research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Na+[Me3NB12Cl11]·SO2: a rare example of a sodium–SO2 complex

CROSSMARK_Color_square_no_text.svg

aAnorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
*Correspondence e-mail: carsten.jenne@uni-wuppertal.de

Edited by A. M. Chippindale, University of Reading, England (Received 15 March 2019; accepted 5 April 2019; online 9 April 2019)

In the title compound, Na+[Me3NB12Cl11]·SO2 [systematic name: sodium 1-(trimethylammonio)­undeca­chloro-closo-dodeca­borate sulfur dioxide], the SO2 mol­ecule is η1-O-coordinated to the Na+ cation. Surprisingly, the SO2 mol­ecule is more weakly bound to sodium than is found in other sodium–SO2 complexes and the SO2 mol­ecule is essentially undistorted compared to the structure of free SO2. The Na+ cation has a coordination number of eight in a distorted twofold-capped trigonal prism and makes contacts to three individual boron cluster anions, resulting in an overall three-dimensional network. Although the number of known η1-O-coordinated SO2 complexes is growing, sodium-SO2 complexes are still rare.

1. Chemical context

Liquid sulfur dioxide is a polar but only very weakly coordinating solvent (Waddington, 1965[Waddington, T. C. (1965). Non-Aqueous Solvent Systems. London: Academic Press.]), which is frequently used in organic and inorganic synthesis. The coordination chemistry in and of sulfur dioxide has been the topic of various reviews (Mingos, 1978[Mingos, D. M. P. (1978). Transition Met. Chem. 3, 1-15.]; Ryan et al., 1981[Ryan, R. R., Kubas, G. J., Moody, D. C. & Eller, P. G. (1981). Struct. Bond. 46, 47-100.]; Mews et al., 2000[Mews, R., Lork, E., Watson, P. G. & Görtler, B. (2000). Coord. Chem. Rev. 197, 277-320.]). Initially, only S- and η2-S,O-coordination of SO2 with soft transition-metal centers were investigated, but it was subsequently shown that η1-O-coordination of SO2 is preferred with hard main-group and transition-metal cations. Theoretical studies established that the oxygen–metal cation bonds are purely ionic (Decken et al., 2009[Decken, A., Knapp, C., Nikiforov, G. B., Passmore, J., Rautiainen, J. M., Wang, X. & Zeng, X. (2009). Chem. Eur. J. 15, 6504-6517.]; Derendorf et al., 2010[Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671-8678.]). Mews and co-workers crystallized metal hexa­fluoro arsenates M[AsF6] (M = alkaline-earth and transition-metal cations) from liquid sulfur dioxide to obtain their SO2 complexes (Mews et al., 2000[Mews, R., Lork, E., Watson, P. G. & Görtler, B. (2000). Coord. Chem. Rev. 197, 277-320.]). Unfortunately, the alkali-metal hexa­fluoro arsenates, M[AsF6] (M = Li, Na, K), are almost insoluble in liquid sulfur dioxide and the corresponding SO2 complexes remained elusive. Until recently, only two examples of alkali-metal–SO2 complexes were known; namely, the η2-O,O bridged coordination complexes, [Li(OSO)6/2][AlCl4] (Simon et al., 1980[Simon, A., Peters, K., Peters, E. M., Kühnl, H. & Koslowski, B. (1980). Z. Anorg. Allg. Chem. 469, 94-100.]) and [Na(OSO)1.5][AlCl4] (Peters et al., 1982[Peters, K., Simon, A., Peters, E. M., Kühnl, H. & Koslowski, B. (1982). Z. Anorg. Allg. Chem. 492, 7-14.]), crystallized in the presence of the [AlCl4] anion. Only after the introduction of modern weakly coordinating anions into sulfur dioxide coordination chemistry could alkali-metal sulfur dioxide complexes be studied intentionally. By using a large fluorinated aluminate anion, the crystal structure of [(OSO)2Li{AlF(Al(OR)3}Li{Al(OR)4}] [R = C(CF3)3] (Cameron et al., 2010[Cameron, T. S., Nikiforov, G. B., Passmore, J. & Rautiainen, J. M. (2010). Dalton Trans. 39, 2587-2596.]) was determined. In addition, use of halogenated closo-dodeca­borates [B12X12]2− (X = F–I) led to a systematic study of alkali-metal sulfur dioxide complexes (Derendorf et al., 2010[Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671-8678.]). Halogenated closo-dodeca­borates belong to the growing class of modern weakly coordinating anions (Knapp, 2013[Knapp, C. (2013). Comprehensive Inorganic Chemistry II Vol. 1, edited by J. Reedijk & K. Poeppelmeier, pp. 651-679. Amsterdam: Elsevier.]). The [Me3NB12Cl11] anion represents a recent modification of the halogenated closo-dodeca­borates and possesses a reduced charge of −1 (Bolli et al., 2014[Bolli, C., Derendorf, J., Jenne, C., Scherer, H., Sindlinger, C. P. & Wegener, B. (2014). Chem. Eur. J. 20, 13783-13792.]). This anion has been utilized very recently to stabilize a variety of reactive cations in the solid state (e.g. Bertocco et al., 2016[Bertocco, P., Bolli, C., Derendorf, J., Jenne, C., Klein, A. & Stirnat, K. (2016). Chem. Eur. J. 22, 16032-16036.]) and has been applied in silver-free gold catalysis (Wegener et al., 2015[Wegener, M., Huber, F., Bolli, C., Jenne, C. & Kirsch, S. F. (2015). Chem. Eur. J. 21, 1328-1336.]). From a failed attempt to prepare [Et3SiOS(H)OSiEt3][Me3NB12Cl11], we obtained single crystals of the title compound as a by-product. Na+[Me3NB12Cl11]·SO2 is a rare example of a sodium–SO2 complex, and its crystal structure is discussed herein.

[Scheme 1]

2. Structural commentary

The title salt crystallizes with one SO2 mol­ecule per formula unit (Fig. 1[link]). The SO2 mol­ecule is η1-O-bonded to the Na+ cation, as is expected for SO2 coordination to hard-metal centers. The Na+—O distance of 2.428 (4) Å is about 0.1 Å longer than the average Na+⋯O distance (of 2.34 Å) found in the Na2[B12X12nSO2 (X = H, Cl–I) complexes, which indicates weaker coordination. The S—O bonds are essentially of equal length [1.428 (3) and 1.412 (4) Å; Table 1[link]] and very close to the values found in a free SO2 mol­ecule in either the solid state [1.4299 (3) Å; Grabowsky et al., 2012[Grabowsky, S., Luger, P., Buschmann, J., Schneider, T., Schirmeister, T., Sobolev, A. N. & Jayatilaka, D. (2012). Angew. Chem. Int. Ed. 51, 6776-6779.]] or in the gas phase [1.4343 (3) Å; Holder & Fink, 1981[Holder, C. H. & Fink, M. (1981). J. Chem. Phys. 75, 5323-5325.]]. This behaviour is in contrast to that observed in other coordination compounds with η1-O-coordinated terminal SO2 ligands (e.g. Mews et al., 2000[Mews, R., Lork, E., Watson, P. G. & Görtler, B. (2000). Coord. Chem. Rev. 197, 277-320.]) where lengthening of the S—Oc bond and shortening of the S—Ot bond occurs, as predicted by theoretical concepts (Decken et al., 2009[Decken, A., Knapp, C., Nikiforov, G. B., Passmore, J., Rautiainen, J. M., Wang, X. & Zeng, X. (2009). Chem. Eur. J. 15, 6504-6517.]; Derendorf et al., 2010[Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671-8678.]). Thus, the current finding is in accord with weaker coordination of the SO2 mol­ecule to Na+ than is found in other SO2 complexes of hard metal cations. In addition to coordinating to the SO2 mol­ecule, each sodium cation coordinates to seven of the eleven chlorine atoms of the boron cluster (Fig. 1[link]).

Table 1
Selected geometric parameters (Å, °)

Cl4—Na1i 3.209 (2) Cl5—B5 1.800 (5)
Cl5—Na1ii 3.050 (2) Cl6—B6 1.801 (4)
Cl6—Na1ii 3.031 (2) Cl7—B7 1.792 (5)
Cl7—Na1 3.179 (2) Cl8—B8 1.783 (4)
Cl9—Na1i 2.975 (2) Cl9—B9 1.803 (4)
Cl10—Na1ii 3.051 (2) Cl10—B10 1.800 (5)
Cl12—Na1 2.870 (2) Cl11—B11 1.779 (5)
S1—O1 1.428 (3) Cl12—B12 1.796 (5)
S1—O2 1.412 (4) N1—B1 1.600 (5)
Na1—O1 2.428 (4) N1—C1 1.510 (5)
Cl2—B2 1.785 (5) N1—C2 1.503 (5)
Cl3—B3 1.797 (4) N1—C3 1.503 (6)
Cl4—B4 1.800 (5)    
       
O1—S1—O2 116.8 (2) S1—O1—Na1 147.0 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 1]
Figure 1
Coordination sphere around the Na+ cation. The Na+ cation makes a total of eight contacts (dashed lines) to three individual boron cluster anions and to one sulfur dioxide mol­ecule. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are shown with arbitrary radii. Symmetry codes: (a) 1 + x, y, z; (b) −1 + x, −[{1\over 2}] + y, [{1\over 2}] − z.

In the packed structure, two sodium cations are coordinated in an η2-fashion to two chlorine atoms, while a third sodium cation is coordinated in an η3-manner to three chlorine atoms (Fig. 2[link]). The Cl⋯Na+ distances range from 2.870 (2) to 3.209 (2) Å, and are, on average, longer than those in Na2[B12Cl12]·4SO2 (i.e. 3.052 vs 2.929 Å) (Derendorf et al., 2010[Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671-8678.]), and are in accord with the sum of the van der Waals radius of chlorine (1.75 Å; Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]) and the ionic radius of sodium (1.18 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) of 2.93 Å. However, when anisotropy of the van der Waals radius (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]) is taken into account, the inter­molecular distances are still in the expected range. The B—Cl bond lengths of the chlorine atoms coordinating to Na+ lie in the range 1.796 (5) to 1.803 (4) Å (av. 1.799 Å) and are only slightly longer than those of the non-coordinating chlorine atoms [1.779 (5) to 1.797 (4) Å, av. 1.786 Å]. It has previously been noted that the presence of strong Lewis acids, such as Me+ or R3Si+, leads to a significant elongation of the B—Cl bonds by up to 0.1 Å (Bolli et al., 2010[Bolli, C., Derendorf, J., Kessler, M., Knapp, C., Scherer, H., Schulz, C. & Warneke, J. (2010). Angew. Chem. Int. Ed. 49, 3536-3538.], 2014[Bolli, C., Derendorf, J., Jenne, C., Scherer, H., Sindlinger, C. P. & Wegener, B. (2014). Chem. Eur. J. 20, 13783-13792.]; Kessler et al., 2010[Kessler, M., Knapp, C., Sagawe, V., Scherer, H. & Uzun, R. (2010). Inorg. Chem. 49, 5223-5230.]). Therefore, in the title compound, the Cl⋯Na+ inter­action can be classified as weak and the singly charged [Me3NB12Cl11] anion is more weakly coordinating towards Na+ than the doubly charged [B12Cl12]2− anion.

[Figure 2]
Figure 2
Coordination sphere around one [Me3NB12Cl11] anion. The boron cluster anions form a total of seven contacts (dashed lines) to three individual Na+ cations. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are shown with arbitrary radii. Symmetry codes: (a) 1 + x, y, z; (b) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z.

3. Supra­molecular features

The Na+ cation is surrounded by seven chlorine atoms from three different boron clusters and one oxygen atom from a SO2 mol­ecule, resulting in a total coordination number of 8 (Fig. 1[link]) and giving rise to a three-dimensional network. The polyhedron around Na+ may be best described as a distorted twofold-capped trigonal prism (Fig. 3[link]). The structure of the title compound is reminiscent of that of Ag[Me3NB12Cl11]·SO2 (Jenne & Wegener, 2018[Jenne, C. & Wegener, B. (2018). Z. Anorg. Allg. Chem. 644, 1123-1132.]), although the coordination sphere around the metal cations is different in the two structures. The Na+⋯Cl contacts are weaker than the Ag+⋯Cl contacts and there is also only one SO2 mol­ecule per cation present in the title compound. The [Me3NB12Cl11] anions are placed in a body-centered cubic arrangement (Fig. 4[link]) with some of the inter­molecular Cl⋯Cl distances being shorter than the sum of the van Waals radii (3.50 Å; Mantina et al., 2009[Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.]). The [Me3NB12Cl11] anions pack quite efficiently in the solid state and unlike in Na2[B12Cl12]·4SO2, where the structure contains two mol­ecules of SO2 per sodium cation to separate the doubly charged anions, only one SO2 mol­ecule is required in this case.

[Figure 3]
Figure 3
Distorted twofold-capped trigonal prism around the Na+ cation. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4]
Figure 4
Part of the crystal structure illustrating the distorted body-centered cubic arrangement of the [Me3NB12Cl11] anions. Displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms were omitted for clarity. Selected inter­molecular contacts below 3.5 Å are shown [dashed lines; Cl2⋯Cl6 = 3.492 (14) Å and Cl8⋯Cl11 = 3.3760 (14) Å].

4. Database survey

The [Me3NB12Cl11] anion was first reported in 2014 (Bolli et al., 2014[Bolli, C., Derendorf, J., Jenne, C., Scherer, H., Sindlinger, C. P. & Wegener, B. (2014). Chem. Eur. J. 20, 13783-13792.]) and a variety of crystal structures containing this anion have been published (e.g. Saleh et al., 2016[Saleh, M., Powell, D. R. & Wehmschulte, R. J. (2016). Inorg. Chem. 55, 10617-10627.]; Bertocco et al., 2016[Bertocco, P., Bolli, C., Derendorf, J., Jenne, C., Klein, A. & Stirnat, K. (2016). Chem. Eur. J. 22, 16032-16036.]; Bolli et al., 2017[Bolli, C., Derendorf, J., Jenne, C. & Kessler, M. (2017). Eur. J. Inorg. Chem. pp. 4552-4558.]; Jenne & Wegener, 2018[Jenne, C. & Wegener, B. (2018). Z. Anorg. Allg. Chem. 644, 1123-1132.]), in which the [Me3NB12Cl11] anion is essentially identical to that reported in this study. Sodium complexes of fluorinated closo-dodeca­borates were studied recently by Strauss and co-workers (Bukovsky et al., 2017a[Bukovsky, E. V., Peryshkov, D. V., Wu, H., Zhou, W., Tang, W. S., Jones, W. M., Stavila, V., Udovic, T. J. & Strauss, S. H. (2017a). Inorg. Chem. 56, 4369-4379.],b[Bukovsky, E. V., Pluntze, A. M. & Strauss, S. H. (2017b). J. Fluor. Chem. 203, 90-98.]). Sodium–SO2 complexes are still rare. Only the complex [Na(OSO)1.5][AlCl4] (Peters et al., 1982[Peters, K., Simon, A., Peters, E. M., Kühnl, H. & Koslowski, B. (1982). Z. Anorg. Allg. Chem. 492, 7-14.]) and four complexes of the type Na2[B12X12nSO2 (X = H, Cl–I) (Derendorf et al., 2010[Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671-8678.]) are known. The number of η1-O-bonded SO2 complexes is growing, although there is still some terra incognita in the Periodic Table. Structures published before the year 2000 are compiled in a review (Mews et al., 2000[Mews, R., Lork, E., Watson, P. G. & Görtler, B. (2000). Coord. Chem. Rev. 197, 277-320.]). Recent examples include alkali-metal (Cameron et al., 2010[Cameron, T. S., Nikiforov, G. B., Passmore, J. & Rautiainen, J. M. (2010). Dalton Trans. 39, 2587-2596.]; Derendorf et al., 2010[Derendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671-8678.]; Malischewski et al., 2016[Malischewski, M., Peryshkov, D. V., Bukovsky, E. V., Seppelt, K. & Strauss, S. H. (2016). Inorg. Chem. 55, 12254-12262.]) and transition-metal complexes (Knapp & Mews, 2005[Knapp, C. & Mews, R. (2005). Eur. J. Inorg. Chem. pp. 3536-3542.]; Akkuş et al., 2006[Akkuş, Ö. N., Decken, A., Knapp, C. & Passmore, J. (2006). J. Chem. Crystallogr. 36, 321-329.]; Decken et al., 2009[Decken, A., Knapp, C., Nikiforov, G. B., Passmore, J., Rautiainen, J. M., Wang, X. & Zeng, X. (2009). Chem. Eur. J. 15, 6504-6517.]; Aris et al., 2011[Aris, D., Beck, J., Decken, A., Dionne, I., Schmedt auf der Günne, J., Hoffbauer, W., Köchner, T., Krossing, I., Passmore, J., Rivard, E., Steden, F. & Wang, X. (2011). Dalton Trans. 40, 5865-5880.]; Malischewski et al., 2016[Malischewski, M., Peryshkov, D. V., Bukovsky, E. V., Seppelt, K. & Strauss, S. H. (2016). Inorg. Chem. 55, 12254-12262.], Jenne & Wegener, 2018[Jenne, C. & Wegener, B. (2018). Z. Anorg. Allg. Chem. 644, 1123-1132.]).

5. Synthesis and crystallization

The crystals were obtained as a by-product from a reaction of [CPh3][Me3NB12Cl11] with Et3SiH and SO2 in 1,2-di­fluoro­benzene designed to give [Et3SiOS(H)OSiEt3][Me3NB12Cl11] in analogy to a published procedure (Kessler et al., 2010[Kessler, M., Knapp, C., Sagawe, V., Scherer, H. & Uzun, R. (2010). Inorg. Chem. 49, 5223-5230.]). Crystallization of the red–brown product from 1,2-di­fluoro­benzene/n-pentane yielded the title compound as colorless crystals. The source of the sodium cation remains uncertain, but it may arise from an incomplete conversion of Na[Me3NB12Cl11] to [CPh3][Me3NB12Cl11] (Bolli et al., 2014[Bolli, C., Derendorf, J., Jenne, C., Scherer, H., Sindlinger, C. P. & Wegener, B. (2014). Chem. Eur. J. 20, 13783-13792.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and refined as riding with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula Na+C3H9B12Cl11N·SO2
Mr 665.83
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 9.1943 (3), 12.9081 (4), 19.4486 (5)
V3) 2308.19 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.44
Crystal size (mm) 0.06 × 0.05 × 0.05
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.984, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10389, 4967, 4560
Rint 0.032
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.064, 1.04
No. of reflections 4967
No. of parameters 283
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.44
Absolute structure Flack x determined using 1789 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.09 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Sodium 1-(trimethylammonio)undecachloro-closo-dodecaborate sulfur dioxide top
Crystal data top
Na+·C3H9B12Cl11N·SO2Dx = 1.916 Mg m3
Mr = 665.83Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4780 reflections
a = 9.1943 (3) Åθ = 2.6–28.9°
b = 12.9081 (4) ŵ = 1.44 mm1
c = 19.4486 (5) ÅT = 150 K
V = 2308.19 (11) Å3Block, colourless
Z = 40.06 × 0.05 × 0.05 mm
F(000) = 1296
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini ultra
diffractometer
4967 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.2705 pixels mm-1θmax = 27.0°, θmin = 1.9°
ω scansh = 118
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1612
Tmin = 0.984, Tmax = 1.000l = 2424
10389 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.32 e Å3
4967 reflectionsΔρmin = 0.44 e Å3
283 parametersAbsolute structure: Flack x determined using 1789 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 restraintsAbsolute structure parameter: 0.09 (5)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl30.54490 (10)0.60120 (8)0.50279 (5)0.0174 (2)
Cl61.01248 (10)0.32550 (8)0.37747 (5)0.0167 (2)
Cl51.06356 (11)0.58650 (8)0.30581 (5)0.0194 (2)
Cl80.43371 (11)0.66888 (8)0.33691 (5)0.0183 (2)
Cl20.68060 (11)0.32798 (8)0.49788 (5)0.0183 (2)
Cl40.79016 (11)0.76099 (7)0.38771 (5)0.0181 (2)
Cl100.88045 (11)0.39211 (9)0.21212 (5)0.0189 (2)
Cl110.65146 (11)0.23842 (8)0.32551 (5)0.0171 (2)
Cl120.49042 (11)0.44663 (8)0.22120 (5)0.0186 (2)
Cl90.74597 (11)0.66169 (8)0.21672 (5)0.0197 (2)
Cl70.37526 (11)0.40537 (8)0.39531 (5)0.0172 (2)
S10.11196 (13)0.57107 (9)0.11604 (6)0.0263 (3)
Na10.19934 (19)0.38485 (15)0.25524 (9)0.0273 (4)
O10.1870 (3)0.4912 (2)0.15243 (16)0.0274 (8)
N10.9459 (4)0.5473 (3)0.49125 (17)0.0160 (7)
B10.8383 (5)0.5239 (4)0.4285 (2)0.0108 (9)
B60.8625 (5)0.4148 (4)0.3718 (2)0.0112 (9)
B100.7980 (5)0.4478 (4)0.2875 (2)0.0127 (9)
B70.5540 (5)0.4545 (3)0.3782 (2)0.0122 (9)
B20.7093 (5)0.4170 (4)0.4290 (2)0.0118 (9)
C10.8866 (5)0.6276 (4)0.5402 (2)0.0263 (11)
H1A0.8605830.6888100.5150500.039*
H1B0.9593360.6444820.5738050.039*
H1C0.8020580.6005100.5629790.039*
B50.8909 (5)0.5418 (4)0.3378 (2)0.0123 (9)
B40.7569 (5)0.6247 (3)0.3761 (2)0.0128 (9)
B90.7332 (5)0.5772 (3)0.2902 (2)0.0122 (9)
B110.6889 (5)0.3712 (4)0.3426 (2)0.0130 (10)
B30.6441 (4)0.5479 (4)0.4315 (2)0.0106 (9)
C21.0899 (5)0.5885 (4)0.4670 (2)0.0314 (12)
H2A1.1345230.5390810.4367100.047*
H2B1.1521530.6001980.5058650.047*
H2C1.0751590.6525490.4428950.047*
B80.5822 (5)0.5814 (4)0.3473 (2)0.0117 (9)
C30.9774 (6)0.4535 (4)0.5346 (3)0.0359 (13)
H3A0.8898990.4314780.5571990.054*
H3B1.0496050.4705000.5684330.054*
H3C1.0129300.3985680.5058440.054*
B120.6101 (5)0.4728 (3)0.2921 (2)0.0120 (9)
O20.1730 (4)0.6032 (3)0.05292 (16)0.0382 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl30.0191 (5)0.0190 (5)0.0140 (5)0.0024 (4)0.0047 (4)0.0039 (4)
Cl60.0121 (5)0.0151 (5)0.0231 (5)0.0039 (4)0.0010 (4)0.0001 (4)
Cl50.0131 (5)0.0220 (6)0.0231 (5)0.0063 (4)0.0040 (4)0.0007 (4)
Cl80.0164 (5)0.0185 (5)0.0200 (5)0.0073 (4)0.0030 (4)0.0016 (4)
Cl20.0239 (5)0.0172 (5)0.0138 (5)0.0002 (4)0.0010 (4)0.0054 (4)
Cl40.0229 (6)0.0098 (5)0.0217 (5)0.0018 (4)0.0002 (4)0.0018 (4)
Cl100.0191 (5)0.0234 (6)0.0141 (5)0.0009 (4)0.0052 (4)0.0054 (4)
Cl110.0212 (5)0.0117 (5)0.0183 (5)0.0027 (4)0.0042 (4)0.0031 (4)
Cl120.0170 (5)0.0256 (6)0.0131 (5)0.0022 (4)0.0049 (4)0.0010 (4)
Cl90.0252 (5)0.0191 (6)0.0149 (5)0.0024 (4)0.0008 (4)0.0070 (4)
Cl70.0099 (5)0.0225 (5)0.0193 (5)0.0037 (4)0.0022 (4)0.0002 (5)
S10.0254 (6)0.0214 (6)0.0322 (7)0.0024 (5)0.0012 (5)0.0017 (5)
Na10.0230 (9)0.0285 (11)0.0303 (10)0.0011 (8)0.0057 (8)0.0049 (8)
O10.0253 (17)0.0265 (19)0.0303 (19)0.0009 (15)0.0034 (15)0.0026 (15)
N10.0158 (17)0.0180 (19)0.0140 (18)0.0008 (15)0.0060 (15)0.0035 (15)
B10.011 (2)0.009 (2)0.012 (2)0.0009 (17)0.0018 (19)0.0025 (18)
B60.010 (2)0.013 (2)0.010 (2)0.0026 (18)0.0006 (18)0.0012 (18)
B100.009 (2)0.016 (2)0.013 (2)0.0010 (18)0.0003 (18)0.0010 (19)
B70.008 (2)0.015 (2)0.014 (2)0.0011 (18)0.0003 (19)0.0004 (18)
