research communications
Tris(μ2-2-methoxy-6-{[(2-sulfidoethyl)imino]methyl}phenolato)trinickel(II) dimethylformamide monosolvate: spectroscopic characterization and antibacterial activity
aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine, and bInstitute of Epidemiology and Infectious Diseases of the Academy of Medical, Sciences of Ukraine, 5, M. Amosova str., Kyiv 03038, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com
The title trinuclear nickel(II) complex, [Ni3(C10H11NO2S)3]·C3H7NO, with a Schiff base ligand formed in situ from 2-aminoethanethiol and o-vanillin crystallizes in the orthorhombic Pbca. Its consists of one neutral Ni3L3 molecule and one DMF solvent molecule. The solid-state organization of the complex can be described as an insertion of the solvent molecules within the crystallographically independent trinuclear NiII species. Several C—H⋯π edge-to-face interactions and π–π stacking interactions link the components in the crystal. A first example of a short intermolecular C—H⋯Ni contact is found. Antibacterial in vitro screening revealed that the title compound has antibacterial activity, the best effect being against Acinetobacter baumannii.
Keywords: crystal structure; trinuclear Ni (II) complex; Schiff bases; cysteamine (2-aminoethanethiol); o-vaniline; antibacterial activity.
CCDC reference: 1865532
1. Chemical context
Schiff base ligands are one of the most widely utilized classes of ligands in metal coordination chemistry because of their preparative accessibility, structural variety and strong metal-binding ability with many metal ions via azomethine HC=N or phenolic groups (Garnovskii et al., 1993; Bera et al., 1998; Prabhakaran et al., 2004). o-Vanillin-based Schiff ligands demonstrate an exceptionally rich coordination chemistry and diverse properties – magnetism, luminescence, catalysis, cytotoxicity and ferroelectricity (Andruh, 2015). The N and S atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules. It has been shown that ONS are moderately active against leukemia (Tofazzal et al., 2000). In particularly, nickel complexes with a multidentate NSO-containing mixed-ligand environment attract attention because such complexes play an important role in bioinorganic chemistry and redox enzyme systems and can be considered as model objects for studying the active sites of biological systems (Halcrow et al., 1994). In this work we present the of a novel trinuclear NiII complex with an NSO-type Schiff base ligand derived from o-vanillin and 2-aminoethanethiol as well results of its antibacterial activity screening against several Gram-positive and Gram-negative bacteria.
2. Structural commentary
The title complex crystallizes in the orthorhombic Pbca. The consists of one neutral Ni3L3 molecule and one DMF solvent molecule. The molecular structure of the trinuclear complex unit is depicted in Fig. 1.
The coordination geometry around each NiII ion can be described as slightly distorted square planar and is comparable to that found in similar complexes reported previously (Kaasjager et al., 2001; Constable et al., 2011). Each NiII ion is tetracoordinated by an identical NOS2 ligand environment: the dianionic Schiff base ligand occupies three of the four coordination sites (NOS), the fourth site place being filled by a bridging sulfur atom of a neighboring ligand. The deviation of the NiII atom from the NOS2 mean plane is 0.0927 (14) Å. Thus, the molecule has a `crown' or bowl shape with the Ni3S3 unit as its base in a distorted chair conformation. The torsion angles [between 78.49 (5) and 84.79 (5)°] deviate significantly from the ideal chair conformation for c-hexane which has torsion angles of 60°. For the Ni2 atom in this core, one additional short contact should be noted, C27—H27C⋯Ni( + x, y, − z) with an H⋯Ni distance of 2.58 Å. Thus, with this additional contact, the coordination geometry of the Ni2 atom is square pyramidal with heteroatom—Ni2—H27C bond angles in the range 78.0-95.1°.
Unlike in closely related compounds, the solvent molecule is not encapsulated. The distances observed between the Ni atoms are within Ni1⋯Ni2 3.5706 (4) and 3.6656 (5) Å. The intramolecular Ni—S distances with the dianionic Schiff base ligand (Ni3—S4, Ni1—S5, Ni2—S6) are in the range 2.1888 (12)–2.2036 (13) Å. They are slightly shorter than analogous ones with the bridging sulfur atom (Ni3—S5, Ni1—S6, Ni2—S4) of the neighboring ligand [2.2171 (12)–2.2262 (13) Å]. These data are comparable with those previously reported for related structures (Kaasjager et al., 2001; Henkel et al., 1988).
3. Supramolecular features
The solid-state organization of the complex can be described as an insertion of the solvent molecules within the crystallographically independent trinuclear NiII species (Fig. 2).
In this structure, in contrast to previously reported analogous complexes (Constable et al., 2011), the short C—H⋯Ni contact noted above connects neighboring structural units. This is slightly longer than analogous intramolecular C—H⋯Ni contacts (2.21–2.40 Å; Stępień et al., 2004; Gladkikh et al., 2002) in metal–organic hydrides and hydroboron-containing compounds. It seems that it is the first example of such a short intermolecular C—H⋯Ni contact in coordination compounds.
In addition, π–π stacking interactions with a centroid–centroid distance Cg1⋯Cg2(−x, 2 − y,1 − z) of 3.722 (6) Å for connect the neighboring units (Cg1 and Cg2 are the centroids of the Ni2/O3/N3/C11/C12/C18 and C11–C16 rings, respectively). Several C—H⋯O and C—H⋯π edge-to-face interactions (Table 1) are also involved in linking the components in the crystal (Fig. 3).
4. Database survey
A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016) for related complexes with H⋯Ni contacts gave nine hits with intramolecular E—H⋯Ni contacts where E is mainly Ir, Rh, B and only two examples with C—H⋯Ni. There were no E—H⋯Ni intermolecular contacts found. A search for complexes with an Ni atom and an ONS Schiff base ligand gave 16 hits, including four closely related structures, viz. tris{μ2-2-[(2-mercaptoethyl)iminomethyl]phenolato}trinickel and tris(μ2-2-(2-naphthylmethoxy)-6-[{(2-sulfidoethyl)imino]methyl}phenolato)trinickel(II) dichloromethane solvate, tris(μ2-2-(benzyloxy)-6-{[(2-sulfidoethyl)imino]methyl}phenolato)trinickel(II) dichloromethane solvate, tris(μ2-2-ethoxy-6-[{(2-sulfidoethyl)imino]methyl}phenolato)trinickel(II) C60-fullerene dichloromethane solvate, tris(μ2-2-ethoxy-6-{[(2-sulfidoethyl)imino]methyl}phenolato)trinickel(II) dichloromethane solvate (Kaasjager et al., 2001; Constable et al., 2011).
5. Synthesis and crystallization
A solution of KOH (0.22 g, 4 mmol) in a minimum amount of methanol (2–3 ml) was added to a solution of 2-aminoethanethiol hydrochloride (0.44g, 4 mmol) in methanol (5 ml) and stirred in an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and o-vaniline (0.61 g, 4 mmol) in ethanol (5 ml) was added to the filtrate and stirred on air magnetically for 2 h. Nickel acetate tetrahydrate (0.99 g, 4 mmol) in ethanol (6 ml) was added to the yellowish solution of the Schiff base formed in situ, and the resulting deep-brown solution was stirred magnetically and heated at 340–347 K for 1.5 h resulting in a dark-colored precipitate. The product was isolated by filtration, washed with dry i=iPrOH and finally dried in vacuo. Crystals suitable for crystallographic study were grown from a in DMF (deep-brown solution). The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 47%).
The IR spectrum of the title compound (as KBr pellets) is consistent with the above structural data. It displays the characteristic peak at 1610 cm−1 indicating the formation of a Schiff base (–H—C=N–) (Esteves-Souza et al., 2006). The strong bands at 1330–1470 cm−1 can be attributed to overlapped C—H bending (scissoring) (as well in CH3 groups of the solvent molecule) and aromatic –C=C– stretching vibrations. Other strong bands at 1228 and 1244 cm−1 are due to the phenolic CO stretching (Wu et al., 2014). Two medium intensity bands observed at 620 and 738 cm−1 could be assigned to the asymmetric and symmetric C—S stretching vibrations, respectively. In the 1H-NMR spectrum, the azomethine proton peak that confirms the Schiff base formation is attributed to a singlet signal at 7.9 ppm. It overlaps with the solvent (DMF) proton signal. The O—CH3 protons peaks only appear at 3.92 ppm. The multiplets of the aromatic protons appear in the range 6.39–6.79 ppm with different multiplicity and coupling constants. The strong singlet at 3.39 ppm could be assigned to the aliphatic –CH2–CH2– protons according to its integral intensity. Signals from the DMF methyl protons appear at 2.94 and 2.78 ppm. Analysis calculated for for C33H40N4Ni3O7S3 (877.00): C, 45.20; H, 4.60; N, 6.39; found: C, 45.5; H, 4.77; N, 6.25.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were added at calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2
|
7. Antibacterial screening
The antibacterial in vitro screening of all test compounds was carried out against reference strains of bacteria (American Type Culture Collection [ATCC] Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) and clinical strains [Acinetobacter baumannii (MβL), Klebsiella pneumoniae, Pseudomonas aeruginosa (MβL), Staphylococcus aureus (MRCNS), Staphylococcus aureus (MRSA), Staphylococcus aureus (βL)]. The broth microdilution method was used according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). The results obtained indicate that the synthesized compound possesses a broad spectrum of activity against the tested microorganisms and shows relatively better activity against Gram-negative than Gram-positive bacteria. The title complex showed activity with lowest minimum inhibitory concentrations (MIC) values 312.5 µg ml−1 against Gram-negative bacteria E. coli, K. pneumoniae and P. aeruginosa. The highest activity was against clinical strain A. baumannii - MIC = 156.2 µg ml−1. The poorest activity of the complex was against clinical strain Staphylococcus aureus (MRSA). It is well known that A. baumannii is one of the most important nosocomial pathogens because of its longevity in the hospital environment and ability to resist various antimicrobial agents, such as resistance to broad-spectrum β-lactam antibiotics by β-lactamases production (Peleg et al., 2008; Jamulitrat et al., 2007; Li et al., 2007). The antibacterial study revealed that the title compound has antibacterial activity, the best being against A. baumannii.
Supporting information
CCDC reference: 1865532
https://doi.org/10.1107/S2056989019004730/ex2019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004730/ex2019Isup2.hkl
Data collection: SMART (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni3(C10H11NO2S)3]·C3H7NO | Dx = 1.635 Mg m−3 |
Mr = 877.00 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 1664 reflections |
a = 20.396 (3) Å | θ = 2.5–24.3° |
b = 16.066 (3) Å | µ = 1.80 mm−1 |
c = 21.738 (3) Å | T = 123 K |
V = 7123.5 (19) Å3 | Plate, brown |
Z = 8 | 0.47 × 0.28 × 0.05 mm |
F(000) = 3632 |
Bruker SMART CCD area detector diffractometer | 6349 independent reflections |
Radiation source: sealed tube | 4257 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.107 |
phi and ω scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −23→24 |
Tmin = 0.65, Tmax = 0.92 | k = −19→19 |
49899 measured reflections | l = −25→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0573P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.002 |
6349 reflections | Δρmax = 0.57 e Å−3 |
456 parameters | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1040 (2) | 0.6135 (3) | 0.4547 (2) | 0.0216 (11) | |
N1 | 0.14902 (17) | 0.6953 (2) | 0.34331 (16) | 0.0208 (9) | |
NI1 | 0.05923 (3) | 0.71688 (3) | 0.35642 (2) | 0.01757 (15) | |
O1 | 0.05749 (14) | 0.65749 (18) | 0.42925 (13) | 0.0218 (7) | |
C2 | 0.1675 (2) | 0.6052 (3) | 0.4303 (2) | 0.0245 (11) | |
N2 | 0.05639 (17) | 1.0287 (2) | 0.27069 (15) | 0.0175 (8) | |
NI2 | −0.05261 (3) | 0.87936 (3) | 0.39576 (2) | 0.01647 (15) | |
O2 | 0.13969 (15) | 0.90693 (18) | 0.23444 (14) | 0.0262 (8) | |
C3 | 0.2145 (2) | 0.5541 (3) | 0.4609 (2) | 0.0314 (12) | |
H3 | 0.256416 | 0.548700 | 0.444523 | 0.038* | |
N3 | −0.06396 (17) | 0.8428 (2) | 0.47725 (16) | 0.0190 (8) | |
NI3 | 0.05724 (3) | 0.91137 (3) | 0.26828 (2) | 0.01665 (15) | |
O3 | −0.06788 (14) | 0.98980 (17) | 0.41482 (13) | 0.0200 (7) | |
C4 | 0.1988 (2) | 0.5134 (3) | 0.5132 (2) | 0.0345 (13) | |
H4 | 0.229727 | 0.479712 | 0.532412 | 0.041* | |
N4 | 0.32425 (19) | 0.8337 (3) | 0.35718 (17) | 0.0312 (10) | |
O4 | 0.02740 (16) | 0.58374 (18) | 0.53216 (14) | 0.0279 (8) | |
S4 | −0.04576 (5) | 0.91131 (7) | 0.29655 (5) | 0.0179 (3) | |
C5 | 0.1363 (2) | 0.5220 (3) | 0.5385 (2) | 0.0293 (12) | |
H5 | 0.126244 | 0.494494 | 0.574885 | 0.035* | |
O5 | 0.23866 (15) | 0.8613 (2) | 0.16848 (15) | 0.0331 (8) | |
S5 | 0.05311 (5) | 0.77300 (7) | 0.26444 (5) | 0.0190 (3) | |
C6 | 0.0894 (2) | 0.5703 (3) | 0.5106 (2) | 0.0260 (11) | |
O6 | −0.08955 (16) | 1.15080 (19) | 0.41606 (15) | 0.0317 (8) | |
S6 | −0.04607 (5) | 0.74826 (7) | 0.36660 (5) | 0.0193 (3) | |
C7 | 0.0112 (3) | 0.5505 (3) | 0.5913 (2) | 0.0361 (13) | |
H7A | 0.010203 | 0.490812 | 0.589061 | 0.054* | |
H7B | −0.031052 | 0.570727 | 0.603684 | 0.054* | |
H7C | 0.043595 | 0.567557 | 0.620712 | 0.054* | |
O7 | 0.35878 (19) | 0.6998 (2) | 0.34988 (15) | 0.0476 (10) | |
C8 | 0.1856 (2) | 0.6482 (3) | 0.3760 (2) | 0.0235 (11) | |
H8 | 0.228610 | 0.641402 | 0.362734 | 0.028* | |
C9 | 0.1797 (2) | 0.7362 (3) | 0.28965 (19) | 0.0236 (11) | |
H9A | 0.219139 | 0.706502 | 0.277862 | 0.028* | |
H9B | 0.191724 | 0.792901 | 0.300086 | 0.028* | |
C10 | 0.1318 (2) | 0.7364 (3) | 0.2372 (2) | 0.0244 (11) | |
H10A | 0.127330 | 0.680574 | 0.220734 | 0.029* | |
H10B | 0.147539 | 0.772455 | 0.204635 | 0.029* | |
C11 | −0.0862 (2) | 1.0220 (3) | 0.4676 (2) | 0.0185 (10) | |
C12 | −0.0951 (2) | 0.9762 (3) | 0.5218 (2) | 0.0212 (11) | |
C13 | −0.1154 (2) | 1.0165 (3) | 0.5762 (2) | 0.0300 (12) | |
H13 | −0.120480 | 0.985565 | 0.612062 | 0.036* | |
C14 | −0.1277 (2) | 1.0989 (3) | 0.5774 (2) | 0.0335 (13) | |
H14 | −0.141172 | 1.124339 | 0.613697 | 0.040* | |
C15 | −0.1201 (2) | 1.1460 (3) | 0.5236 (2) | 0.0295 (12) | |
H15 | −0.128681 | 1.202832 | 0.524240 | 0.035* | |
C16 | −0.1002 (2) | 1.1087 (3) | 0.4703 (2) | 0.0231 (11) | |
C17 | −0.1012 (3) | 1.2377 (3) | 0.4157 (2) | 0.0403 (14) | |
H17A | −0.146957 | 1.248147 | 0.422307 | 0.060* | |
H17B | −0.088282 | 1.260377 | 0.376610 | 0.060* | |
H17C | −0.076086 | 1.263611 | 0.447772 | 0.060* | |
C18 | −0.0820 (2) | 0.8889 (3) | 0.5231 (2) | 0.0245 (11) | |
H18 | −0.086870 | 0.862371 | 0.560864 | 0.029* | |
C19 | −0.0501 (2) | 0.7554 (3) | 0.4905 (2) | 0.0246 (11) | |
H19A | −0.071544 | 0.739122 | 0.528505 | 0.030* | |
H19B | −0.003255 | 0.747398 | 0.495504 | 0.030* | |
C20 | −0.0748 (2) | 0.7026 (3) | 0.43822 (19) | 0.0235 (11) | |
H20A | −0.122384 | 0.700919 | 0.438689 | 0.028* | |
H20B | −0.058516 | 0.646188 | 0.442237 | 0.028* | |
C21 | 0.1735 (2) | 0.9672 (3) | 0.21019 (19) | 0.0192 (10) | |
C22 | 0.1582 (2) | 1.0516 (3) | 0.21515 (19) | 0.0196 (10) | |
C23 | 0.1993 (2) | 1.1128 (3) | 0.1890 (2) | 0.0267 (11) | |
H23 | 0.188237 | 1.168805 | 0.192303 | 0.032* | |
C24 | 0.2553 (2) | 1.0900 (3) | 0.1587 (2) | 0.0269 (11) | |
H24 | 0.283080 | 1.130485 | 0.142680 | 0.032* | |
C25 | 0.2708 (2) | 1.0059 (3) | 0.1519 (2) | 0.0263 (11) | |
H25 | 0.308818 | 0.990638 | 0.131124 | 0.032* | |
C26 | 0.2306 (2) | 0.9456 (3) | 0.1756 (2) | 0.0211 (10) | |
C27 | 0.2836 (2) | 0.8347 (3) | 0.1220 (2) | 0.0356 (13) | |
H27A | 0.274122 | 0.863141 | 0.084227 | 0.053* | |
H27B | 0.279230 | 0.775766 | 0.115968 | 0.053* | |
H27C | 0.327566 | 0.847268 | 0.134711 | 0.053* | |
C28 | 0.0997 (2) | 1.0768 (3) | 0.24669 (19) | 0.0213 (11) | |
H28 | 0.092408 | 1.133787 | 0.250102 | 0.026* | |
C29 | 0.0019 (2) | 1.0683 (3) | 0.3039 (2) | 0.0212 (11) | |
H29A | −0.001822 | 1.126287 | 0.292097 | 0.025* | |
H29B | 0.009548 | 1.065625 | 0.347927 | 0.025* | |
C30 | −0.0598 (2) | 1.0227 (3) | 0.2879 (2) | 0.0217 (10) | |
H30A | −0.072285 | 1.035053 | 0.245854 | 0.026* | |
H30B | −0.095042 | 1.040244 | 0.314861 | 0.026* | |
C31 | 0.3514 (2) | 0.7692 (4) | 0.3282 (2) | 0.0375 (13) | |
H31 | 0.365864 | 0.777847 | 0.288189 | 0.045* | |
C32 | 0.3015 (3) | 0.8257 (3) | 0.4199 (2) | 0.0446 (15) | |
H32A | 0.307709 | 0.769365 | 0.433531 | 0.067* | |
H32B | 0.255822 | 0.839620 | 0.421934 | 0.067* | |
H32C | 0.326002 | 0.862642 | 0.445918 | 0.067* | |
C33 | 0.3149 (3) | 0.9136 (3) | 0.3264 (3) | 0.0478 (15) | |
H33A | 0.328520 | 0.909052 | 0.284238 | 0.072* | |
H33B | 0.340519 | 0.955447 | 0.346673 | 0.072* | |
H33C | 0.269354 | 0.928704 | 0.327920 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.027 (3) | 0.015 (2) | 0.023 (3) | −0.001 (2) | −0.007 (2) | −0.005 (2) |
N1 | 0.022 (2) | 0.018 (2) | 0.022 (2) | 0.0000 (17) | 0.0015 (17) | −0.0056 (17) |
NI1 | 0.0168 (3) | 0.0146 (3) | 0.0214 (3) | 0.0005 (2) | 0.0007 (2) | −0.0002 (2) |
O1 | 0.0237 (18) | 0.0193 (17) | 0.0224 (17) | 0.0022 (14) | 0.0009 (14) | 0.0045 (14) |
C2 | 0.026 (3) | 0.016 (3) | 0.031 (3) | 0.002 (2) | −0.006 (2) | −0.007 (2) |
N2 | 0.018 (2) | 0.0160 (19) | 0.019 (2) | −0.0005 (16) | 0.0003 (17) | 0.0000 (16) |
NI2 | 0.0162 (3) | 0.0149 (3) | 0.0183 (3) | 0.0006 (2) | 0.0008 (2) | 0.0001 (2) |
O2 | 0.0262 (18) | 0.0179 (18) | 0.035 (2) | 0.0023 (14) | 0.0125 (15) | 0.0070 (14) |
C3 | 0.027 (3) | 0.031 (3) | 0.035 (3) | 0.011 (2) | −0.011 (2) | −0.012 (2) |
N3 | 0.017 (2) | 0.020 (2) | 0.020 (2) | 0.0019 (16) | −0.0005 (17) | 0.0029 (17) |
NI3 | 0.0178 (3) | 0.0135 (3) | 0.0186 (3) | 0.0000 (2) | 0.0020 (3) | 0.0009 (2) |
O3 | 0.0264 (18) | 0.0172 (17) | 0.0164 (16) | 0.0006 (13) | 0.0012 (14) | −0.0031 (13) |
C4 | 0.038 (3) | 0.033 (3) | 0.033 (3) | 0.015 (2) | −0.015 (3) | 0.000 (2) |
N4 | 0.027 (2) | 0.039 (3) | 0.028 (2) | 0.001 (2) | 0.003 (2) | −0.006 (2) |
O4 | 0.036 (2) | 0.0204 (18) | 0.0275 (19) | 0.0015 (15) | 0.0006 (16) | 0.0066 (15) |
S4 | 0.0174 (6) | 0.0163 (6) | 0.0198 (6) | 0.0003 (5) | −0.0013 (5) | −0.0009 (5) |
C5 | 0.045 (3) | 0.018 (3) | 0.025 (3) | −0.001 (2) | −0.014 (3) | 0.003 (2) |
O5 | 0.029 (2) | 0.027 (2) | 0.043 (2) | 0.0035 (16) | 0.0153 (17) | 0.0023 (16) |
S5 | 0.0216 (6) | 0.0157 (6) | 0.0199 (6) | −0.0013 (5) | 0.0025 (5) | −0.0028 (5) |
C6 | 0.029 (3) | 0.018 (3) | 0.030 (3) | 0.000 (2) | −0.008 (2) | −0.004 (2) |
O6 | 0.040 (2) | 0.0171 (18) | 0.038 (2) | 0.0019 (16) | −0.0040 (17) | −0.0069 (15) |
S6 | 0.0171 (6) | 0.0156 (6) | 0.0252 (6) | −0.0009 (5) | 0.0012 (5) | −0.0004 (5) |
C7 | 0.048 (3) | 0.033 (3) | 0.028 (3) | −0.002 (3) | 0.007 (3) | 0.006 (2) |
O7 | 0.066 (3) | 0.045 (3) | 0.032 (2) | 0.018 (2) | 0.0031 (19) | −0.0013 (19) |
C8 | 0.019 (3) | 0.018 (3) | 0.033 (3) | 0.002 (2) | 0.001 (2) | −0.005 (2) |
C9 | 0.018 (2) | 0.020 (3) | 0.033 (3) | 0.001 (2) | 0.006 (2) | −0.005 (2) |
C10 | 0.028 (3) | 0.019 (3) | 0.026 (3) | 0.002 (2) | 0.006 (2) | −0.004 (2) |
C11 | 0.009 (2) | 0.022 (3) | 0.024 (3) | −0.0001 (19) | −0.005 (2) | −0.005 (2) |
C12 | 0.014 (2) | 0.027 (3) | 0.022 (3) | 0.002 (2) | −0.001 (2) | −0.006 (2) |
C13 | 0.013 (2) | 0.050 (4) | 0.027 (3) | 0.000 (2) | −0.005 (2) | −0.002 (2) |
C14 | 0.025 (3) | 0.042 (3) | 0.034 (3) | 0.008 (2) | −0.002 (2) | −0.023 (3) |
C15 | 0.020 (3) | 0.026 (3) | 0.043 (3) | 0.004 (2) | −0.004 (2) | −0.019 (2) |
C16 | 0.020 (3) | 0.024 (3) | 0.026 (3) | 0.002 (2) | −0.006 (2) | −0.005 (2) |
C17 | 0.058 (4) | 0.014 (3) | 0.049 (3) | 0.007 (2) | −0.022 (3) | −0.009 (2) |
C18 | 0.014 (2) | 0.038 (3) | 0.022 (3) | −0.002 (2) | 0.002 (2) | 0.005 (2) |
C19 | 0.023 (3) | 0.022 (3) | 0.029 (3) | 0.006 (2) | 0.006 (2) | 0.009 (2) |
C20 | 0.017 (2) | 0.023 (3) | 0.031 (3) | 0.001 (2) | 0.005 (2) | 0.008 (2) |
C21 | 0.013 (2) | 0.029 (3) | 0.016 (2) | −0.002 (2) | −0.001 (2) | 0.006 (2) |
C22 | 0.020 (3) | 0.024 (3) | 0.016 (2) | −0.003 (2) | −0.002 (2) | 0.0027 (19) |
C23 | 0.028 (3) | 0.027 (3) | 0.025 (3) | −0.008 (2) | 0.000 (2) | 0.001 (2) |
C24 | 0.027 (3) | 0.028 (3) | 0.026 (3) | −0.012 (2) | −0.001 (2) | 0.001 (2) |
C25 | 0.020 (3) | 0.036 (3) | 0.023 (3) | −0.002 (2) | −0.003 (2) | −0.002 (2) |
C26 | 0.018 (2) | 0.021 (3) | 0.025 (3) | 0.001 (2) | −0.001 (2) | 0.004 (2) |
C27 | 0.023 (3) | 0.037 (3) | 0.047 (3) | 0.004 (2) | 0.011 (3) | 0.005 (3) |
C28 | 0.029 (3) | 0.015 (2) | 0.020 (2) | −0.003 (2) | −0.007 (2) | −0.0020 (19) |
C29 | 0.026 (3) | 0.013 (2) | 0.024 (3) | 0.0037 (19) | 0.004 (2) | 0.000 (2) |
C30 | 0.023 (3) | 0.021 (3) | 0.021 (2) | 0.007 (2) | −0.004 (2) | 0.0076 (19) |
C31 | 0.038 (3) | 0.046 (4) | 0.029 (3) | 0.006 (3) | 0.005 (3) | −0.003 (3) |
C32 | 0.038 (3) | 0.058 (4) | 0.038 (3) | 0.019 (3) | 0.002 (3) | −0.002 (3) |
C33 | 0.056 (4) | 0.029 (3) | 0.058 (4) | 0.004 (3) | 0.008 (3) | −0.005 (3) |
C1—O1 | 1.306 (5) | C9—H9A | 0.9700 |
C1—C2 | 1.406 (6) | C9—H9B | 0.9700 |
C1—C6 | 1.430 (6) | C10—H10A | 0.9700 |
N1—C8 | 1.278 (5) | C10—H10B | 0.9700 |
N1—C9 | 1.478 (5) | C11—C12 | 1.400 (6) |
N1—Ni1 | 1.886 (4) | C11—C16 | 1.424 (6) |
Ni1—O1 | 1.849 (3) | C12—C13 | 1.413 (6) |
Ni1—S5 | 2.1970 (12) | C12—C18 | 1.428 (6) |
Ni1—S6 | 2.2171 (12) | C13—C14 | 1.347 (6) |
C2—C8 | 1.417 (6) | C13—H13 | 0.9300 |
C2—C3 | 1.426 (6) | C14—C15 | 1.401 (7) |
N2—C28 | 1.285 (5) | C14—H14 | 0.9300 |
N2—C29 | 1.470 (5) | C15—C16 | 1.368 (6) |
N2—Ni3 | 1.886 (3) | C15—H15 | 0.9300 |
Ni2—O3 | 1.849 (3) | C17—H17A | 0.9600 |
Ni2—N3 | 1.881 (3) | C17—H17B | 0.9600 |
Ni2—S6 | 2.2036 (13) | C17—H17C | 0.9600 |
Ni2—S4 | 2.2213 (12) | C18—H18 | 0.9300 |
O2—C21 | 1.300 (5) | C19—C20 | 1.506 (6) |
O2—Ni3 | 1.837 (3) | C19—H19A | 0.9700 |
C3—C4 | 1.350 (7) | C19—H19B | 0.9700 |
C3—H3 | 0.9300 | C20—H20A | 0.9700 |
N3—C18 | 1.295 (5) | C20—H20B | 0.9700 |
N3—C19 | 1.461 (5) | C21—C22 | 1.395 (6) |
Ni3—S4 | 2.1888 (12) | C21—C26 | 1.430 (6) |
Ni3—S5 | 2.2262 (13) | C22—C23 | 1.412 (6) |
O3—C11 | 1.313 (5) | C22—C28 | 1.435 (6) |
C4—C5 | 1.395 (7) | C23—C24 | 1.369 (6) |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
N4—C31 | 1.333 (6) | C24—C25 | 1.395 (6) |
N4—C32 | 1.446 (6) | C24—H24 | 0.9300 |
N4—C33 | 1.460 (6) | C25—C26 | 1.370 (6) |
O4—C6 | 1.366 (5) | C25—H25 | 0.9300 |
O4—C7 | 1.430 (5) | C27—H27A | 0.9600 |
S4—C30 | 1.821 (4) | C27—H27B | 0.9600 |
C5—C6 | 1.373 (6) | C27—H27C | 0.9600 |
C5—H5 | 0.9300 | C28—H28 | 0.9300 |
O5—C26 | 1.372 (5) | C29—C30 | 1.496 (6) |
O5—C27 | 1.429 (5) | C29—H29A | 0.9700 |
S5—C10 | 1.808 (4) | C29—H29B | 0.9700 |
O6—C16 | 1.376 (5) | C30—H30A | 0.9700 |
O6—C17 | 1.417 (5) | C30—H30B | 0.9700 |
S6—C20 | 1.818 (4) | C31—H31 | 0.9300 |
C7—H7A | 0.9600 | C32—H32A | 0.9600 |
C7—H7B | 0.9600 | C32—H32B | 0.9600 |
C7—H7C | 0.9600 | C32—H32C | 0.9600 |
O7—C31 | 1.219 (6) | C33—H33A | 0.9600 |
C8—H8 | 0.9300 | C33—H33B | 0.9600 |
C9—C10 | 1.502 (6) | C33—H33C | 0.9600 |
O1—C1—C2 | 124.1 (4) | C13—C12—C18 | 119.2 (4) |
O1—C1—C6 | 118.2 (4) | C14—C13—C12 | 121.4 (5) |
C2—C1—C6 | 117.7 (4) | C14—C13—H13 | 119.3 |
C8—N1—C9 | 117.1 (4) | C12—C13—H13 | 119.3 |
C8—N1—Ni1 | 126.3 (3) | C13—C14—C15 | 119.6 (5) |
C9—N1—Ni1 | 116.6 (3) | C13—C14—H14 | 120.2 |
O1—Ni1—N1 | 93.04 (14) | C15—C14—H14 | 120.2 |
O1—Ni1—S5 | 171.92 (10) | C16—C15—C14 | 120.3 (5) |
N1—Ni1—S5 | 89.61 (11) | C16—C15—H15 | 119.9 |
O1—Ni1—S6 | 90.77 (10) | C14—C15—H15 | 119.9 |
N1—Ni1—S6 | 176.14 (12) | C15—C16—O6 | 123.9 (4) |
S5—Ni1—S6 | 86.70 (4) | C15—C16—C11 | 121.5 (4) |
C1—O1—Ni1 | 129.0 (3) | O6—C16—C11 | 114.5 (4) |
C1—C2—C8 | 120.5 (4) | O6—C17—H17A | 109.5 |
C1—C2—C3 | 119.9 (4) | O6—C17—H17B | 109.5 |
C8—C2—C3 | 119.6 (4) | H17A—C17—H17B | 109.5 |
C28—N2—C29 | 117.4 (4) | O6—C17—H17C | 109.5 |
C28—N2—Ni3 | 125.7 (3) | H17A—C17—H17C | 109.5 |
C29—N2—Ni3 | 116.9 (3) | H17B—C17—H17C | 109.5 |
O3—Ni2—N3 | 93.92 (14) | N3—C18—C12 | 126.8 (4) |
O3—Ni2—S6 | 172.82 (9) | N3—C18—H18 | 116.6 |
N3—Ni2—S6 | 88.83 (11) | C12—C18—H18 | 116.6 |
O3—Ni2—S4 | 90.36 (9) | N3—C19—C20 | 109.1 (4) |
N3—Ni2—S4 | 173.96 (11) | N3—C19—H19A | 109.9 |
S6—Ni2—S4 | 86.43 (4) | C20—C19—H19A | 109.9 |
C21—O2—Ni3 | 128.2 (3) | N3—C19—H19B | 109.9 |
C4—C3—C2 | 120.8 (5) | C20—C19—H19B | 109.9 |
C4—C3—H3 | 119.6 | H19A—C19—H19B | 108.3 |
C2—C3—H3 | 119.6 | C19—C20—S6 | 108.2 (3) |
C18—N3—C19 | 116.9 (4) | C19—C20—H20A | 110.1 |
C18—N3—Ni2 | 125.5 (3) | S6—C20—H20A | 110.1 |
C19—N3—Ni2 | 117.6 (3) | C19—C20—H20B | 110.1 |
O2—Ni3—N2 | 93.34 (14) | S6—C20—H20B | 110.1 |
O2—Ni3—S4 | 172.34 (10) | H20A—C20—H20B | 108.4 |
N2—Ni3—S4 | 89.08 (11) | O2—C21—C22 | 125.0 (4) |
O2—Ni3—S5 | 88.90 (10) | O2—C21—C26 | 117.6 (4) |
N2—Ni3—S5 | 177.25 (11) | C22—C21—C26 | 117.3 (4) |
S4—Ni3—S5 | 88.50 (4) | C21—C22—C23 | 120.9 (4) |
C11—O3—Ni2 | 128.4 (3) | C21—C22—C28 | 119.8 (4) |
C3—C4—C5 | 120.0 (4) | C23—C22—C28 | 119.3 (4) |
C3—C4—H4 | 120.0 | C24—C23—C22 | 120.2 (4) |
C5—C4—H4 | 120.0 | C24—C23—H23 | 119.9 |
C31—N4—C32 | 120.6 (4) | C22—C23—H23 | 119.9 |
C31—N4—C33 | 121.4 (4) | C23—C24—C25 | 120.0 (4) |
C32—N4—C33 | 118.0 (4) | C23—C24—H24 | 120.0 |
C6—O4—C7 | 117.6 (4) | C25—C24—H24 | 120.0 |
C30—S4—Ni3 | 96.96 (15) | C26—C25—C24 | 120.6 (4) |
C30—S4—Ni2 | 108.50 (15) | C26—C25—H25 | 119.7 |
Ni3—S4—Ni2 | 109.46 (5) | C24—C25—H25 | 119.7 |
C6—C5—C4 | 121.3 (5) | C25—C26—O5 | 125.7 (4) |
C6—C5—H5 | 119.4 | C25—C26—C21 | 120.9 (4) |
C4—C5—H5 | 119.4 | O5—C26—C21 | 113.4 (4) |
C26—O5—C27 | 116.9 (3) | O5—C27—H27A | 109.5 |
C10—S5—Ni1 | 96.54 (15) | O5—C27—H27B | 109.5 |
C10—S5—Ni3 | 107.67 (15) | H27A—C27—H27B | 109.5 |
Ni1—S5—Ni3 | 111.94 (5) | O5—C27—H27C | 109.5 |
O4—C6—C5 | 125.7 (4) | H27A—C27—H27C | 109.5 |
O4—C6—C1 | 114.0 (4) | H27B—C27—H27C | 109.5 |
C5—C6—C1 | 120.3 (5) | N2—C28—C22 | 126.6 (4) |
C16—O6—C17 | 117.6 (4) | N2—C28—H28 | 116.7 |
C20—S6—Ni2 | 96.86 (15) | C22—C28—H28 | 116.7 |
C20—S6—Ni1 | 107.85 (15) | N2—C29—C30 | 108.0 (4) |
Ni2—S6—Ni1 | 107.75 (5) | N2—C29—H29A | 110.1 |
O4—C7—H7A | 109.5 | C30—C29—H29A | 110.1 |
O4—C7—H7B | 109.5 | N2—C29—H29B | 110.1 |
H7A—C7—H7B | 109.5 | C30—C29—H29B | 110.1 |
O4—C7—H7C | 109.5 | H29A—C29—H29B | 108.4 |
H7A—C7—H7C | 109.5 | C29—C30—S4 | 109.0 (3) |
H7B—C7—H7C | 109.5 | C29—C30—H30A | 109.9 |
N1—C8—C2 | 126.9 (4) | S4—C30—H30A | 109.9 |
N1—C8—H8 | 116.6 | C29—C30—H30B | 109.9 |
C2—C8—H8 | 116.6 | S4—C30—H30B | 109.9 |
N1—C9—C10 | 108.9 (3) | H30A—C30—H30B | 108.3 |
N1—C9—H9A | 109.9 | O7—C31—N4 | 125.5 (5) |
C10—C9—H9A | 109.9 | O7—C31—H31 | 117.3 |
N1—C9—H9B | 109.9 | N4—C31—H31 | 117.3 |
C10—C9—H9B | 109.9 | N4—C32—H32A | 109.5 |
H9A—C9—H9B | 108.3 | N4—C32—H32B | 109.5 |
C9—C10—S5 | 109.3 (3) | H32A—C32—H32B | 109.5 |
C9—C10—H10A | 109.8 | N4—C32—H32C | 109.5 |
S5—C10—H10A | 109.8 | H32A—C32—H32C | 109.5 |
C9—C10—H10B | 109.8 | H32B—C32—H32C | 109.5 |
S5—C10—H10B | 109.8 | N4—C33—H33A | 109.5 |
H10A—C10—H10B | 108.3 | N4—C33—H33B | 109.5 |
O3—C11—C12 | 124.4 (4) | H33A—C33—H33B | 109.5 |
O3—C11—C16 | 118.5 (4) | N4—C33—H33C | 109.5 |
C12—C11—C16 | 117.1 (4) | H33A—C33—H33C | 109.5 |
C11—C12—C13 | 120.1 (4) | H33B—C33—H33C | 109.5 |
C11—C12—C18 | 120.6 (4) | ||
C8—N1—Ni1—O1 | 5.2 (4) | N3—Ni2—S6—Ni1 | −98.96 (11) |
C9—N1—Ni1—O1 | −175.5 (3) | S4—Ni2—S6—Ni1 | 84.79 (5) |
C8—N1—Ni1—S5 | −167.2 (4) | O1—Ni1—S6—C20 | 1.12 (18) |
C9—N1—Ni1—S5 | 12.2 (3) | N1—Ni1—S6—C20 | −169.8 (17) |
C8—N1—Ni1—S6 | 176.1 (14) | S5—Ni1—S6—C20 | 173.45 (16) |
C9—N1—Ni1—S6 | −4.5 (19) | O1—Ni1—S6—Ni2 | 104.70 (10) |
C2—C1—O1—Ni1 | 1.8 (6) | N1—Ni1—S6—Ni2 | −66.3 (17) |
C6—C1—O1—Ni1 | −177.5 (3) | S5—Ni1—S6—Ni2 | −82.97 (5) |
N1—Ni1—O1—C1 | −4.6 (4) | C9—N1—C8—C2 | 177.7 (4) |
S5—Ni1—O1—C1 | 104.4 (7) | Ni1—N1—C8—C2 | −3.0 (7) |
S6—Ni1—O1—C1 | 176.0 (3) | C1—C2—C8—N1 | −1.7 (7) |
O1—C1—C2—C8 | 2.4 (7) | C3—C2—C8—N1 | 179.2 (4) |
C6—C1—C2—C8 | −178.3 (4) | C8—N1—C9—C10 | 141.1 (4) |
O1—C1—C2—C3 | −178.5 (4) | Ni1—N1—C9—C10 | −38.3 (4) |
C6—C1—C2—C3 | 0.8 (6) | N1—C9—C10—S5 | 48.1 (4) |
C1—C2—C3—C4 | −0.1 (7) | Ni1—S5—C10—C9 | −35.2 (3) |
C8—C2—C3—C4 | 179.0 (4) | Ni3—S5—C10—C9 | 80.3 (3) |
O3—Ni2—N3—C18 | 4.9 (4) | Ni2—O3—C11—C12 | 2.9 (6) |
S6—Ni2—N3—C18 | −168.4 (4) | Ni2—O3—C11—C16 | −175.0 (3) |
S4—Ni2—N3—C18 | −130.1 (10) | O3—C11—C12—C13 | −179.4 (4) |
O3—Ni2—N3—C19 | −173.7 (3) | C16—C11—C12—C13 | −1.6 (6) |
S6—Ni2—N3—C19 | 12.9 (3) | O3—C11—C12—C18 | 2.3 (7) |
S4—Ni2—N3—C19 | 51.3 (12) | C16—C11—C12—C18 | −179.8 (4) |
C21—O2—Ni3—N2 | −12.9 (4) | C11—C12—C13—C14 | 1.0 (7) |
C21—O2—Ni3—S4 | 95.3 (8) | C18—C12—C13—C14 | 179.3 (4) |
C21—O2—Ni3—S5 | 165.5 (3) | C12—C13—C14—C15 | −0.1 (7) |
C28—N2—Ni3—O2 | 7.8 (4) | C13—C14—C15—C16 | −0.2 (7) |
C29—N2—Ni3—O2 | −171.1 (3) | C14—C15—C16—O6 | −177.9 (4) |
C28—N2—Ni3—S4 | −164.9 (3) | C14—C15—C16—C11 | −0.4 (7) |
C29—N2—Ni3—S4 | 16.2 (3) | C17—O6—C16—C15 | −1.1 (6) |
C28—N2—Ni3—S5 | −137 (2) | C17—O6—C16—C11 | −178.7 (4) |
C29—N2—Ni3—S5 | 44 (2) | O3—C11—C16—C15 | 179.3 (4) |
N3—Ni2—O3—C11 | −5.6 (3) | C12—C11—C16—C15 | 1.3 (6) |
S6—Ni2—O3—C11 | 106.8 (8) | O3—C11—C16—O6 | −3.0 (6) |
S4—Ni2—O3—C11 | 170.2 (3) | C12—C11—C16—O6 | 179.0 (4) |
C2—C3—C4—C5 | −0.8 (7) | C19—N3—C18—C12 | 176.9 (4) |
O2—Ni3—S4—C30 | −98.9 (8) | Ni2—N3—C18—C12 | −1.8 (7) |
N2—Ni3—S4—C30 | 9.66 (17) | C11—C12—C18—N3 | −2.8 (7) |
S5—Ni3—S4—C30 | −169.04 (14) | C13—C12—C18—N3 | 178.9 (4) |
O2—Ni3—S4—Ni2 | 148.7 (7) | C18—N3—C19—C20 | 141.6 (4) |
N2—Ni3—S4—Ni2 | −102.80 (11) | Ni2—N3—C19—C20 | −39.6 (4) |
S5—Ni3—S4—Ni2 | 78.49 (5) | N3—C19—C20—S6 | 48.4 (4) |
O3—Ni2—S4—C30 | −1.07 (17) | Ni2—S6—C20—C19 | −35.0 (3) |
N3—Ni2—S4—C30 | 134.1 (11) | Ni1—S6—C20—C19 | 76.1 (3) |
S6—Ni2—S4—C30 | 172.50 (15) | Ni3—O2—C21—C22 | 12.5 (6) |
O3—Ni2—S4—Ni3 | 103.62 (10) | Ni3—O2—C21—C26 | −167.4 (3) |
N3—Ni2—S4—Ni3 | −121.2 (11) | O2—C21—C22—C23 | 177.7 (4) |
S6—Ni2—S4—Ni3 | −82.81 (5) | C26—C21—C22—C23 | −2.5 (6) |
C3—C4—C5—C6 | 1.0 (7) | O2—C21—C22—C28 | −2.9 (7) |
O1—Ni1—S5—C10 | −96.8 (7) | C26—C21—C22—C28 | 176.9 (4) |
N1—Ni1—S5—C10 | 12.42 (18) | C21—C22—C23—C24 | −0.6 (7) |
S6—Ni1—S5—C10 | −168.69 (15) | C28—C22—C23—C24 | 180.0 (4) |
O1—Ni1—S5—Ni3 | 151.1 (7) | C22—C23—C24—C25 | 2.1 (7) |
N1—Ni1—S5—Ni3 | −99.64 (11) | C23—C24—C25—C26 | −0.4 (7) |
S6—Ni1—S5—Ni3 | 79.25 (5) | C24—C25—C26—O5 | 175.7 (4) |
O2—Ni3—S5—C10 | 4.21 (18) | C24—C25—C26—C21 | −2.9 (7) |
N2—Ni3—S5—C10 | 149 (2) | C27—O5—C26—C25 | −14.6 (6) |
S4—Ni3—S5—C10 | 177.01 (15) | C27—O5—C26—C21 | 164.2 (4) |
O2—Ni3—S5—Ni1 | 109.11 (11) | O2—C21—C26—C25 | −175.9 (4) |
N2—Ni3—S5—Ni1 | −106 (2) | C22—C21—C26—C25 | 4.3 (6) |
S4—Ni3—S5—Ni1 | −78.09 (5) | O2—C21—C26—O5 | 5.3 (6) |
C7—O4—C6—C5 | 5.5 (6) | C22—C21—C26—O5 | −174.5 (4) |
C7—O4—C6—C1 | −173.1 (4) | C29—N2—C28—C22 | 176.7 (4) |
C4—C5—C6—O4 | −178.8 (4) | Ni3—N2—C28—C22 | −2.2 (6) |
C4—C5—C6—C1 | −0.3 (7) | C21—C22—C28—N2 | −2.2 (7) |
O1—C1—C6—O4 | −2.6 (6) | C23—C22—C28—N2 | 177.2 (4) |
C2—C1—C6—O4 | 178.1 (4) | C28—N2—C29—C30 | 138.8 (4) |
O1—C1—C6—C5 | 178.7 (4) | Ni3—N2—C29—C30 | −42.2 (4) |
C2—C1—C6—C5 | −0.6 (6) | N2—C29—C30—S4 | 48.7 (4) |
O3—Ni2—S6—C20 | −100.3 (8) | Ni3—S4—C30—C29 | −33.7 (3) |
N3—Ni2—S6—C20 | 12.30 (18) | Ni2—S4—C30—C29 | 79.5 (3) |
S4—Ni2—S6—C20 | −163.95 (15) | C32—N4—C31—O7 | 1.1 (8) |
O3—Ni2—S6—Ni1 | 148.4 (8) | C33—N4—C31—O7 | −177.2 (5) |
Cg3 and Cg4 are the centroids of the C21–C26 and Ni1/O1/N1/C1/C2/C8, rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···O7i | 0.93 | 2.45 | 3.334 (6) | 159 |
C29—H29A···S5ii | 0.97 | 2.86 | 3.779 (5) | 159 |
C25—H25···O3iii | 0.93 | 2.71 | 3.6048 (4) | 163 |
C3—H3···C13iv | 0.93 | 2.85 | 3.7376 (4) | 160 |
C5—H5···Cg3v | 0.93 | 2.99 | 3.625 (5) | 127 |
C15—H15···Cg4vi | 0.93 | 2.83 | 3.604 (5) | 142 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x, y+1/2, −z+1/2; (iii) x+1/2, y, −z+1/2; (iv) x+1/2, −y+3/2, −z+1; (v) x, −y+3/2, z+1/2; (vi) −x, −y+2, −z+1. |
Funding information
This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037-05)
References
Andruh, M. (2015). Dalton Trans. 44, 16633–16653. Web of Science CrossRef CAS PubMed Google Scholar
Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559–560. Web of Science CSD CrossRef Google Scholar
Bruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Constable, E. C., Zhang, G., Häussinger, D., Housecroft, C. E. & Zampese, J. A. (2011). J. Am. Chem. Soc. 133, 10776–10779. CSD CrossRef CAS PubMed Google Scholar
Esteves-Souza, A., Pissinate, K., Nascimento, M. da G., Grynberg, N. F. & Echevarria, A. (2006). Bioorg. Med. Chem. 14, 492–499. PubMed CAS Google Scholar
Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. CrossRef CAS Web of Science Google Scholar
Gladkikh, O. P., Inwood, H., Nicholls, D. & Weatherburn, D. C. (2002). Inorg. Chim. Acta, 331, 131–135. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421–2481. CrossRef CAS Web of Science Google Scholar
Henkel, G., Kriege, M. & Matsumoto, K. (1988). J. Chem. Soc. Dalton Trans. pp. 657–659. CSD CrossRef Google Scholar
Jamulitrat, S., Thongpiyapoom, S. & Suwalak, N. J. (2007). J. Med. Assoc. Thai. 90, 2181–2191. PubMed Google Scholar
Kaasjager, V. E., van den Broeke, J., Henderson, R. K., Smeets, W. J. J., Spek, A. L., Driessen, W. L., Bouwman, E. & Reedijk, J. (2001). Inorg. Chim. Acta, 316, 99–104. CSD CrossRef CAS Google Scholar
Li, J., Nation, R. L., Owen, R. J., Wong, S., Spelman, D. & Franklin, C. (2007). Clin. Infect. Dis. 45, 594–598. CrossRef PubMed CAS Google Scholar
Peleg, A. Y., Seifert, H. & Paterson, D. L. (2008). Clin. Microbiol. Rev. 21, 538–582. Web of Science CrossRef PubMed CAS Google Scholar
Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stępień, M., Latos-Grażyński, L., Szterenberg, L., Panek, J. & Latajka, Z. (2004). J. Am. Chem. Soc. 126, 4566–4580. PubMed Google Scholar
Tofazzal, M. D., Tarafder, H., Ali, A. M., Elias, M. S., Crouse, K. A. & Silong, S. (2000). Transit. Met. Chem. 25, 706–710. CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, W., Xuan, Y., Yin, J. L. & Shujie, L. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 877–880. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.