research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-(2,6-di­chloro­benz­yl)-6-phenyl­pyridazin-3(2H)-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda 60000, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cLaboratory of Organic Synthesis, Extraction and Development, Faculty of, Sciences, Hassan II University, Casablanca, Morocco, and dLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, URAC23, Faculty of Science, BP 1014, GEOPAC Research Center, Mohammed V University, Rabat, Morocco
*Correspondence e-mail: elkalifouad408@gmail.com, sevgi.kansiz85@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 25 March 2019; accepted 14 April 2019; online 18 April 2019)

The asymmetric unit of the title compound, C17H12Cl2N2O, contains one independent mol­ecule. The mol­ecule is not planar, the phenyl and pyridazine rings are twisted with respect to each other, making a dihedral angle of 29.96 (2)° and the di­chloro­phenyl ring is nearly perpendicular to the pyridazine ring, with a dihedral angle of 82.38 (11)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules to form inversion dimers with an R22(8) ring motif. The dimers are linked by C—H⋯O inter­actions, forming layers parallel to the bc plane. The inter­molecular inter­actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, and the mol­ecular electrostatic potential surface was also analysed. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are by H⋯H (31.4%), Cl⋯H/H⋯Cl (19.9%) and C⋯H/H⋯C (19%) contacts.

1. Chemical context

Pyridazinone derivatives are biologically active heterocyclic compounds (Akhtar et al., 2016[Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256-281.]). Diverse pyridazinone derivatives have been reported to possess a variety of biological activities (Thakur et al. 2010[Thakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem, 3, 265-271.]; Asif et al. 2015[Asif, M. (2015). Mini Rev. Med. Chem. 14, 1093-1103.]) such as anti­microbial (Sönmez et al. 2006[Sönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101-105.]), anti-inflammatory (Abouzid et al. 2008[Abouzid, K. & Bekhit, S. A. (2008). Bioorg. Med. Chem. 16, 5547-5556.]), analgesic (Gökçe et al. 2009[Gökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760-3764.]), anti-HIV (Livermore et al. 1993[Livermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784-3794.]), anti­hypertensive (Siddiqui et al. 2011[Siddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023-1026.]), anti­convulsant (Sharma et al. 2014[Sharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146-157.]), cardiotonic (Wang et al. 2008[Wang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569-573.]), anti­histaminic (Tao et al. 2012[Tao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073-1077.]), anti­depressant (Boukharsa et al. 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]), glucan synthase inhibitors (Zhou et al. 2011[Zhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890-2893.]), phospho­diesterase (PDE) inhibitors (Ochiai et al. 2012[Ochiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644-1658.]) and herbicidal activity (Asif et al. 2013[Asif, M. (2013). Mini-Rev. Org. Chem. 10, 113-122.]). We report herein the synthesis and the crystal and mol­ecular structures of the title compound, as well as an analysis of its Hirshfeld surfaces.

[Scheme 1]

2. Structural commentary

As the mol­ecular structure of the title compound is illustrated in Fig. 1[link]; the asymmetric unit contains one independent mol­ecule. The mol­ecule is not planar, the benzene ring (C12–C17) and the pyridazine ring are twisted relative to each other, making a dihedral angle of 29.96 (2)° and the phenyl ring (C1–C6) is nearly perpendicular to the pyridazine ring with a dihedral angle of 82.38 (11)° (Fig. 1[link]). The C9=O1 bond length is 1.248 (4) Å while the C9—N1 and C11—N2 bond lengths are 1.360 (4) and 1.307 (4) Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 20% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](8) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane (Fig. 2[link]) and by weak ππ [Cg1⋯Cg3 = 3.839 (2) Å; Cg1 and Cg3 are the centroids of the N1–N2/C9-C11 and C12–C17 rings, respectively] inter­actions, forming a three-dimensional structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.04 2.839 (4) 155
C2—H2⋯O1ii 0.93 2.66 3.581 (6) 172
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Dashed lines denote the N—H⋯O hydrogen bonds (Table 1[link]) forming an inversion dimer with an [R_{2}^{2}](8) ring motif. The C—H⋯O inter­actions are shown as blue dashed lines.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines and the ππ inter­actions as pink dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-phenyl­pyridazin-3(2H)-one skeleton yielded two hits: 4-benzyl-6-p-tolyl­pyridazin-3(2H)-one (YOTVIN; Oubair et al., 2009[Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350-o1351.]) and ethyl 3-methyl-6-oxo-5-(3-(tri­fluoro­meth­yl)phen­yl)-1,6-di­hydro-1-pyridazine­acetate (QANVOR; Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]). In YOTVIN, the mol­ecules are connected two by two through N—H⋯O hydrogen bonds with an [R_{2}^{2}](8) graph-set motif, building a pseudo dimer arranged about the inversion center (Fig. 4[link]). Weak C—H⋯O hydrogen bonds and weak offset ππ stacking inter­actions stabilize the packing. In QANVOR, the phenyl and pyridazinone rings are approximately coplanar with a dihedral angle of 4.84 (13)° and in the crystal, centrosymmetrically related mol­ecules form dimers through non-classical inter­molecular C—H⋯O hydrogen bonds (Fig. 5[link]).