B20.013 (2)0.013 (2)0.009 (2)0.0019 (18)0.0010 (18)0.0008 (18)
C10.027 (2)0.032 (3)0.020 (2)0.005 (2)0.008 (2)0.012 (2)
B50.011 (2)0.014 (2)0.012 (2)0.0023 (18)0.0009 (19)0.0007 (18)
B40.015 (2)0.009 (2)0.015 (2)0.0027 (18)0.0004 (19)0.0014 (17)
B90.013 (2)0.014 (2)0.009 (2)0.0013 (19)0.0012 (18)0.0028 (18)
B110.013 (2)0.015 (2)0.011 (2)0.0015 (18)0.0022 (18)0.0028 (18)
B30.009 (2)0.012 (2)0.011 (2)0.0011 (18)0.0007 (18)0.0003 (18)
C20.017 (2)0.049 (4)0.029 (3)0.007 (2)0.005 (2)0.012 (2)
B80.011 (2)0.011 (2)0.013 (2)0.0001 (18)0.0029 (18)0.0032 (18)
C30.054 (4)0.026 (3)0.028 (3)0.001 (2)0.028 (2)0.004 (2)
B120.013 (2)0.014 (2)0.009 (2)0.0008 (18)0.0004 (19)0.0007 (18)
O20.049 (2)0.041 (2)0.0248 (19)0.0089 (19)0.0077 (16)0.0012 (17)
Geometric parameters (Å, º) top
Cl4—Na1i3.209 (2)B6—B51.787 (6)
Cl5—Na1ii3.050 (2)B6—B111.785 (6)
Cl6—Na1ii3.031 (2)B10—B51.777 (6)
Cl7—Na13.179 (2)B10—B91.774 (6)
Cl9—Na1i2.975 (2)B10—B111.770 (6)
Cl10—Na1ii3.051 (2)B10—B121.760 (6)
Cl12—Na12.870 (2)B7—B21.802 (6)
S1—O11.428 (3)B7—B111.782 (6)
S1—O21.412 (4)B7—B31.792 (6)
Na1—O12.428 (4)B7—B81.764 (6)
Cl2—B21.785 (5)B7—B121.769 (6)
Cl3—B31.797 (4)B2—B111.791 (6)
Cl4—B41.800 (5)B2—B31.794 (7)
Cl5—B51.800 (5)C1—H1A0.9600
Cl6—B61.801 (4)C1—H1B0.9600
Cl7—B71.792 (5)C1—H1C0.9600
Cl8—B81.783 (4)B5—B41.794 (6)
Cl9—B91.803 (4)B5—B91.779 (6)
Cl10—B101.800 (5)B4—B91.792 (6)
Cl11—B111.779 (5)B4—B31.794 (6)
Cl12—B121.796 (5)B4—B81.791 (6)
N1—B11.600 (5)B9—B81.779 (6)
N1—C11.510 (5)B9—B121.760 (6)
N1—C21.503 (5)B11—B121.792 (7)
N1—C31.503 (6)B3—B81.785 (6)
B1—B61.803 (6)C2—H2A0.9600
B1—B21.820 (6)C2—H2B0.9600
B1—B51.844 (7)C2—H2C0.9600
B1—B41.813 (6)B8—B121.785 (6)
B1—B31.813 (6)C3—H3A0.9600
B6—B101.794 (6)C3—H3B0.9600
B6—B21.795 (6)C3—H3C0.9600
B6—Cl6—Na1ii102.94 (15)H1A—C1—H1B109.5
B5—Cl5—Na1ii101.48 (16)H1A—C1—H1C109.5
B4—Cl4—Na1i112.56 (16)H1B—C1—H1C109.5
B10—Cl10—Na1ii101.13 (15)Cl5—B5—B1127.0 (3)
B12—Cl12—Na1116.54 (15)B6—B5—Cl5123.4 (3)
B9—Cl9—Na1i116.86 (15)B6—B5—B159.5 (2)
B7—Cl7—Na1109.68 (16)B6—B5—B4107.0 (3)
O1—S1—O2116.8 (2)B10—B5—Cl5116.9 (3)
Cl6iii—Na1—Cl5iii74.39 (5)B10—B5—B1108.3 (3)
Cl6iii—Na1—Cl4iv124.79 (7)B10—B5—B660.4 (2)
Cl6iii—Na1—Cl10iii71.26 (5)B10—B5—B4107.8 (3)
Cl6iii—Na1—Cl768.74 (4)B10—B5—B959.8 (2)
Cl5iii—Na1—Cl4iv135.81 (7)B4—B5—Cl5123.9 (3)
Cl5iii—Na1—Cl10iii70.67 (5)B4—B5—B159.8 (2)
Cl5iii—Na1—Cl782.00 (5)B9—B5—Cl5117.2 (3)
Cl10iii—Na1—Cl4iv78.81 (5)B9—B5—B1108.4 (3)
Cl10iii—Na1—Cl7136.21 (6)B9—B5—B6108.0 (3)
Cl12—Na1—Cl6iii141.23 (7)B9—B5—B460.2 (3)
Cl12—Na1—Cl5iii102.65 (6)Cl4—B4—B1124.1 (3)
Cl12—Na1—Cl4iv84.87 (5)B5—B4—Cl4121.2 (3)
Cl12—Na1—Cl10iii145.50 (7)B5—B4—B161.5 (3)
Cl12—Na1—Cl9iv98.84 (6)B5—B4—B3108.5 (3)
Cl12—Na1—Cl772.55 (5)B9—B4—Cl4118.1 (3)
Cl9iv—Na1—Cl6iii72.98 (5)B9—B4—B1109.1 (3)
Cl9iv—Na1—Cl5iii146.78 (7)B9—B4—B559.5 (3)
Cl9iv—Na1—Cl4iv70.81 (5)B9—B4—B3107.4 (3)
Cl9iv—Na1—Cl10iii104.04 (6)B3—B4—Cl4124.3 (3)
Cl9iv—Na1—Cl780.65 (5)B3—B4—B160.3 (2)
Cl7—Na1—Cl4iv140.24 (6)B8—B4—Cl4119.8 (3)
O1—Na1—Cl6iii139.66 (10)B8—B4—B1108.8 (3)
O1—Na1—Cl5iii76.35 (9)B8—B4—B5107.5 (3)
O1—Na1—Cl4iv64.50 (9)B8—B4—B959.5 (2)
O1—Na1—Cl10iii73.23 (9)B8—B4—B359.8 (2)
O1—Na1—Cl1272.33 (9)B10—B9—Cl9121.6 (3)
O1—Na1—Cl9iv134.94 (10)B10—B9—B560.0 (3)
O1—Na1—Cl7133.02 (10)B10—B9—B4108.0 (3)
S1—O1—Na1147.0 (2)B10—B9—B8108.1 (3)
C1—N1—B1112.8 (3)B5—B9—Cl9121.0 (3)
C2—N1—B1111.8 (3)B5—B9—B460.3 (3)
C2—N1—C1105.9 (3)B5—B9—B8108.6 (3)
C2—N1—C3106.9 (4)B4—B9—Cl9121.6 (3)
C3—N1—B1113.3 (3)B8—B9—Cl9121.8 (3)
C3—N1—C1105.6 (4)B8—B9—B460.2 (2)
N1—B1—B6122.5 (3)B12—B9—Cl9121.4 (3)
N1—B1—B2122.8 (3)B12—B9—B1059.7 (2)
N1—B1—B5123.0 (3)B12—B9—B5108.5 (3)
N1—B1—B4123.3 (3)B12—B9—B4108.7 (3)
N1—B1—B3123.5 (3)B12—B9—B860.6 (2)
B6—B1—B259.4 (2)Cl11—B11—B6122.4 (3)
B6—B1—B558.7 (2)Cl11—B11—B7121.3 (3)
B6—B1—B4105.5 (3)Cl11—B11—B2120.9 (3)
B6—B1—B3105.9 (3)Cl11—B11—B12121.7 (3)
B2—B1—B5105.7 (3)B6—B11—B260.3 (2)
B4—B1—B2106.2 (3)B6—B11—B12107.7 (3)
B4—B1—B558.7 (2)B10—B11—Cl11122.4 (3)
B3—B1—B259.2 (2)B10—B11—B660.6 (2)
B3—B1—B5105.5 (3)B10—B11—B7107.0 (3)
B3—B1—B459.3 (2)B10—B11—B2108.9 (3)
Cl6—B6—B1123.8 (3)B10—B11—B1259.2 (2)
B10—B6—Cl6117.5 (3)B7—B11—B6108.0 (3)
B10—B6—B1109.4 (3)B7—B11—B260.6 (3)
B10—B6—B2107.7 (3)B7—B11—B1259.3 (3)
B2—B6—Cl6124.9 (3)B2—B11—B12108.4 (3)
B2—B6—B160.8 (2)Cl3—B3—B1126.1 (3)
B5—B6—Cl6119.9 (3)B7—B3—Cl3118.0 (3)
B5—B6—B161.8 (3)B7—B3—B1108.8 (3)
B5—B6—B1059.5 (3)B7—B3—B260.3 (2)
B5—B6—B2109.2 (3)B7—B3—B4107.0 (3)
B11—B6—Cl6120.2 (3)B2—B3—Cl3123.5 (3)
B11—B6—B1109.3 (3)B2—B3—B160.6 (2)
B11—B6—B1059.3 (2)B2—B3—B4108.1 (3)
B11—B6—B260.1 (2)B4—B3—Cl3123.0 (3)
B11—B6—B5107.6 (3)B4—B3—B160.4 (2)
B6—B10—Cl10120.7 (3)B8—B3—Cl3116.9 (3)
B5—B10—Cl10121.2 (3)B8—B3—B1109.0 (3)
B5—B10—B660.1 (3)B8—B3—B759.1 (3)
B9—B10—Cl10122.8 (3)B8—B3—B2108.1 (3)
B9—B10—B6107.9 (3)B8—B3—B460.0 (2)
B9—B10—B560.1 (3)N1—C2—H2A109.5
B11—B10—Cl10120.6 (3)N1—C2—H2B109.5
B11—B10—B660.1 (3)N1—C2—H2C109.5
B11—B10—B5108.7 (3)H2A—C2—H2B109.5
B11—B10—B9108.5 (3)H2A—C2—H2C109.5
B12—B10—Cl10121.9 (3)H2B—C2—H2C109.5
B12—B10—B6108.8 (3)Cl8—B8—B4121.7 (3)
B12—B10—B5108.6 (3)Cl8—B8—B3120.1 (3)
B12—B10—B959.7 (3)Cl8—B8—B12122.6 (3)
B12—B10—B1161.0 (3)B7—B8—Cl8121.0 (3)
Cl7—B7—B2122.0 (3)B7—B8—B4108.4 (3)
B11—B7—Cl7119.8 (3)B7—B8—B9107.4 (3)
B11—B7—B260.0 (3)B7—B8—B360.6 (2)
B11—B7—B3108.0 (3)B7—B8—B1259.8 (3)
B3—B7—Cl7123.7 (3)B9—B8—Cl8123.1 (3)
B3—B7—B259.9 (2)B9—B8—B460.3 (2)
B8—B7—Cl7121.7 (3)B9—B8—B3108.4 (3)
B8—B7—B2108.6 (3)B9—B8—B1259.2 (2)
B8—B7—B11109.0 (3)B3—B8—B460.2 (2)
B8—B7—B360.3 (2)B12—B8—B4107.7 (3)
B8—B7—B1260.7 (3)B12—B8—B3108.4 (3)
B12—B7—Cl7119.4 (3)N1—C3—H3A109.5
B12—B7—B2108.9 (3)N1—C3—H3B109.5
B12—B7—B1160.6 (3)N1—C3—H3C109.5
B12—B7—B3108.8 (3)H3A—C3—H3B109.5
Cl2—B2—B1126.1 (3)H3A—C3—H3C109.5
Cl2—B2—B6124.9 (3)H3B—C3—H3C109.5
Cl2—B2—B7117.8 (3)B10—B12—Cl12121.9 (3)
Cl2—B2—B11118.5 (3)B10—B12—B7108.0 (3)
Cl2—B2—B3122.5 (3)B10—B12—B960.5 (3)
B6—B2—B159.8 (2)B10—B12—B1159.8 (3)
B6—B2—B7106.6 (3)B10—B12—B8108.4 (3)
B7—B2—B1108.0 (3)B7—B12—Cl12121.5 (3)
B11—B2—B1108.3 (3)B7—B12—B1160.1 (3)
B11—B2—B659.7 (2)B7—B12—B859.5 (3)
B11—B2—B759.5 (3)B9—B12—Cl12121.5 (3)
B11—B2—B3107.5 (3)B9—B12—B7108.0 (3)
B3—B2—B160.2 (2)B9—B12—B11108.2 (3)
B3—B2—B6107.1 (3)B9—B12—B860.2 (3)
B3—B2—B759.8 (2)B11—B12—Cl12122.0 (3)
N1—C1—H1A109.5B8—B12—Cl12121.4 (3)
N1—C1—H1B109.5B8—B12—B11107.6 (3)
N1—C1—H1C109.5
Cl3—B3—B8—Cl82.8 (5)B2—B1—B3—B4137.0 (3)
Cl3—B3—B8—B7108.0 (3)B2—B1—B3—B8100.5 (3)
Cl3—B3—B8—B4114.4 (3)B2—B6—B10—Cl10146.9 (3)
Cl3—B3—B8—B9152.0 (3)B2—B6—B10—B5102.3 (3)
Cl3—B3—B8—B12145.3 (3)B2—B6—B10—B964.5 (4)
Cl6—B6—B10—Cl100.6 (5)B2—B6—B10—B1137.0 (3)
Cl6—B6—B10—B5110.2 (3)B2—B6—B10—B121.2 (4)
Cl6—B6—B10—B9148.0 (3)B2—B6—B5—Cl5155.9 (3)
Cl6—B6—B10—B11110.5 (3)B2—B6—B5—B139.3 (3)
Cl6—B6—B10—B12148.7 (3)B2—B6—B5—B1099.6 (3)
Cl6—B6—B2—Cl22.3 (5)B2—B6—B5—B41.5 (4)
Cl6—B6—B2—B1112.8 (4)B2—B6—B5—B961.9 (4)
Cl6—B6—B2—B7145.7 (3)B2—B6—B11—Cl11109.7 (4)
Cl6—B6—B2—B11107.8 (4)B2—B6—B11—B10138.6 (3)
Cl6—B6—B2—B3151.6 (3)B2—B6—B11—B738.8 (3)
Cl6—B6—B5—Cl51.8 (5)B2—B6—B11—B12101.4 (3)
Cl6—B6—B5—B1114.9 (3)B2—B7—B11—Cl11110.3 (4)
Cl6—B6—B5—B10106.2 (3)B2—B7—B11—B638.6 (3)
Cl6—B6—B5—B4152.6 (3)B2—B7—B11—B10102.5 (3)
Cl6—B6—B5—B9143.9 (3)B2—B7—B11—B12139.0 (3)
Cl6—B6—B11—Cl115.7 (5)B2—B7—B3—Cl3114.6 (3)
Cl6—B6—B11—B10106.0 (3)B2—B7—B3—B137.8 (3)
Cl6—B6—B11—B7154.2 (3)B2—B7—B3—B4101.6 (3)
Cl6—B6—B11—B2115.4 (3)B2—B7—B3—B8139.2 (3)
Cl6—B6—B11—B12143.1 (3)B2—B7—B8—Cl8146.1 (3)
Cl5—B5—B4—Cl42.0 (5)B2—B7—B8—B41.5 (4)
Cl5—B5—B4—B1116.6 (4)B2—B7—B8—B965.1 (4)
Cl5—B5—B4—B9104.5 (4)B2—B7—B8—B336.6 (3)
Cl5—B5—B4—B3155.8 (3)B2—B7—B8—B12101.7 (3)
Cl5—B5—B4—B8141.1 (3)B2—B7—B12—Cl12148.3 (3)
Cl5—B5—B9—Cl94.2 (5)B2—B7—B12—B100.1 (4)
Cl5—B5—B9—B10106.8 (3)B2—B7—B12—B964.1 (4)
Cl5—B5—B9—B4115.4 (3)B2—B7—B12—B1136.9 (3)
Cl5—B5—B9—B8152.6 (3)B2—B7—B12—B8101.3 (3)
Cl5—B5—B9—B12143.1 (3)B2—B11—B12—Cl12147.6 (3)
Cl8—B8—B12—Cl121.0 (5)B2—B11—B12—B10101.5 (3)
Cl8—B8—B12—B10149.9 (3)B2—B11—B12—B737.0 (3)
Cl8—B8—B12—B7109.5 (4)B2—B11—B12—B963.7 (4)
Cl8—B8—B12—B9111.9 (4)B2—B11—B12—B80.1 (4)
Cl8—B8—B12—B11146.9 (3)B2—B3—B8—Cl8147.5 (3)
Cl2—B2—B11—Cl113.7 (5)B2—B3—B8—B736.7 (3)
Cl2—B2—B11—B6115.9 (3)B2—B3—B8—B4100.9 (3)
Cl2—B2—B11—B10153.4 (3)B2—B3—B8—B963.3 (4)
Cl2—B2—B11—B7107.3 (3)B2—B3—B8—B120.6 (4)
Cl2—B2—B11—B12143.8 (3)C1—N1—B1—B6167.5 (4)
Cl2—B2—B3—Cl30.1 (5)C1—N1—B1—B295.3 (4)
Cl2—B2—B3—B1116.1 (4)C1—N1—B1—B5121.3 (4)
Cl2—B2—B3—B7105.7 (4)C1—N1—B1—B449.6 (5)
Cl2—B2—B3—B4154.7 (3)C1—N1—B1—B323.1 (5)
Cl2—B2—B3—B8141.8 (3)B5—B1—B6—Cl6108.7 (4)
Cl4—B4—B9—Cl91.4 (5)B5—B1—B6—B1036.9 (3)
Cl4—B4—B9—B10149.3 (3)B5—B1—B6—B2136.8 (3)
Cl4—B4—B9—B5111.5 (3)B5—B1—B6—B11100.1 (3)
Cl4—B4—B9—B8109.8 (3)B5—B1—B2—Cl2150.7 (3)
Cl4—B4—B9—B12147.4 (3)B5—B1—B2—B637.4 (3)
Cl4—B4—B3—Cl32.9 (5)B5—B1—B2—B761.7 (4)
Cl4—B4—B3—B1113.1 (4)B5—B1—B2—B111.2 (4)
Cl4—B4—B3—B7144.6 (3)B5—B1—B2—B399.0 (3)
Cl4—B4—B3—B2151.8 (3)B5—B1—B4—Cl4110.1 (4)
Cl4—B4—B3—B8107.3 (4)B5—B1—B4—B936.8 (3)
Cl4—B4—B8—Cl85.6 (5)B5—B1—B4—B3136.5 (3)
Cl4—B4—B8—B7153.0 (3)B5—B1—B4—B8100.2 (3)
Cl4—B4—B8—B9107.1 (3)B5—B1—B3—Cl3148.8 (3)
Cl4—B4—B8—B3114.7 (4)B5—B1—B3—B761.6 (4)
Cl4—B4—B8—B12143.8 (3)B5—B1—B3—B299.3 (3)
Cl10—B10—B5—Cl55.2 (5)B5—B1—B3—B437.7 (3)
Cl10—B10—B5—B1146.4 (3)B5—B1—B3—B81.2 (4)
Cl10—B10—B5—B6109.8 (4)B5—B6—B10—Cl10110.7 (3)
Cl10—B10—B5—B4150.3 (3)B5—B6—B10—B937.8 (3)
Cl10—B10—B5—B9112.5 (4)B5—B6—B10—B11139.3 (3)
Cl10—B10—B9—Cl90.1 (5)B5—B6—B10—B12101.1 (3)
Cl10—B10—B9—B5109.9 (4)B5—B6—B2—Cl2154.9 (3)
Cl10—B10—B9—B4147.8 (3)B5—B6—B2—B139.7 (3)
Cl10—B10—B9—B8148.5 (3)B5—B6—B2—B761.8 (4)
Cl10—B10—B9—B12110.5 (4)B5—B6—B2—B1199.7 (3)
Cl10—B10—B11—Cl111.7 (5)B5—B6—B2—B31.0 (4)
Cl10—B10—B11—B6110.1 (3)B5—B6—B11—Cl11147.8 (3)
Cl10—B10—B11—B7148.5 (3)B5—B6—B11—B1036.1 (3)
Cl10—B10—B11—B2147.5 (3)B5—B6—B11—B763.7 (4)
Cl10—B10—B11—B12111.9 (4)B5—B6—B11—B2102.5 (3)
Cl10—B10—B12—Cl121.3 (5)B5—B6—B11—B121.1 (4)
Cl10—B10—B12—B7147.0 (3)B5—B10—B9—Cl9110.0 (4)
Cl10—B10—B12—B9112.1 (4)B5—B10—B9—B437.9 (3)
Cl10—B10—B12—B11109.9 (4)B5—B10—B9—B8101.6 (3)
Cl10—B10—B12—B8150.0 (3)B5—B10—B9—B12139.5 (3)
Cl11—B11—B12—Cl120.5 (5)B5—B10—B11—Cl11148.4 (3)
Cl11—B11—B12—B10111.4 (4)B5—B10—B11—B636.6 (3)
Cl11—B11—B12—B7110.1 (4)B5—B10—B11—B764.8 (4)
Cl11—B11—B12—B9149.2 (3)B5—B10—B11—B20.8 (4)
Cl11—B11—B12—B8147.2 (3)B5—B10—B11—B12101.3 (3)
Cl9—B9—B8—Cl80.4 (5)B5—B10—B12—Cl12147.3 (3)
Cl9—B9—B8—B7147.6 (3)B5—B10—B12—B764.5 (4)
Cl9—B9—B8—B4110.8 (4)B5—B10—B12—B936.4 (3)
Cl9—B9—B8—B3148.4 (3)B5—B10—B12—B11101.6 (3)
Cl9—B9—B8—B12110.7 (4)B5—B10—B12—B81.5 (4)
Cl9—B9—B12—Cl120.7 (5)B5—B4—B9—Cl9110.2 (4)
Cl9—B9—B12—B10110.8 (4)B5—B4—B9—B1037.8 (3)
Cl9—B9—B12—B7148.2 (3)B5—B4—B9—B8138.7 (3)
Cl9—B9—B12—B11148.2 (3)B5—B4—B9—B12101.1 (3)
Cl9—B9—B12—B8111.4 (4)B5—B4—B3—Cl3155.7 (3)
Cl7—B7—B2—Cl20.1 (5)B5—B4—B3—B139.7 (3)
Cl7—B7—B2—B1150.6 (3)B5—B4—B3—B762.7 (4)
Cl7—B7—B2—B6146.4 (3)B5—B4—B3—B21.0 (4)
Cl7—B7—B2—B11108.4 (4)B5—B4—B3—B899.9 (3)
Cl7—B7—B2—B3113.1 (4)B5—B4—B8—Cl8149.3 (3)
Cl7—B7—B11—Cl111.7 (5)B5—B4—B8—B763.3 (4)
Cl7—B7—B11—B6150.6 (3)B5—B4—B8—B936.6 (3)
Cl7—B7—B11—B10145.5 (3)B5—B4—B8—B3101.6 (3)
Cl7—B7—B11—B2112.0 (4)B5—B4—B8—B120.1 (4)
Cl7—B7—B11—B12109.0 (4)B5—B9—B8—Cl8147.7 (3)
Cl7—B7—B3—Cl34.1 (5)B5—B9—B8—B764.4 (4)
Cl7—B7—B3—B1148.3 (3)B5—B9—B8—B437.2 (3)
Cl7—B7—B3—B2110.5 (4)B5—B9—B8—B30.3 (4)
Cl7—B7—B3—B4148.0 (3)B5—B9—B8—B12101.2 (3)
Cl7—B7—B3—B8110.3 (4)B5—B9—B12—Cl12147.8 (3)
Cl7—B7—B8—Cl83.9 (5)B5—B9—B12—B1036.4 (3)
Cl7—B7—B8—B4151.5 (3)B5—B9—B12—B764.6 (4)
Cl7—B7—B8—B9144.9 (3)B5—B9—B12—B111.1 (4)
Cl7—B7—B8—B3113.4 (4)B5—B9—B12—B8101.4 (3)
Cl7—B7—B8—B12108.3 (4)B4—B1—B6—Cl6145.6 (3)
Cl7—B7—B12—Cl121.7 (5)B4—B1—B6—B100.0 (4)
Cl7—B7—B12—B10146.7 (3)B4—B1—B6—B299.9 (3)
Cl7—B7—B12—B9149.3 (3)B4—B1—B6—B536.9 (3)
Cl7—B7—B12—B11109.7 (4)B4—B1—B6—B1163.2 (4)
Cl7—B7—B12—B8112.1 (3)B4—B1—B2—Cl2148.0 (3)
Na1ii—Cl6—B6—B1106.3 (3)B4—B1—B2—B698.8 (3)
Na1ii—Cl6—B6—B1036.8 (3)B4—B1—B2—B70.4 (4)
Na1ii—Cl6—B6—B2178.1 (3)B4—B1—B2—B1162.5 (4)
Na1ii—Cl6—B6—B532.1 (3)B4—B1—B2—B337.6 (3)
Na1ii—Cl6—B6—B11105.4 (3)B4—B1—B5—Cl5111.7 (4)
Na1ii—Cl5—B5—B1104.0 (3)B4—B1—B5—B6137.4 (3)
Na1ii—Cl5—B5—B629.3 (4)B4—B1—B5—B10100.4 (3)
Na1ii—Cl5—B5—B1041.6 (3)B4—B1—B5—B937.0 (3)
Na1ii—Cl5—B5—B4179.4 (3)B4—B1—B3—Cl3111.1 (4)
Na1ii—Cl5—B5—B9109.7 (3)B4—B1—B3—B799.3 (3)
Na1i—Cl4—B4—B1143.7 (3)B4—B1—B3—B2137.0 (3)
Na1i—Cl4—B4—B569.0 (3)B4—B1—B3—B836.5 (3)
Na1i—Cl4—B4—B90.5 (3)B4—B5—B9—Cl9111.2 (4)
Na1i—Cl4—B4—B3141.4 (3)B4—B5—B9—B10137.7 (3)
Na1i—Cl4—B4—B869.6 (3)B4—B5—B9—B837.2 (3)
Na1ii—Cl10—B10—B637.0 (3)B4—B5—B9—B12101.5 (3)
Na1ii—Cl10—B10—B534.4 (3)B4—B9—B8—Cl8110.4 (4)
Na1ii—Cl10—B10—B9106.8 (3)B4—B9—B8—B7101.6 (3)
Na1ii—Cl10—B10—B11108.1 (3)B4—B9—B8—B337.6 (3)
Na1ii—Cl10—B10—B12179.1 (3)B4—B9—B8—B12138.4 (3)
Na1—Cl12—B12—B10147.4 (3)B4—B9—B12—Cl12148.2 (3)
Na1—Cl12—B12—B73.4 (4)B4—B9—B12—B10100.4 (3)
Na1—Cl12—B12—B9139.9 (3)B4—B9—B12—B70.6 (4)
Na1—Cl12—B12—B1175.5 (3)B4—B9—B12—B1162.9 (4)
Na1—Cl12—B12—B867.8 (3)B4—B9—B12—B837.4 (3)
Na1i—Cl9—B9—B10145.2 (3)B4—B3—B8—Cl8111.5 (4)
Na1i—Cl9—B9—B573.5 (3)B4—B3—B8—B7137.6 (3)
Na1i—Cl9—B9—B41.5 (4)B4—B3—B8—B937.6 (3)
Na1i—Cl9—B9—B870.7 (3)B4—B3—B8—B12100.3 (3)
Na1i—Cl9—B9—B12143.3 (3)B4—B8—B12—Cl12148.1 (3)
Na1—Cl7—B7—B2147.3 (3)B4—B8—B12—B100.8 (4)
Na1—Cl7—B7—B1176.1 (3)B4—B8—B12—B7101.4 (3)
Na1—Cl7—B7—B3139.9 (3)B4—B8—B12—B937.2 (3)
Na1—Cl7—B7—B866.7 (3)B4—B8—B12—B1164.0 (4)
Na1—Cl7—B7—B125.1 (3)B9—B10—B5—Cl5107.3 (3)
N1—B1—B6—Cl62.8 (6)B9—B10—B5—B1101.1 (3)
N1—B1—B6—B10148.5 (3)B9—B10—B5—B6137.7 (3)
N1—B1—B6—B2111.7 (4)B9—B10—B5—B437.8 (3)
N1—B1—B6—B5111.5 (4)B9—B10—B11—Cl11147.8 (3)
N1—B1—B6—B11148.3 (4)B9—B10—B11—B6100.4 (3)
N1—B1—B2—Cl22.0 (5)B9—B10—B11—B71.0 (4)
N1—B1—B2—B6111.2 (4)B9—B10—B11—B263.0 (4)
N1—B1—B2—B7149.6 (3)B9—B10—B11—B1237.5 (3)
N1—B1—B2—B11147.5 (3)B9—B10—B12—Cl12110.8 (4)
N1—B1—B2—B3112.4 (4)B9—B10—B12—B7100.9 (3)
N1—B1—B5—Cl50.0 (6)B9—B10—B12—B11138.0 (3)
N1—B1—B5—B6110.8 (4)B9—B10—B12—B837.9 (3)
N1—B1—B5—B10147.9 (3)B9—B5—B4—Cl4106.4 (4)
N1—B1—B5—B4111.8 (4)B9—B5—B4—B1138.9 (3)
N1—B1—B5—B9148.7 (3)B9—B5—B4—B399.8 (3)
N1—B1—B4—Cl41.1 (5)B9—B5—B4—B836.6 (3)
N1—B1—B4—B5111.3 (4)B9—B4—B3—Cl3141.4 (3)
N1—B1—B4—B9148.1 (4)B9—B4—B3—B1102.5 (3)
N1—B1—B4—B3112.3 (4)B9—B4—B3—B70.2 (4)
N1—B1—B4—B8148.6 (4)B9—B4—B3—B263.8 (4)
N1—B1—B3—Cl30.7 (6)B9—B4—B3—B837.0 (3)
N1—B1—B3—B7148.9 (4)B9—B4—B8—Cl8112.8 (4)
N1—B1—B3—B2111.2 (4)B9—B4—B8—B799.9 (3)
N1—B1—B3—B4111.8 (4)B9—B4—B8—B3138.2 (3)
N1—B1—B3—B8148.3 (4)B9—B4—B8—B1236.7 (3)
B1—B6—B10—Cl10148.6 (3)B9—B8—B12—Cl12110.9 (4)
B1—B6—B10—B537.9 (3)B9—B8—B12—B1038.0 (3)
B1—B6—B10—B90.1 (4)B9—B8—B12—B7138.6 (3)
B1—B6—B10—B11101.4 (3)B9—B8—B12—B11101.2 (3)
B1—B6—B10—B1263.2 (4)B11—B6—B10—Cl10109.9 (4)
B1—B6—B2—Cl2115.1 (4)B11—B6—B10—B5139.3 (3)
B1—B6—B2—B7101.5 (3)B11—B6—B10—B9101.5 (3)
B1—B6—B2—B11139.4 (3)B11—B6—B10—B1238.2 (3)
B1—B6—B2—B338.8 (3)B11—B6—B2—Cl2105.4 (4)
B1—B6—B5—Cl5116.7 (4)B11—B6—B2—B1139.4 (3)
B1—B6—B5—B10138.9 (3)B11—B6—B2—B737.9 (3)
B1—B6—B5—B437.7 (3)B11—B6—B2—B3100.7 (3)
B1—B6—B5—B9101.2 (3)B11—B6—B5—Cl5140.4 (3)
B1—B6—B11—Cl11146.7 (3)B11—B6—B5—B1102.9 (3)
B1—B6—B11—B10101.6 (3)B11—B6—B5—B1036.0 (3)
B1—B6—B11—B71.8 (4)B11—B6—B5—B465.2 (4)
B1—B6—B11—B237.0 (3)B11—B6—B5—B91.7 (4)
B1—B6—B11—B1264.5 (4)B11—B10—B5—Cl5151.6 (3)
B1—B2—B11—Cl11148.5 (3)B11—B10—B5—B10.0 (4)
B1—B2—B11—B636.3 (3)B11—B10—B5—B636.6 (3)
B1—B2—B11—B101.3 (4)B11—B10—B5—B463.2 (4)
B1—B2—B11—B7100.6 (3)B11—B10—B5—B9101.1 (3)
B1—B2—B11—B1264.1 (4)B11—B10—B9—Cl9148.5 (3)
B1—B2—B3—Cl3116.0 (4)B11—B10—B9—B5101.4 (3)
B1—B2—B3—B7138.2 (3)B11—B10—B9—B463.5 (4)
B1—B2—B3—B438.6 (3)B11—B10—B9—B80.1 (4)
B1—B2—B3—B8102.1 (3)B11—B10—B9—B1238.1 (3)
B1—B5—B4—Cl4114.6 (4)B11—B10—B12—Cl12111.1 (4)
B1—B5—B4—B9138.9 (3)B11—B10—B12—B737.1 (3)
B1—B5—B4—B339.1 (3)B11—B10—B12—B9138.0 (3)
B1—B5—B4—B8102.3 (3)B11—B10—B12—B8100.1 (3)
B1—B5—B9—Cl9148.0 (3)B11—B7—B2—Cl2108.3 (3)
B1—B5—B9—B10101.0 (3)B11—B7—B2—B1101.0 (3)
B1—B5—B9—B436.8 (3)B11—B7—B2—B638.0 (3)
B1—B5—B9—B80.4 (4)B11—B7—B2—B3138.4 (3)
B1—B5—B9—B1264.7 (4)B11—B7—B3—Cl3151.7 (3)
B1—B4—B9—Cl9147.8 (3)B11—B7—B3—B10.7 (4)
B1—B4—B9—B100.1 (4)B11—B7—B3—B237.1 (3)
B1—B4—B9—B537.7 (3)B11—B7—B3—B464.4 (4)
B1—B4—B9—B8101.0 (3)B11—B7—B3—B8102.1 (3)
B1—B4—B9—B1263.4 (4)B11—B7—B8—Cl8150.1 (3)
B1—B4—B3—Cl3116.1 (4)B11—B7—B8—B462.3 (4)
B1—B4—B3—B7102.3 (3)B11—B7—B8—B91.4 (4)
B1—B4—B3—B238.7 (3)B11—B7—B8—B3100.3 (3)
B1—B4—B3—B8139.5 (3)B11—B7—B8—B1237.9 (3)
B1—B4—B8—Cl8145.6 (3)B11—B7—B12—Cl12111.4 (4)
B1—B4—B8—B71.7 (4)B11—B7—B12—B1037.0 (3)
B1—B4—B8—B9101.6 (3)B11—B7—B12—B9101.0 (3)
B1—B4—B8—B336.6 (3)B11—B7—B12—B8138.2 (3)
B1—B4—B8—B1264.9 (4)B11—B2—B3—Cl3142.5 (3)
B1—B3—B8—Cl8148.2 (3)B11—B2—B3—B1101.4 (3)
B1—B3—B8—B7101.0 (3)B11—B2—B3—B736.8 (3)
B1—B3—B8—B436.6 (3)B11—B2—B3—B462.8 (4)
B1—B3—B8—B91.0 (4)B11—B2—B3—B80.7 (4)
B1—B3—B8—B1263.7 (4)B3—B1—B6—Cl6152.5 (3)
B6—B1—B2—Cl2113.2 (4)B3—B1—B6—B1061.9 (4)
B6—B1—B2—B799.1 (3)B3—B1—B6—B238.0 (3)
B6—B1—B2—B1136.2 (3)B3—B1—B6—B598.8 (3)
B6—B1—B2—B3136.4 (3)B3—B1—B6—B111.4 (4)
B6—B1—B5—Cl5110.9 (4)B3—B1—B2—Cl2110.4 (4)
B6—B1—B5—B1037.0 (3)B3—B1—B2—B6136.4 (3)
B6—B1—B5—B4137.4 (3)B3—B1—B2—B737.3 (3)
B6—B1—B5—B9100.4 (3)B3—B1—B2—B11100.2 (3)
B6—B1—B4—Cl4147.0 (3)B3—B1—B5—Cl5149.7 (3)
B6—B1—B4—B536.9 (3)B3—B1—B5—B699.5 (3)
B6—B1—B4—B90.1 (4)B3—B1—B5—B1062.4 (4)
B6—B1—B4—B399.6 (3)B3—B1—B5—B437.9 (3)
B6—B1—B4—B863.3 (4)B3—B1—B5—B91.0 (4)
B6—B1—B3—Cl3150.0 (3)B3—B1—B4—Cl4113.4 (4)
B6—B1—B3—B70.4 (4)B3—B1—B4—B5136.5 (3)
B6—B1—B3—B238.1 (3)B3—B1—B4—B999.6 (3)
B6—B1—B3—B498.9 (3)B3—B1—B4—B836.3 (3)
B6—B1—B3—B862.4 (4)B3—B7—B2—Cl2113.2 (3)
B6—B10—B5—Cl5115.0 (3)B3—B7—B2—B137.4 (3)
B6—B10—B5—B136.6 (3)B3—B7—B2—B6100.4 (3)
B6—B10—B5—B499.9 (3)B3—B7—B2—B11138.4 (3)
B6—B10—B5—B9137.7 (3)B3—B7—B11—Cl11147.4 (3)
B6—B10—B9—Cl9147.8 (3)B3—B7—B11—B61.5 (4)
B6—B10—B9—B537.8 (3)B3—B7—B11—B1065.4 (4)
B6—B10—B9—B40.1 (4)B3—B7—B11—B237.1 (3)
B6—B10—B9—B863.8 (4)B3—B7—B11—B12101.9 (3)
B6—B10—B9—B12101.7 (3)B3—B7—B8—Cl8109.5 (3)
B6—B10—B11—Cl11111.8 (4)B3—B7—B8—B438.1 (3)
B6—B10—B11—B7101.4 (3)B3—B7—B8—B9101.7 (3)
B6—B10—B11—B237.4 (3)B3—B7—B8—B12138.3 (3)
B6—B10—B11—B12138.0 (3)B3—B7—B12—Cl12148.1 (3)
B6—B10—B12—Cl12149.0 (3)B3—B7—B12—B1063.6 (4)
B6—B10—B12—B70.7 (4)B3—B7—B12—B90.5 (4)
B6—B10—B12—B9100.2 (3)B3—B7—B12—B11100.5 (3)
B6—B10—B12—B1137.8 (3)B3—B7—B12—B837.6 (3)
B6—B10—B12—B862.3 (4)B3—B2—B11—Cl11147.9 (3)
B6—B2—B11—Cl11112.2 (4)B3—B2—B11—B699.9 (3)
B6—B2—B11—B1037.5 (3)B3—B2—B11—B1062.4 (4)
B6—B2—B11—B7136.9 (3)B3—B2—B11—B737.0 (3)
B6—B2—B11—B12100.4 (3)B3—B2—B11—B120.5 (4)
B6—B2—B3—Cl3154.6 (3)B3—B4—B9—Cl9148.3 (3)
B6—B2—B3—B138.6 (3)B3—B4—B9—B1063.8 (4)
B6—B2—B3—B799.6 (3)B3—B4—B9—B5101.6 (3)
B6—B2—B3—B40.0 (4)B3—B4—B9—B837.1 (3)
B6—B2—B3—B863.5 (4)B3—B4—B9—B120.5 (4)
B6—B5—B4—Cl4152.2 (3)B3—B4—B8—Cl8109.0 (4)
B6—B5—B4—B137.6 (3)B3—B4—B8—B738.3 (3)
B6—B5—B4—B9101.3 (3)B3—B4—B8—B9138.2 (3)
B6—B5—B4—B31.5 (4)B3—B4—B8—B12101.5 (3)
B6—B5—B4—B864.7 (4)B3—B8—B12—Cl12148.2 (3)
B6—B5—B9—Cl9149.1 (3)B3—B8—B12—B1062.8 (4)
B6—B5—B9—B1038.0 (3)B3—B8—B12—B737.7 (3)
B6—B5—B9—B499.7 (3)B3—B8—B12—B9100.9 (3)
B6—B5—B9—B862.6 (4)B3—B8—B12—B110.4 (4)
B6—B5—B9—B121.7 (4)C2—N1—B1—B673.4 (5)
B6—B11—B12—Cl12148.7 (3)C2—N1—B1—B2145.5 (4)
B6—B11—B12—B1037.8 (3)C2—N1—B1—B52.1 (5)
B6—B11—B12—B7100.8 (3)C2—N1—B1—B469.6 (5)
B6—B11—B12—B90.0 (4)C2—N1—B1—B3142.2 (4)
B6—B11—B12—B863.7 (4)B8—B7—B2—Cl2150.0 (3)
B10—B6—B2—Cl2142.1 (3)B8—B7—B2—B10.7 (4)
B10—B6—B2—B1102.8 (3)B8—B7—B2—B663.7 (4)
B10—B6—B2—B71.3 (4)B8—B7—B2—B11101.7 (3)
B10—B6—B2—B1136.6 (3)B8—B7—B2—B336.8 (3)
B10—B6—B2—B364.0 (4)B8—B7—B11—Cl11148.7 (3)
B10—B6—B5—Cl5104.4 (4)B8—B7—B11—B662.4 (4)
B10—B6—B5—B1138.9 (3)B8—B7—B11—B101.5 (4)
B10—B6—B5—B4101.2 (3)B8—B7—B11—B2101.0 (3)
B10—B6—B5—B937.7 (3)B8—B7—B11—B1238.0 (3)
B10—B6—B11—Cl11111.7 (4)B8—B7—B3—Cl3106.2 (3)
B10—B6—B11—B799.8 (3)B8—B7—B3—B1101.4 (3)
B10—B6—B11—B2138.6 (3)B8—B7—B3—B2139.2 (3)
B10—B6—B11—B1237.2 (3)B8—B7—B3—B437.7 (3)
B10—B5—B4—Cl4144.1 (3)B8—B7—B12—Cl12110.4 (4)
B10—B5—B4—B1101.3 (3)B8—B7—B12—B10101.2 (3)
B10—B5—B4—B937.6 (3)B8—B7—B12—B937.2 (3)
B10—B5—B4—B362.1 (4)B8—B7—B12—B11138.2 (3)
B10—B5—B4—B81.0 (4)B8—B4—B9—Cl9111.1 (3)
B10—B5—B9—Cl9111.1 (4)B8—B4—B9—B10100.9 (3)
B10—B5—B9—B4137.7 (3)B8—B4—B9—B5138.7 (3)
B10—B5—B9—B8100.6 (3)B8—B4—B9—B1237.6 (3)
B10—B5—B9—B1236.3 (3)B8—B4—B3—Cl3104.4 (4)
B10—B9—B8—Cl8148.7 (3)B8—B4—B3—B1139.5 (3)
B10—B9—B8—B70.8 (4)B8—B4—B3—B737.2 (3)
B10—B9—B8—B4100.8 (3)B8—B4—B3—B2100.9 (3)
B10—B9—B8—B363.3 (4)B8—B9—B12—Cl12110.7 (4)
B10—B9—B8—B1237.6 (3)B8—B9—B12—B10137.8 (3)
B10—B9—B12—Cl12111.4 (4)B8—B9—B12—B736.8 (3)
B10—B9—B12—B7101.0 (3)B8—B9—B12—B11100.4 (3)
B10—B9—B12—B1137.5 (3)C3—N1—B1—B647.6 (5)
B10—B9—B12—B8137.8 (3)C3—N1—B1—B224.5 (5)
B10—B11—B12—Cl12110.9 (4)C3—N1—B1—B5118.9 (4)
B10—B11—B12—B7138.5 (3)C3—N1—B1—B4169.5 (4)
B10—B11—B12—B937.8 (3)C3—N1—B1—B396.8 (5)
B10—B11—B12—B8101.4 (3)B12—B10—B5—Cl5143.6 (3)
B7—B2—B11—Cl11110.9 (4)B12—B10—B5—B164.8 (4)
B7—B2—B11—B6136.9 (3)B12—B10—B5—B6101.4 (3)
B7—B2—B11—B1099.3 (4)B12—B10—B5—B41.6 (4)
B7—B2—B11—B1236.5 (3)B12—B10—B5—B936.3 (3)
B7—B2—B3—Cl3105.7 (3)B12—B10—B9—Cl9110.4 (4)
B7—B2—B3—B1138.2 (3)B12—B10—B9—B5139.5 (3)
B7—B2—B3—B499.7 (3)B12—B10—B9—B4101.6 (3)
B7—B2—B3—B836.1 (3)B12—B10—B9—B838.0 (3)
B7—B11—B12—Cl12110.6 (4)B12—B10—B11—Cl11110.2 (4)
B7—B11—B12—B10138.5 (3)B12—B10—B11—B6138.0 (3)
B7—B11—B12—B9100.8 (3)B12—B10—B11—B736.6 (3)
B7—B11—B12—B837.1 (3)B12—B10—B11—B2100.6 (4)
B7—B3—B8—Cl8110.9 (3)B12—B7—B2—Cl2145.5 (3)
B7—B3—B8—B4137.6 (3)B12—B7—B2—B163.8 (4)
B7—B3—B8—B9100.0 (3)B12—B7—B2—B60.8 (4)
B7—B3—B8—B1237.3 (3)B12—B7—B2—B1137.2 (3)
B7—B8—B12—Cl12110.6 (4)B12—B7—B2—B3101.3 (3)
B7—B8—B12—B10100.5 (3)B12—B7—B11—Cl11110.7 (4)
B7—B8—B12—B9138.6 (3)B12—B7—B11—B6100.4 (3)
B7—B8—B12—B1137.3 (3)B12—B7—B11—B1036.5 (3)
B2—B1—B6—Cl6114.5 (4)B12—B7—B11—B2139.0 (3)
B2—B1—B6—B1099.9 (3)B12—B7—B3—Cl3144.0 (3)
B2—B1—B6—B5136.8 (3)B12—B7—B3—B163.6 (4)
B2—B1—B6—B1136.7 (3)B12—B7—B3—B2101.4 (3)
B2—B1—B5—Cl5148.7 (3)B12—B7—B3—B40.2 (4)
B2—B1—B5—B637.8 (3)B12—B7—B3—B837.8 (3)
B2—B1—B5—B100.7 (4)B12—B7—B8—Cl8112.2 (4)
B2—B1—B5—B499.6 (3)B12—B7—B8—B4100.2 (3)
B2—B1—B5—B962.7 (4)B12—B7—B8—B936.5 (3)
B2—B1—B4—Cl4151.0 (3)B12—B7—B8—B3138.3 (3)
B2—B1—B4—B598.9 (3)B12—B9—B8—Cl8111.1 (4)
B2—B1—B4—B962.1 (4)B12—B9—B8—B736.8 (3)
B2—B1—B4—B337.6 (3)B12—B9—B8—B4138.4 (3)
B2—B1—B4—B81.3 (4)B12—B9—B8—B3100.9 (3)
B2—B1—B3—Cl3111.8 (4)O2—S1—O1—Na1176.9 (3)
B2—B1—B3—B737.7 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.
 

References

First citationAkkuş, Ö. N., Decken, A., Knapp, C. & Passmore, J. (2006). J. Chem. Crystallogr. 36, 321–329.  Google Scholar
First citationAris, D., Beck, J., Decken, A., Dionne, I., Schmedt auf der Günne, J., Hoffbauer, W., Köchner, T., Krossing, I., Passmore, J., Rivard, E., Steden, F. & Wang, X. (2011). Dalton Trans. 40, 5865–5880.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationBatsanov, S. S. (2001). Inorg. Mater. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBertocco, P., Bolli, C., Derendorf, J., Jenne, C., Klein, A. & Stirnat, K. (2016). Chem. Eur. J. 22, 16032–16036.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBolli, C., Derendorf, J., Jenne, C. & Kessler, M. (2017). Eur. J. Inorg. Chem. pp. 4552–4558.  Web of Science CSD CrossRef Google Scholar
First citationBolli, C., Derendorf, J., Jenne, C., Scherer, H., Sindlinger, C. P. & Wegener, B. (2014). Chem. Eur. J. 20, 13783–13792.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBolli, C., Derendorf, J., Kessler, M., Knapp, C., Scherer, H., Schulz, C. & Warneke, J. (2010). Angew. Chem. Int. Ed. 49, 3536–3538.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBukovsky, E. V., Peryshkov, D. V., Wu, H., Zhou, W., Tang, W. S., Jones, W. M., Stavila, V., Udovic, T. J. & Strauss, S. H. (2017a). Inorg. Chem. 56, 4369–4379.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBukovsky, E. V., Pluntze, A. M. & Strauss, S. H. (2017b). J. Fluor. Chem. 203, 90–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationCameron, T. S., Nikiforov, G. B., Passmore, J. & Rautiainen, J. M. (2010). Dalton Trans. 39, 2587–2596.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDecken, A., Knapp, C., Nikiforov, G. B., Passmore, J., Rautiainen, J. M., Wang, X. & Zeng, X. (2009). Chem. Eur. J. 15, 6504–6517.  Web of Science CSD CrossRef ICSD PubMed CAS Google Scholar
First citationDerendorf, J., Kessler, M., Knapp, C., Rühle, M. & Schulz, C. (2010). Dalton Trans. 39, 8671–8678.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrabowsky, S., Luger, P., Buschmann, J., Schneider, T., Schirmeister, T., Sobolev, A. N. & Jayatilaka, D. (2012). Angew. Chem. Int. Ed. 51, 6776–6779.  Web of Science CSD CrossRef ICSD CAS Google Scholar
First citationHolder, C. H. & Fink, M. (1981). J. Chem. Phys. 75, 5323–5325.  CrossRef CAS Web of Science Google Scholar
First citationJenne, C. & Wegener, B. (2018). Z. Anorg. Allg. Chem. 644, 1123–1132.  CSD CrossRef Google Scholar
First citationKessler, M., Knapp, C., Sagawe, V., Scherer, H. & Uzun, R. (2010). Inorg. Chem. 49, 5223–5230.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKnapp, C. (2013). Comprehensive Inorganic Chemistry II Vol. 1, edited by J. Reedijk & K. Poeppelmeier, pp. 651–679. Amsterdam: Elsevier.  Google Scholar
First citationKnapp, C. & Mews, R. (2005). Eur. J. Inorg. Chem. pp. 3536–3542.  Web of Science CSD CrossRef Google Scholar
First citationMalischewski, M., Peryshkov, D. V., Bukovsky, E. V., Seppelt, K. & Strauss, S. H. (2016). Inorg. Chem. 55, 12254–12262.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMews, R., Lork, E., Watson, P. G. & Görtler, B. (2000). Coord. Chem. Rev. 197, 277–320.  Web of Science CrossRef CAS Google Scholar
First citationMingos, D. M. P. (1978). Transition Met. Chem. 3, 1–15.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeters, K., Simon, A., Peters, E. M., Kühnl, H. & Koslowski, B. (1982). Z. Anorg. Allg. Chem. 492, 7–14.  CrossRef ICSD CAS Web of Science Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyan, R. R., Kubas, G. J., Moody, D. C. & Eller, P. G. (1981). Struct. Bond. 46, 47–100.  CrossRef CAS Google Scholar
First citationSaleh, M., Powell, D. R. & Wehmschulte, R. J. (2016). Inorg. Chem. 55, 10617–10627.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, A., Peters, K., Peters, E. M., Kühnl, H. & Koslowski, B. (1980). Z. Anorg. Allg. Chem. 469, 94–100.  CrossRef ICSD CAS Web of Science Google Scholar
First citationWaddington, T. C. (1965). Non-Aqueous Solvent Systems. London: Academic Press.  Google Scholar
First citationWegener, M., Huber, F., Bolli, C., Jenne, C. & Kirsch, S. F. (2015). Chem. Eur. J. 21, 1328–1336.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds