6—C7—C8 | 120.5 (4) | H30A—C30—H30C | 109.5 |
C6—C7—H7 | 119.7 | H30B—C30—H30C | 109.5 |
C8—C7—H7 | 119.7 | H1W—O1W—H2W | 105 (4) |
C9—C8—C7 | 119.5 (4) | ||
C17—N1—C1—C2 | 86.2 (3) | C10—C11—C16—O2 | 7.2 (4) |
C3—N1—C1—C2 | −159.1 (3) | C12—C11—C16—C15 | 1.0 (4) |
Dy1—N1—C1—C2 | −35.6 (3) | C10—C11—C16—C15 | −173.6 (3) |
N1—C1—C2—N2 | 55.5 (4) | C1—N1—C17—C18 | −79.8 (3) |
C23—N2—C2—C1 | 74.6 (3) | C3—N1—C17—C18 | 163.9 (3) |
C10—N2—C2—C1 | −165.5 (3) | Dy1—N1—C17—C18 | 43.2 (3) |
Dy1—N2—C2—C1 | −43.9 (3) | C22—N3—C18—C19 | 2.1 (5) |
C17—N1—C3—C4 | 177.2 (3) | Dy1—N3—C18—C19 | 179.2 (3) |
C1—N1—C3—C4 | 58.2 (3) | C22—N3—C18—C17 | −174.5 (3) |
Dy1—N1—C3—C4 | −64.4 (3) | Dy1—N3—C18—C17 | 2.6 (4) |
N1—C3—C4—C9 | 61.3 (4) | N1—C17—C18—N3 | −32.3 (4) |
N1—C3—C4—C5 | −122.4 (3) | N1—C17—C18—C19 | 151.0 (3) |
C9—C4—C5—C6 | −1.4 (5) | N3—C18—C19—C20 | −3.4 (6) |
C3—C4—C5—C6 | −177.7 (4) | C17—C18—C19—C20 | 173.1 (4) |
C4—C5—C6—C7 | −0.3 (6) | C18—C19—C20—C21 | 1.8 (7) |
C5—C6—C7—C8 | 0.9 (7) | C19—C20—C21—C22 | 0.9 (6) |
C6—C7—C8—C9 | 0.2 (6) | C18—N3—C22—C21 | 0.8 (5) |
Dy1—O1—C9—C8 | 126.2 (3) | Dy1—N3—C22—C21 | −176.1 (3) |
Dy1—O1—C9—C4 | −54.6 (4) | C20—C21—C22—N3 | −2.3 (6) |
C7—C8—C9—O1 | 177.3 (3) | C10—N2—C23—C24 | 77.3 (3) |
C7—C8—C9—C4 | −1.9 (5) | C2—N2—C23—C24 | −166.1 (3) |
C5—C4—C9—O1 | −176.8 (3) | Dy1—N2—C23—C24 | −46.2 (3) |
C3—C4—C9—O1 | −0.4 (4) | C28—N4—C24—C25 | 1.4 (5) |
C5—C4—C9—C8 | 2.4 (5) | Dy1—N4—C24—C25 | 178.0 (2) |
C3—C4—C9—C8 | 178.9 (3) | C28—N4—C24—C23 | 179.0 (3) |
C23—N2—C10—C11 | −63.2 (3) | Dy1—N4—C24—C23 | −4.4 (3) |
C2—N2—C10—C11 | 176.9 (3) | N2—C23—C24—N4 | 36.1 (4) |
Dy1—N2—C10—C11 | 57.1 (3) | N2—C23—C24—C25 | −146.3 (3) |
N2—C10—C11—C12 | 121.6 (3) | N4—C24—C25—C26 | −1.3 (5) |
N2—C10—C11—C16 | −63.9 (4) | C23—C24—C25—C26 | −178.8 (3) |
C16—C11—C12—C13 | −1.4 (5) | C24—C25—C26—C27 | 1.2 (6) |
C10—C11—C12—C13 | 173.1 (3) | C25—C26—C27—C28 | −1.2 (6) |
C11—C12—C13—C14 | 0.4 (5) | C24—N4—C28—C27 | −1.4 (5) |
C12—C13—C14—C15 | 1.0 (6) | Dy1—N4—C28—C27 | −177.8 (3) |
C13—C14—C15—C16 | −1.4 (6) | C26—C27—C28—N4 | 1.3 (6) |
Dy1—O2—C16—C15 | −129.4 (3) | Dy1i—O4—C29—O3 | −174.1 (2) |
Dy1—O2—C16—C11 | 49.8 (4) | Dy1i—O4—C29—C29i | 6.2 (4) |
C14—C15—C16—O2 | 179.6 (3) | Dy1—O3—C29—O4 | −173.9 (2) |
C14—C15—C16—C11 | 0.4 (5) | Dy1—O3—C29—C29i | 5.8 (4) |
C12—C11—C16—O2 | −178.2 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O30—H30···O1 | 0.84 | 1.80 | 2.636 (4) | 178 |
C1—H1B···O1Wii | 0.99 | 2.58 | 3.448 (4) | 146 |
O1W—H1W···O2i | 0.82 (2) | 1.97 (2) | 2.785 (4) | 167 (5) |
O1W—H2W···O30 | 0.86 (2) | 1.95 (3) | 2.759 (5) | 158 (5) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
GAB and JFS thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships. The authors thank Dr David L. Hughes (University of East Anglia, UK) for training and discussions, and the late Professor Sueli M. Drechsel for helpful suggestions.
Funding information
Funding for this research was provided by: Fundação Araucária (grant No. 283/2014 - protocol 37509); Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (grant No. 308426/2016-9); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES (grant No. 001).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chatterton, N. Y., Bretonnière, J., Pécaut, J. & Mazzanti, M. (2005). Angew. Chem. Int. Ed. 44, 7595–7598. CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Feng, X., Chen, J., Wang, L., Xie, S.-Y., Yang, S., Huo, S. & Ng, S. (2014). CrystEngComm, 16, 1334–1343. CrossRef CAS Google Scholar
Gregório, T., Rüdiger, A. L., Nunes, G. G., Soares, J. F. & Hughes, D. L. (2015). Acta Cryst. E71, 65–68. Web of Science CrossRef IUCr Journals Google Scholar
Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. (2003). J. Am. Chem. Soc. 125, 8694–8695. CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Krishnamurty, K. V. & Harris, G. M. (1960). J. Phys. Chem. 64, 346–349. CrossRef CAS Google Scholar
Liu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441–5450. CrossRef CAS Google Scholar
Llunell, M., Casanova, D., Cirera, J., Bofill, J. M., Alemany, P., Alvarez, S., Pinsky, M. & Avnir, D. (2005). SHAPE. University of Barcelona and The Hebrew University of Jerusalem, Barcelona, Spain. Google Scholar
Molloy, J., Jarjayes, O., Philouze, C., Fedele, L., Imbert, D. & Thomas, F. (2017). Chem. Commun. 53, 605–608. CrossRef CAS Google Scholar
Morss, L. & Rogers, R. (1997). Inorg. Chim. Acta, 255, 193–197. CrossRef CAS Google Scholar
Neves, A., Erthal, S. M. D., Vencato, I., Ceccato, A. S., Mascarenhas, Y. P., Nascimento, O. R., Horner, M. & Batista, A. A. (1992). Inorg. Chem. 31, 4749–4755. CrossRef CAS Web of Science Google Scholar
Piquer, L. P. & Sañudo, E. C. (2015). Dalton Trans. 44, 8771–8780. Google Scholar
Qin, J., Wang, P., Li, Q., Zhang, Y., Yuan, D. & Yao, Y. (2014). Chem. Commun. 50, 10952–10955. CrossRef CAS Google Scholar
Setyawati, I. A., Liu, S., Rettig, S. J. & Orvig, C. (2000). Inorg. Chem. 39, 496–507. Web of Science CrossRef PubMed CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Xu, G. F., Gamez, P., Tang, J., Clérac, R., Guo, Y. N. & Guo, Y. (2012). Inorg. Chem. 51, 5693–5698. CrossRef CAS Google Scholar
Xu, G.-F., Wang, Q.-L., Gamez, P., Ma, Y., Clérac, R., Tang, J., Yan, S.-P., Cheng, P. & Liao, D.-Z. (2010). Chem. Commun. 46, 1506–1508. CrossRef CAS Google Scholar
Yamada, Y., Koori, D., Mori, K. & Oshikawa, Y. (2016). J. Coord. Chem. 69, 3735–3744. CrossRef CAS Google Scholar
Yamada, Y., Takenouchi, S. I., Miyoshi, Y. & Okamoto, K. I. (2010). J. Coord. Chem. 63, 996–1012. Web of Science CrossRef CAS Google Scholar
Zhang, S., Ke, H., Liu, X., Wei, Q., Xie, G. & Chen, S. (2015). Chem. Commun. 51, 15188–15191. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.