[Figure 4]
Figure 4
The crystal packing of YOTVIN (Oubair et al., 2009[Oubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350-o1351.]). The N—H⋯O hydrogen bonds with an [R_{2}^{2}](8) graph set motif are shown as pink dashed lines.
[Figure 5]
Figure 5
(a) A view of the dimers linked by C—H⋯O inter­actions forming layers parallel to the bc plane. (b) A view along the c axis of the crystal packing of QANVOR (Xu et al., 2005[Xu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561-o1563.]). Dashed lines denote the inter­molecular C—H⋯O hydrogen bonds forming centrosymmetric dimers.

5. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). In Fig. 6[link], the mappings of dnorm, shape-index and curvedness for the title compound are shown. Fig. 7[link] illustrates the Hirshfeld surface of the mol­ecule in the crystal, with the evident hydrogen-bonding inter­actions indicated by intense red spots.

[Figure 6]
Figure 6
The Hirshfeld surfaces of the title compound mapped over dnorm, shape-index and curvedness.
[Figure 7]
Figure 7
dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of the title compound.

Fig. 8[link]a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. Two-dimensional fingerprint plots provide information about the major and minor percentage contributions of inter­atomic contacts in the compound. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint. The fingerprint plot in Fig. 8[link]b shows that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (31.4%). In addition, Cl⋯H/H⋯Cl, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts contribute 19.9%, 19%, 9.3% and 6.7%, respectively, to the Hirshfeld surface. In particular, the O⋯H/H⋯O contacts indicate the presence of inter­molecular N—H⋯O and C—H⋯O inter­actions. Much weaker Cl⋯C/C⋯Cl (6.1%) and C⋯C (3.7%) contacts also occur.

[Figure 8]
Figure 8
Two-dimensional fingerprint plots for the title compound, with a dnorm view and the relative contribution of the atom pairs to the Hirshfeld surface.

A view of the mol­ecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the 6-31G(d,p) basis set with DFT method, for the title compound is shown in Fig. 9[link], where the N—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 9]
Figure 9
A view of the mol­ecular electrostatic potential for the title compound in the range −0.0500 to 0.0500 a.u. using the 6–31 G(d,p) basis set by the DFT method.

6. Synthesis and crystallization

To a solution (0.15 g, 1 mmol) of 6-phenyl-4,5-di­hydro­pyridazin-3(2H)-one and (0.18 g, 1 mmol) of 2,6-di­chloro­benzaldehyde in 30 ml of ethanol, sodium hydroxide 10% (0.5 g, 3.5 mmol) was added. The solvent evaporated under vacuum, the residue was purified through silica gel column chromatography using hexa­ne/ethyl acetate (7:3 v/v). Single crystals were obtained by slow evaporation at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The nitro­gen-bound H atom was located in a difference-Fourier map and refined subject to a DFIX restraint of N—H = 0.86 Å. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H12Cl2N2O
Mr 331.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 5.8511 (6), 12.5544 (15), 21.069 (2)
β (°) 92.666 (8)
V3) 1546.0 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.42
Crystal size (mm) 0.74 × 0.29 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.844, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 8675, 2726, 1196
Rint 0.103
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.094, 0.88
No. of reflections 2726
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.20
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2017 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2017 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012), SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

4-(2,6-Dichlorobenzyl)-6-phenylpyridazin-3(2H)-one top
Crystal data top
C17H12Cl2N2OF(000) = 680
Mr = 331.19Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8511 (6) ÅCell parameters from 5578 reflections
b = 12.5544 (15) Åθ = 1.9–30.8°
c = 21.069 (2) ŵ = 0.42 mm1
β = 92.666 (8)°T = 296 K
V = 1546.0 (3) Å3Stick, colorless
Z = 40.74 × 0.29 × 0.05 mm
Data collection top
Stoe IPDS 2
diffractometer
2726 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1196 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.103
Detector resolution: 6.67 pixels mm-1θmax = 25.0°, θmin = 1.9°
rotation method scansh = 66
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1414
Tmin = 0.844, Tmax = 0.973l = 2525
8675 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0186P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
2726 reflectionsΔρmax = 0.15 e Å3
199 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0717 (2)0.77603 (11)0.74856 (7)0.1004 (5)
Cl20.5870 (2)0.47508 (11)0.76181 (7)0.1022 (5)
O10.0083 (5)0.4872 (2)0.58329 (11)0.0681 (9)
N10.2647 (5)0.5706 (3)0.52916 (14)0.0543 (9)
H10.2150350.5363830.4959630.065*
N20.4383 (5)0.6397 (3)0.52057 (14)0.0497 (8)
C110.5192 (6)0.6884 (3)0.57161 (17)0.0455 (10)
C90.1594 (7)0.5487 (3)0.58387 (18)0.0502 (11)
C120.7076 (6)0.7653 (3)0.56287 (18)0.0486 (10)
C80.2566 (7)0.6008 (3)0.63964 (16)0.0481 (10)
C100.4302 (6)0.6696 (3)0.63241 (18)0.0500 (10)
H100.4929820.7053530.6677230.060*
C60.2580 (7)0.6252 (4)0.75974 (16)0.0496 (10)
C130.8619 (7)0.7518 (3)0.51557 (18)0.0547 (11)
H130.8449940.6945760.4877030.066*
C10.1647 (7)0.7164 (4)0.78577 (18)0.0552 (11)
C50.4515 (7)0.5861 (3)0.79161 (19)0.0587 (11)
C70.1522 (7)0.5726 (3)0.70160 (16)0.0644 (12)
H7A0.0089060.5911530.6983750.077*
H7B0.1622320.4960830.7073070.077*
C170.7339 (7)0.8532 (4)0.60200 (19)0.0635 (12)
H170.6277400.8654360.6326880.076*
C141.0395 (7)0.8220 (4)0.5094 (2)0.0652 (13)
H141.1415410.8121200.4773720.078*
C20.2559 (8)0.7640 (4)0.8395 (2)0.0697 (13)
H20.1884090.8248410.8554300.084*
C151.0671 (8)0.9066 (4)0.5503 (2)0.0699 (13)
H151.1899540.9528310.5467180.084*
C40.5475 (8)0.6332 (5)0.8459 (2)0.0791 (15)
H40.6789430.6048630.8658280.095*
C160.9128 (8)0.9230 (4)0.5967 (2)0.0724 (13)
H160.9294680.9807340.6242270.087*
C30.4477 (9)0.7215 (5)0.8698 (2)0.0859 (16)
H30.5093540.7531350.9066850.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0858 (9)0.0865 (10)0.1269 (11)0.0090 (8)0.0179 (8)0.0212 (9)
Cl20.1090 (11)0.0865 (10)0.1149 (10)0.0230 (9)0.0478 (8)0.0115 (9)
O10.083 (2)0.074 (2)0.0473 (16)0.0306 (18)0.0006 (15)0.0049 (16)
N10.071 (2)0.053 (2)0.039 (2)0.007 (2)0.0005 (18)0.0096 (17)
N20.055 (2)0.052 (2)0.0420 (19)0.0023 (18)0.0037 (16)0.0009 (17)
C110.049 (2)0.053 (3)0.034 (2)0.003 (2)0.0035 (19)0.002 (2)
C90.061 (3)0.048 (3)0.041 (2)0.002 (2)0.002 (2)0.001 (2)
C120.053 (2)0.050 (3)0.043 (2)0.004 (2)0.001 (2)0.005 (2)
C80.058 (2)0.056 (3)0.030 (2)0.005 (2)0.0010 (19)0.003 (2)
C100.058 (3)0.055 (3)0.037 (2)0.011 (2)0.002 (2)0.002 (2)
C60.058 (3)0.061 (3)0.031 (2)0.016 (2)0.008 (2)0.000 (2)
C130.057 (2)0.061 (3)0.046 (2)0.002 (2)0.004 (2)0.004 (2)
C10.063 (3)0.061 (3)0.042 (2)0.012 (2)0.004 (2)0.003 (2)
C50.059 (3)0.067 (3)0.051 (3)0.001 (2)0.016 (2)0.008 (2)
C70.082 (3)0.066 (3)0.046 (2)0.022 (3)0.010 (2)0.004 (2)
C170.068 (3)0.070 (3)0.053 (3)0.016 (3)0.014 (2)0.008 (3)
C140.055 (3)0.076 (4)0.066 (3)0.007 (3)0.016 (2)0.015 (3)
C20.091 (3)0.066 (3)0.053 (3)0.008 (3)0.014 (3)0.011 (3)
C150.066 (3)0.071 (4)0.073 (3)0.014 (3)0.010 (3)0.008 (3)
C40.069 (3)0.114 (5)0.053 (3)0.004 (3)0.009 (3)0.011 (3)
C160.082 (3)0.068 (3)0.068 (3)0.019 (3)0.012 (3)0.008 (3)
C30.098 (4)0.117 (5)0.043 (3)0.020 (4)0.003 (3)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C11.729 (4)C13—C141.373 (5)
Cl2—C51.735 (4)C13—H130.9300
O1—C91.248 (4)C1—C21.366 (5)
N1—N21.354 (4)C5—C41.383 (5)
N1—C91.360 (4)C7—H7A0.9700
N1—H10.8600C7—H7B0.9700
N2—C111.307 (4)C17—C161.373 (5)
C11—C101.425 (5)C17—H170.9300
C11—C121.483 (5)C14—C151.373 (5)
C9—C81.438 (5)C14—H140.9300
C12—C171.382 (5)C2—C31.373 (6)
C12—C131.386 (5)C2—H20.9300
C8—C101.348 (5)C15—C161.377 (6)
C8—C71.509 (5)C15—H150.9300
C10—H100.9300C4—C31.361 (6)
C6—C51.380 (5)C4—H40.9300
C6—C11.391 (5)C16—H160.9300
C6—C71.500 (5)C3—H30.9300
N2—N1—C9128.0 (3)C6—C5—Cl2119.2 (3)
N2—N1—H1116.0C4—C5—Cl2117.9 (4)
C9—N1—H1116.0C6—C7—C8115.8 (3)
C11—N2—N1115.8 (3)C6—C7—H7A108.3
N2—C11—C10121.9 (4)C8—C7—H7A108.3
N2—C11—C12116.4 (4)C6—C7—H7B108.3
C10—C11—C12121.7 (3)C8—C7—H7B108.3
O1—C9—N1120.3 (3)H7A—C7—H7B107.4
O1—C9—C8124.7 (4)C16—C17—C12121.7 (4)
N1—C9—C8115.0 (4)C16—C17—H17119.1
C17—C12—C13117.9 (4)C12—C17—H17119.1
C17—C12—C11120.6 (4)C13—C14—C15120.3 (4)
C13—C12—C11121.5 (4)C13—C14—H14119.9
C10—C8—C9118.1 (4)C15—C14—H14119.9
C10—C8—C7125.8 (3)C1—C2—C3119.7 (5)
C9—C8—C7116.1 (4)C1—C2—H2120.2
C8—C10—C11121.2 (3)C3—C2—H2120.2
C8—C10—H10119.4C14—C15—C16120.0 (4)
C11—C10—H10119.4C14—C15—H15120.0
C5—C6—C1115.4 (3)C16—C15—H15120.0
C5—C6—C7122.6 (4)C3—C4—C5119.3 (4)
C1—C6—C7122.0 (4)C3—C4—H4120.3
C14—C13—C12120.7 (4)C5—C4—H4120.3
C14—C13—H13119.6C17—C16—C15119.3 (4)
C12—C13—H13119.6C17—C16—H16120.4
C2—C1—C6122.8 (4)C15—C16—H16120.4
C2—C1—Cl1117.4 (4)C4—C3—C2120.0 (4)
C6—C1—Cl1119.9 (3)C4—C3—H3120.0
C6—C5—C4122.8 (4)C2—C3—H3120.0
C9—N1—N2—C112.6 (5)C7—C6—C1—Cl13.3 (5)
N1—N2—C11—C100.1 (5)C1—C6—C5—C40.2 (6)
N1—N2—C11—C12179.3 (3)C7—C6—C5—C4178.8 (4)
N2—N1—C9—O1175.7 (3)C1—C6—C5—Cl2178.0 (3)
N2—N1—C9—C84.5 (6)C7—C6—C5—Cl22.9 (5)
N2—C11—C12—C17149.5 (4)C5—C6—C7—C883.4 (5)
C10—C11—C12—C1729.9 (5)C1—C6—C7—C897.5 (5)
N2—C11—C12—C1330.4 (5)C10—C8—C7—C61.5 (6)
C10—C11—C12—C13150.1 (4)C9—C8—C7—C6178.6 (4)
O1—C9—C8—C10176.5 (4)C13—C12—C17—C163.0 (6)
N1—C9—C8—C103.7 (5)C11—C12—C17—C16177.1 (4)
O1—C9—C8—C73.5 (6)C12—C13—C14—C150.2 (6)
N1—C9—C8—C7176.4 (4)C6—C1—C2—C30.1 (6)
C9—C8—C10—C111.5 (6)Cl1—C1—C2—C3178.1 (4)
C7—C8—C10—C11178.5 (4)C13—C14—C15—C161.7 (6)
N2—C11—C10—C80.5 (6)C6—C5—C4—C30.6 (7)
C12—C11—C10—C8179.0 (4)Cl2—C5—C4—C3178.8 (4)
C17—C12—C13—C142.1 (6)C12—C17—C16—C151.6 (6)
C11—C12—C13—C14178.0 (3)C14—C15—C16—C170.9 (7)
C5—C6—C1—C20.6 (6)C5—C4—C3—C21.1 (7)
C7—C6—C1—C2178.5 (4)C1—C2—C3—C40.8 (7)
C5—C6—C1—Cl1177.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.839 (4)155
C2—H2···O1ii0.932.663.581 (6)172
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAbouzid, K. & Bekhit, S. A. (2008). Bioorg. Med. Chem. 16, 5547–5556.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F. & Alam, M. M. (2016). Eur. J. Med. Chem. 123, 256–281.  CrossRef CAS PubMed Google Scholar
First citationAsif, M. (2013). Mini-Rev. Org. Chem. 10, 113–122.  CrossRef CAS Google Scholar
First citationAsif, M. (2015). Mini Rev. Med. Chem. 14, 1093–1103.  CrossRef PubMed Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGökçe, M., Utku, S. & Küpeli, E. (2009). Eur. J. Med. Chem. 44, 3760–3764.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLivermore, D., Bethell, R. C., Cammack, N., Hancock, A. P., Hann, M. M., Green, D., Lamont, R. B., Noble, S. A., Orr, D. C. & Payne, J. J. (1993). J. Med. Chem. 36, 3784–3794.  CSD CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationOchiai, K., Takita, S., Eiraku, T., Kojima, A., Iwase, K., Kishi, T., Fukuchi, K., Yasue, T., Adams, D. R., Allcock, R. W., Jiang, Z. & Kohno, Y. (2012). Bioorg. Med. Chem. 20, 1644–1658.  CrossRef CAS PubMed Google Scholar
First citationOubair, A., Daran, J.-C., Fihi, R., Majidi, L. & Azrour, M. (2009). Acta Cryst. E65, o1350–o1351.  CSD CrossRef IUCr Journals Google Scholar
First citationSharma, B., Verma, A., Sharma, U. K. & Prajapati, S. (2014). Med. Chem. Res. 23, 146–157.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, A. A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M. & Pal, P. (2011). Bioorg. Med. Chem. Lett. 21, 1023–1026.  CrossRef CAS PubMed Google Scholar
First citationSönmez, M., Berber, I. & Akbaş, E. (2006). Eur. J. Med. Chem. 41, 101–105.  PubMed Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTao, M., Aimone, L. D., Gruner, J. A., Mathiasen, J. R., Huang, Z., Lyons, J., Raddatz, R. & Hudkins, R. L. (2012). Bioorg. Med. Chem. Lett. 22, 1073–1077.  CrossRef CAS PubMed Google Scholar
First citationThakur, A. S., Verma, P. & Chandy, A. (2010). Asian J. Res. Chem, 3, 265–271.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWang, T., Dong, Y., Wang, L.-C., Xiang, B.-R., Chen, Z. & Qu, L.-B. (2008). Arzneimittelforschung, 58, 569–573.  PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H., Song, H.-B., Yao, C.-S., Zhu, Y.-Q., Hu, F.-Z., Zou, X.-M. & Yang, H.-Z. (2005). Acta Cryst. E61, o1561–o1563.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, G., Ting, P. C., Aslanian, R., Cao, J., Kim, D. W., Kuang, R., Lee, J. F., Schwerdt, J., Wu, H., Jason Herr, R., Zych, A. J., Yang, J., Lam, S., Wainhaus, S., Black, T. A., McNicholas, P. M., Xu, Y. & Walker, S. S. (2011). Bioorg. Med. Chem. Lett. 21, 2890–2893.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds