research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(μ2-2-meth­­oxy-6-{[(2-sulfido­eth­yl)imino]meth­yl}phenolato)trinickel(II) di­methyl­formamide monosolvate: crystal structure, spectroscopic characterization and anti­bacterial activity

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska str., Kyiv 01601, Ukraine, and bInstitute of Epidemiology and Infectious Diseases of the Academy of Medical, Sciences of Ukraine, 5, M. Amosova str., Kyiv 03038, Ukraine
*Correspondence e-mail: rusanova.j@gmail.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 22 March 2019; accepted 7 April 2019; online 12 April 2019)

The title trinuclear nickel(II) complex, [Ni3(C10H11NO2S)3]·C3H7NO, with a Schiff base ligand formed in situ from 2-amino­ethane­thiol and o-vanillin crystallizes in the ortho­rhom­bic space group Pbca. Its asymmetric unit consists of one neutral Ni3L3 mol­ecule and one DMF solvent mol­ecule. The solid-state organization of the complex can be described as an insertion of the solvent mol­ecules within the crystallographically independent trinuclear NiII species. Several C—H⋯π edge-to-face inter­actions and ππ stacking inter­actions link the components in the crystal. A first example of a short inter­molecular C—H⋯Ni contact is found. Anti­bacterial in vitro screening revealed that the title compound has anti­bacterial activity, the best effect being against Acinetobacter baumannii.

1. Chemical context

Schiff base ligands are one of the most widely utilized classes of ligands in metal coordination chemistry because of their preparative accessibility, structural variety and strong metal-binding ability with many metal ions via azomethine HC=N or phenolic groups (Garnovskii et al., 1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]; Bera et al., 1998[Bera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559-560.]; Prabhakaran et al., 2004[Prabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131-2140.]). o-Vanillin-based Schiff ligands demonstrate an exceptionally rich coordination chemistry and diverse properties – magnetism, luminescence, chirality, catalysis, cytotoxicity and ferroelectricity (Andruh, 2015[Andruh, M. (2015). Dalton Trans. 44, 16633-16653.]). The N and S atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules. It has been shown that ONS Schiff bases are moderately active against leukemia (Tofazzal et al., 2000[Tofazzal, M. D., Tarafder, H., Ali, A. M., Elias, M. S., Crouse, K. A. & Silong, S. (2000). Transit. Met. Chem. 25, 706-710.]). In particularly, nickel complexes with a multidentate NSO-containing mixed-ligand environment attract attention because such complexes play an important role in bioinorganic chemistry and redox enzyme systems and can be considered as model objects for studying the active sites of biological systems (Halcrow et al., 1994[Halcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421-2481.]). In this work we present the crystal structure of a novel trinuclear NiII complex with an NSO-type Schiff base ligand derived from o-vanillin and 2-amino­ethane­thiol as well results of its anti­bacterial activity screening against several Gram-positive and Gram-negative bacteria.

2. Structural commentary

The title complex crystallizes in the ortho­rhom­bic space group Pbca. The asymmetric unit consists of one neutral Ni3L3 mol­ecule and one DMF solvent mol­ecule. The mol­ecular structure of the trinuclear complex unit is depicted in Fig. 1[link].

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the trinuclear complex unit of the title compound, showing 50% probability displacement ellipsoids.

The coordination geometry around each NiII ion can be described as slightly distorted square planar and is comparable to that found in similar complexes reported previously (Kaasjager et al., 2001[Kaasjager, V. E., van den Broeke, J., Henderson, R. K., Smeets, W. J. J., Spek, A. L., Driessen, W. L., Bouwman, E. & Reedijk, J. (2001). Inorg. Chim. Acta, 316, 99-104.]; Constable et al., 2011[Constable, E. C., Zhang, G., Häussinger, D., Housecroft, C. E. & Zampese, J. A. (2011). J. Am. Chem. Soc. 133, 10776-10779.]). Each NiII ion is tetra­coordinated by an identical NOS2 ligand environment: the dianionic Schiff base ligand occupies three of the four coordination sites (NOS), the fourth site place being filled by a bridging sulfur atom of a neighboring ligand. The deviation of the NiII atom from the NOS2 mean plane is 0.0927 (14) Å. Thus, the mol­ecule has a `crown' or bowl shape with the Ni3S3 unit as its base in a distorted chair conformation. The torsion angles [between 78.49 (5) and 84.79 (5)°] deviate significantly from the ideal chair conformation for c-hexane which has torsion angles of 60°. For the Ni2 atom in this core, one additional short contact should be noted, C27—H27C⋯Ni([{1\over 2}] + x, y, [{1\over 2}] − z) with an H⋯Ni distance of 2.58 Å. Thus, with this additional contact, the coordination geometry of the Ni2 atom is square pyramidal with heteroatom—Ni2—H27C bond angles in the range 78.0-95.1°.

Unlike in closely related compounds, the solvent mol­ecule is not encapsulated. The distances observed between the Ni atoms are within Ni1⋯Ni2 3.5706 (4) and 3.6656 (5) Å. The intra­molecular Ni—S distances with the dianionic Schiff base ligand (Ni3—S4, Ni1—S5, Ni2—S6) are in the range 2.1888 (12)–2.2036 (13) Å. They are slightly shorter than analogous ones with the bridging sulfur atom (Ni3—S5, Ni1—S6, Ni2—S4) of the neighboring ligand [2.2171 (12)–2.2262 (13) Å]. These data are comparable with those previously reported for related structures (Kaasjager et al., 2001[Kaasjager, V. E., van den Broeke, J., Henderson, R. K., Smeets, W. J. J., Spek, A. L., Driessen, W. L., Bouwman, E. & Reedijk, J. (2001). Inorg. Chim. Acta, 316, 99-104.]; Henkel et al., 1988[Henkel, G., Kriege, M. & Matsumoto, K. (1988). J. Chem. Soc. Dalton Trans. pp. 657-659.]).

3. Supra­molecular features

The solid-state organization of the complex can be described as an insertion of the solvent mol­ecules within the crystallographically independent trinuclear NiII species (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound. H atoms are not shown for clarity.

In this structure, in contrast to previously reported analogous complexes (Constable et al., 2011[Constable, E. C., Zhang, G., Häussinger, D., Housecroft, C. E. & Zampese, J. A. (2011). J. Am. Chem. Soc. 133, 10776-10779.]), the short C—H⋯Ni contact noted above connects neighboring structural units. This is slightly longer than analogous intra­molecular C—H⋯Ni contacts (2.21–2.40 Å; Stępień et al., 2004[Stępień, M., Latos-Grażyński, L., Szterenberg, L., Panek, J. & Latajka, Z. (2004). J. Am. Chem. Soc. 126, 4566-4580.]; Gladkikh et al., 2002[Gladkikh, O. P., Inwood, H., Nicholls, D. & Weatherburn, D. C. (2002). Inorg. Chim. Acta, 331, 131-135.]) in metal–organic hydrides and hydro­boron-containing compounds. It seems that it is the first example of such a short inter­molecular C—H⋯Ni contact in coordination compounds.

In addition, ππ stacking inter­actions with a centroid–centroid distance Cg1⋯Cg2(−x, 2 − y,1 − z) of 3.722 (6) Å for connect the neighboring units (Cg1 and Cg2 are the centroids of the Ni2/O3/N3/C11/C12/C18 and C11–C16 rings, respectively). Several C—H⋯O and C—H⋯π edge-to-face inter­actions (Table 1[link]) are also involved in linking the components in the crystal (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C21–C26 and Ni1/O1/N1/C1/C2/C8, rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O7i 0.93 2.45 3.334 (6) 159
C29—H29A⋯S5ii 0.97 2.86 3.779 (5) 159
C25—H25⋯O3iii 0.93 2.71 3.6048 (4) 163
C3—H3⋯C13iv 0.93 2.85 3.7376 (4) 160
C5—H5⋯Cg3v 0.93 2.99 3.625 (5) 127
C15—H15⋯Cg4vi 0.93 2.83 3.604 (5) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vi) -x, -y+2, -z+1.
[Figure 3]
Figure 3
The crystal packing of the title compound. C—H⋯π edge-to-face inter­actions, ππ stacking inter­actions and the inter­molecular C—H⋯Ni contact that link the components in the crystal are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related complexes with H⋯Ni contacts gave nine hits with intra­molecular E—H⋯Ni contacts where E is mainly Ir, Rh, B and only two examples with C—H⋯Ni. There were no E—H⋯Ni inter­molecular contacts found. A search for complexes with an Ni atom and an ONS Schiff base ligand gave 16 hits, including four closely related structures, viz. tris­{μ2-2-[(2-mercaptoeth­yl)imino­meth­yl]phenolato}trinickel and tris­(μ2-2-(2-naph­th­yl­meth­oxy)-6-[{(2-sulfido­eth­yl)imino]­meth­yl}phenolato)trinickel(II) di­chloro­methane solvate, tris­(μ2-2-(benz­yloxy)-6-{[(2-sulfido­eth­yl)imino]­meth­yl}phenolato)tri­nickel(II) di­chloro­methane solvate, tris­(μ2-2-eth­oxy-6-[{(2-sulfido­eth­yl)imino]­meth­yl}phenolato)trinickel(II) C60-fullerene dichloro­methane solvate, tris­(μ2-2-eth­oxy-6-{[(2-sulfido­eth­yl)imino]­meth­yl}phenolato)trinickel(II) di­chloro­methane solv­ate (Kaasjager et al., 2001[Kaasjager, V. E., van den Broeke, J., Henderson, R. K., Smeets, W. J. J., Spek, A. L., Driessen, W. L., Bouwman, E. & Reedijk, J. (2001). Inorg. Chim. Acta, 316, 99-104.]; Constable et al., 2011[Constable, E. C., Zhang, G., Häussinger, D., Housecroft, C. E. & Zampese, J. A. (2011). J. Am. Chem. Soc. 133, 10776-10779.]).

5. Synthesis and crystallization

A solution of KOH (0.22 g, 4 mmol) in a minimum amount of methanol (2–3 ml) was added to a solution of 2-amino­ethane­thiol hydro­chloride (0.44g, 4 mmol) in methanol (5 ml) and stirred in an ice bath for 10 min. The white precipitate of solid KCl was removed by filtration and o-vaniline (0.61 g, 4 mmol) in ethanol (5 ml) was added to the filtrate and stirred on air magnetically for 2 h. Nickel acetate tetra­hydrate (0.99 g, 4 mmol) in ethanol (6 ml) was added to the yellowish solution of the Schiff base formed in situ, and the resulting deep-brown solution was stirred magnetically and heated at 340–347 K for 1.5 h resulting in a dark-colored precipitate. The product was isolated by filtration, washed with dry i=iPrOH and finally dried in vacuo. Crystals suitable for crystallographic study were grown from a saturated solution in DMF (deep-brown solution). The crystals were filtered off, washed with dry i-PrOH and finally dried at room temperature (yield: 47%).

The IR spectrum of the title compound (as KBr pellets) is consistent with the above structural data. It displays the characteristic peak at 1610 cm−1 indicating the formation of a Schiff base (–H—C=N–) (Esteves-Souza et al., 2006[Esteves-Souza, A., Pissinate, K., Nascimento, M. da G., Grynberg, N. F. & Echevarria, A. (2006). Bioorg. Med. Chem. 14, 492-499.]). The strong bands at 1330–1470 cm−1 can be attributed to overlapped C—H bending (scissoring) (as well in CH3 groups of the solvent mol­ecule) and aromatic –C=C– stretching vibrations. Other strong bands at 1228 and 1244 cm−1 are due to the phenolic CO stretching (Wu et al., 2014[Wu, W., Xuan, Y., Yin, J. L. & Shujie, L. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 877-880.]). Two medium intensity bands observed at 620 and 738 cm−1 could be assigned to the asymmetric and symmetric C—S stretching vibrations, respectively. In the 1H-NMR spectrum, the azomethine proton peak that confirms the Schiff base formation is attributed to a singlet signal at 7.9 ppm. It overlaps with the solvent (DMF) proton signal. The O—CH3 protons peaks only appear at 3.92 ppm. The multiplets of the aromatic protons appear in the range 6.39–6.79 ppm with different multiplicity and coupling constants. The strong singlet at 3.39 ppm could be assigned to the aliphatic –CH2–CH2– protons according to its integral intensity. Signals from the DMF methyl protons appear at 2.94 and 2.78 ppm. Analysis calculated for for C33H40N4Ni3O7S3 (877.00): C, 45.20; H, 4.60; N, 6.39; found: C, 45.5; H, 4.77; N, 6.25.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were added at calculated positions (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Ni3(C10H11NO2S)3]·C3H7NO
Mr 877.00
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 123
a, b, c (Å) 20.396 (3), 16.066 (3), 21.738 (3)
V3) 7123.5 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.80
Crystal size (mm) 0.47 × 0.28 × 0.05
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.65, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 49899, 6349, 4257
Rint 0.107
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.00
No. of reflections 6349
No. of parameters 456
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.50
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

7. Anti­bacterial screening

The anti­bacterial in vitro screening of all test compounds was carried out against reference strains of bacteria (American Type Culture Collection [ATCC] Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) and clinical strains [Acinetobacter baumannii (MβL), Klebsiella pneumoniae, Pseudomonas aeruginosa (MβL), Staphylococcus aureus (MRCNS), Staphylococcus aureus (MRSA), Staphylococcus aureus (βL)]. The broth microdilution method was used according to the European Committee on Anti­microbial Susceptibility Testing (EUCAST). The results obtained indicate that the synthesized compound possesses a broad spectrum of activity against the tested microorganisms and shows relatively better activity against Gram-negative than Gram-positive bacteria. The title complex showed activity with lowest minimum inhibitory concentrations (MIC) values 312.5 µg ml−1 against Gram-negative bacteria E. coli, K. pneumoniae and P. aeruginosa. The highest activity was against clinical strain A. baumannii - MIC = 156.2 µg ml−1. The poorest activity of the complex was against clinical strain Staphylococcus aureus (MRSA). It is well known that A. baumannii is one of the most important nosocomial pathogens because of its longevity in the hospital environment and ability to resist various anti­microbial agents, such as resistance to broad-spectrum β-lactam anti­biotics by β-lactamases production (Peleg et al., 2008[Peleg, A. Y., Seifert, H. & Paterson, D. L. (2008). Clin. Microbiol. Rev. 21, 538-582.]; Jamulitrat et al., 2007[Jamulitrat, S., Thongpiyapoom, S. & Suwalak, N. J. (2007). J. Med. Assoc. Thai. 90, 2181-2191.]; Li et al., 2007[Li, J., Nation, R. L., Owen, R. J., Wong, S., Spelman, D. & Franklin, C. (2007). Clin. Infect. Dis. 45, 594-598.]). The anti­bacterial study revealed that the title compound has anti­bacterial activity, the best being against A. baumannii.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(µ2-2-methoxy-6-{[(2-sulfidoethyl)imino]methyl}phenolato)trinickel(II) dimethylformamide monosolvate top
Crystal data top
[Ni3(C10H11NO2S)3]·C3H7NODx = 1.635 Mg m3
Mr = 877.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 1664 reflections
a = 20.396 (3) Åθ = 2.5–24.3°
b = 16.066 (3) ŵ = 1.80 mm1
c = 21.738 (3) ÅT = 123 K
V = 7123.5 (19) Å3Plate, brown
Z = 80.47 × 0.28 × 0.05 mm
F(000) = 3632
Data collection top
Bruker SMART CCD area detector
diffractometer
6349 independent reflections
Radiation source: sealed tube4257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
phi and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2324
Tmin = 0.65, Tmax = 0.92k = 1919
49899 measured reflectionsl = 2525
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
6349 reflectionsΔρmax = 0.57 e Å3
456 parametersΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1040 (2)0.6135 (3)0.4547 (2)0.0216 (11)
N10.14902 (17)0.6953 (2)0.34331 (16)0.0208 (9)
NI10.05923 (3)0.71688 (3)0.35642 (2)0.01757 (15)
O10.05749 (14)0.65749 (18)0.42925 (13)0.0218 (7)
C20.1675 (2)0.6052 (3)0.4303 (2)0.0245 (11)
N20.05639 (17)1.0287 (2)0.27069 (15)0.0175 (8)
NI20.05261 (3)0.87936 (3)0.39576 (2)0.01647 (15)
O20.13969 (15)0.90693 (18)0.23444 (14)0.0262 (8)
C30.2145 (2)0.5541 (3)0.4609 (2)0.0314 (12)
H30.2564160.5487000.4445230.038*
N30.06396 (17)0.8428 (2)0.47725 (16)0.0190 (8)
NI30.05724 (3)0.91137 (3)0.26828 (2)0.01665 (15)
O30.06788 (14)0.98980 (17)0.41482 (13)0.0200 (7)
C40.1988 (2)0.5134 (3)0.5132 (2)0.0345 (13)
H40.2297270.4797120.5324120.041*
N40.32425 (19)0.8337 (3)0.35718 (17)0.0312 (10)
O40.02740 (16)0.58374 (18)0.53216 (14)0.0279 (8)
S40.04576 (5)0.91131 (7)0.29655 (5)0.0179 (3)
C50.1363 (2)0.5220 (3)0.5385 (2)0.0293 (12)
H50.1262440.4944940.5748850.035*
O50.23866 (15)0.8613 (2)0.16848 (15)0.0331 (8)
S50.05311 (5)0.77300 (7)0.26444 (5)0.0190 (3)
C60.0894 (2)0.5703 (3)0.5106 (2)0.0260 (11)
O60.08955 (16)1.15080 (19)0.41606 (15)0.0317 (8)
S60.04607 (5)0.74826 (7)0.36660 (5)0.0193 (3)
C70.0112 (3)0.5505 (3)0.5913 (2)0.0361 (13)
H7A0.0102030.4908120.5890610.054*
H7B0.0310520.5707270.6036840.054*
H7C0.0435950.5675570.6207120.054*
O70.35878 (19)0.6998 (2)0.34988 (15)0.0476 (10)
C80.1856 (2)0.6482 (3)0.3760 (2)0.0235 (11)
H80.2286100.6414020.3627340.028*
C90.1797 (2)0.7362 (3)0.28965 (19)0.0236 (11)
H9A0.2191390.7065020.2778620.028*
H9B0.1917240.7929010.3000860.028*
C100.1318 (2)0.7364 (3)0.2372 (2)0.0244 (11)
H10A0.1273300.6805740.2207340.029*
H10B0.1475390.7724550.2046350.029*
C110.0862 (2)1.0220 (3)0.4676 (2)0.0185 (10)
C120.0951 (2)0.9762 (3)0.5218 (2)0.0212 (11)
C130.1154 (2)1.0165 (3)0.5762 (2)0.0300 (12)
H130.1204800.9855650.6120620.036*
C140.1277 (2)1.0989 (3)0.5774 (2)0.0335 (13)
H140.1411721.1243390.6136970.040*
C150.1201 (2)1.1460 (3)0.5236 (2)0.0295 (12)
H150.1286811.2028320.5242400.035*
C160.1002 (2)1.1087 (3)0.4703 (2)0.0231 (11)
C170.1012 (3)1.2377 (3)0.4157 (2)0.0403 (14)
H17A0.1469571.2481470.4223070.060*
H17B0.0882821.2603770.3766100.060*
H17C0.0760861.2636110.4477720.060*
C180.0820 (2)0.8889 (3)0.5231 (2)0.0245 (11)
H180.0868700.8623710.5608640.029*
C190.0501 (2)0.7554 (3)0.4905 (2)0.0246 (11)
H19A0.0715440.7391220.5285050.030*
H19B0.0032550.7473980.4955040.030*
C200.0748 (2)0.7026 (3)0.43822 (19)0.0235 (11)
H20A0.1223840.7009190.4386890.028*
H20B0.0585160.6461880.4422370.028*
C210.1735 (2)0.9672 (3)0.21019 (19)0.0192 (10)
C220.1582 (2)1.0516 (3)0.21515 (19)0.0196 (10)
C230.1993 (2)1.1128 (3)0.1890 (2)0.0267 (11)
H230.1882371.1688050.1923030.032*
C240.2553 (2)1.0900 (3)0.1587 (2)0.0269 (11)
H240.2830801.1304850.1426800.032*
C250.2708 (2)1.0059 (3)0.1519 (2)0.0263 (11)
H250.3088180.9906380.1311240.032*
C260.2306 (2)0.9456 (3)0.1756 (2)0.0211 (10)
C270.2836 (2)0.8347 (3)0.1220 (2)0.0356 (13)
H27A0.2741220.8631410.0842270.053*
H27B0.2792300.7757660.1159680.053*
H27C0.3275660.8472680.1347110.053*
C280.0997 (2)1.0768 (3)0.24669 (19)0.0213 (11)
H280.0924081.1337870.2501020.026*
C290.0019 (2)1.0683 (3)0.3039 (2)0.0212 (11)
H29A0.0018221.1262870.2920970.025*
H29B0.0095481.0656250.3479270.025*
C300.0598 (2)1.0227 (3)0.2879 (2)0.0217 (10)
H30A0.0722851.0350530.2458540.026*
H30B0.0950421.0402440.3148610.026*
C310.3514 (2)0.7692 (4)0.3282 (2)0.0375 (13)
H310.3658640.7778470.2881890.045*
C320.3015 (3)0.8257 (3)0.4199 (2)0.0446 (15)
H32A0.3077090.7693650.4335310.067*
H32B0.2558220.8396200.4219340.067*
H32C0.3260020.8626420.4459180.067*
C330.3149 (3)0.9136 (3)0.3264 (3)0.0478 (15)
H33A0.3285200.9090520.2842380.072*
H33B0.3405190.9554470.3466730.072*
H33C0.2693540.9287040.3279200.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (3)0.015 (2)0.023 (3)0.001 (2)0.007 (2)0.005 (2)
N10.022 (2)0.018 (2)0.022 (2)0.0000 (17)0.0015 (17)0.0056 (17)
NI10.0168 (3)0.0146 (3)0.0214 (3)0.0005 (2)0.0007 (2)0.0002 (2)
O10.0237 (18)0.0193 (17)0.0224 (17)0.0022 (14)0.0009 (14)0.0045 (14)
C20.026 (3)0.016 (3)0.031 (3)0.002 (2)0.006 (2)0.007 (2)
N20.018 (2)0.0160 (19)0.019 (2)0.0005 (16)0.0003 (17)0.0000 (16)
NI20.0162 (3)0.0149 (3)0.0183 (3)0.0006 (2)0.0008 (2)0.0001 (2)
O20.0262 (18)0.0179 (18)0.035 (2)0.0023 (14)0.0125 (15)0.0070 (14)
C30.027 (3)0.031 (3)0.035 (3)0.011 (2)0.011 (2)0.012 (2)
N30.017 (2)0.020 (2)0.020 (2)0.0019 (16)0.0005 (17)0.0029 (17)
NI30.0178 (3)0.0135 (3)0.0186 (3)0.0000 (2)0.0020 (3)0.0009 (2)
O30.0264 (18)0.0172 (17)0.0164 (16)0.0006 (13)0.0012 (14)0.0031 (13)
C40.038 (3)0.033 (3)0.033 (3)0.015 (2)0.015 (3)0.000 (2)
N40.027 (2)0.039 (3)0.028 (2)0.001 (2)0.003 (2)0.006 (2)
O40.036 (2)0.0204 (18)0.0275 (19)0.0015 (15)0.0006 (16)0.0066 (15)
S40.0174 (6)0.0163 (6)0.0198 (6)0.0003 (5)0.0013 (5)0.0009 (5)
C50.045 (3)0.018 (3)0.025 (3)0.001 (2)0.014 (3)0.003 (2)
O50.029 (2)0.027 (2)0.043 (2)0.0035 (16)0.0153 (17)0.0023 (16)
S50.0216 (6)0.0157 (6)0.0199 (6)0.0013 (5)0.0025 (5)0.0028 (5)
C60.029 (3)0.018 (3)0.030 (3)0.000 (2)0.008 (2)0.004 (2)
O60.040 (2)0.0171 (18)0.038 (2)0.0019 (16)0.0040 (17)0.0069 (15)
S60.0171 (6)0.0156 (6)0.0252 (6)0.0009 (5)0.0012 (5)0.0004 (5)
C70.048 (3)0.033 (3)0.028 (3)0.002 (3)0.007 (3)0.006 (2)
O70.066 (3)0.045 (3)0.032 (2)0.018 (2)0.0031 (19)0.0013 (19)
C80.019 (3)0.018 (3)0.033 (3)0.002 (2)0.001 (2)0.005 (2)
C90.018 (2)0.020 (3)0.033 (3)0.001 (2)0.006 (2)0.005 (2)
C100.028 (3)0.019 (3)0.026 (3)0.002 (2)0.006 (2)0.004 (2)
C110.009 (2)0.022 (3)0.024 (3)0.0001 (19)0.005 (2)0.005 (2)
C120.014 (2)0.027 (3)0.022 (3)0.002 (2)0.001 (2)0.006 (2)
C130.013 (2)0.050 (4)0.027 (3)0.000 (2)0.005 (2)0.002 (2)
C140.025 (3)0.042 (3)0.034 (3)0.008 (2)0.002 (2)0.023 (3)
C150.020 (3)0.026 (3)0.043 (3)0.004 (2)0.004 (2)0.019 (2)
C160.020 (3)0.024 (3)0.026 (3)0.002 (2)0.006 (2)0.005 (2)
C170.058 (4)0.014 (3)0.049 (3)0.007 (2)0.022 (3)0.009 (2)
C180.014 (2)0.038 (3)0.022 (3)0.002 (2)0.002 (2)0.005 (2)
C190.023 (3)0.022 (3)0.029 (3)0.006 (2)0.006 (2)0.009 (2)
C200.017 (2)0.023 (3)0.031 (3)0.001 (2)0.005 (2)0.008 (2)
C210.013 (2)0.029 (3)0.016 (2)0.002 (2)0.001 (2)0.006 (2)
C220.020 (3)0.024 (3)0.016 (2)0.003 (2)0.002 (2)0.0027 (19)
C230.028 (3)0.027 (3)0.025 (3)0.008 (2)0.000 (2)0.001 (2)
C240.027 (3)0.028 (3)0.026 (3)0.012 (2)0.001 (2)0.001 (2)
C250.020 (3)0.036 (3)0.023 (3)0.002 (2)0.003 (2)0.002 (2)
C260.018 (2)0.021 (3)0.025 (3)0.001 (2)0.001 (2)0.004 (2)
C270.023 (3)0.037 (3)0.047 (3)0.004 (2)0.011 (3)0.005 (3)
C280.029 (3)0.015 (2)0.020 (2)0.003 (2)0.007 (2)0.0020 (19)
C290.026 (3)0.013 (2)0.024 (3)0.0037 (19)0.004 (2)0.000 (2)
C300.023 (3)0.021 (3)0.021 (2)0.007 (2)0.004 (2)0.0076 (19)
C310.038 (3)0.046 (4)0.029 (3)0.006 (3)0.005 (3)0.003 (3)
C320.038 (3)0.058 (4)0.038 (3)0.019 (3)0.002 (3)0.002 (3)
C330.056 (4)0.029 (3)0.058 (4)0.004 (3)0.008 (3)0.005 (3)
Geometric parameters (Å, º) top
C1—O11.306 (5)C9—H9A0.9700
C1—C21.406 (6)C9—H9B0.9700
C1—C61.430 (6)C10—H10A0.9700
N1—C81.278 (5)C10—H10B0.9700
N1—C91.478 (5)C11—C121.400 (6)
N1—Ni11.886 (4)C11—C161.424 (6)
Ni1—O11.849 (3)C12—C131.413 (6)
Ni1—S52.1970 (12)C12—C181.428 (6)
Ni1—S62.2171 (12)C13—C141.347 (6)
C2—C81.417 (6)C13—H130.9300
C2—C31.426 (6)C14—C151.401 (7)
N2—C281.285 (5)C14—H140.9300
N2—C291.470 (5)C15—C161.368 (6)
N2—Ni31.886 (3)C15—H150.9300
Ni2—O31.849 (3)C17—H17A0.9600
Ni2—N31.881 (3)C17—H17B0.9600
Ni2—S62.2036 (13)C17—H17C0.9600
Ni2—S42.2213 (12)C18—H180.9300
O2—C211.300 (5)C19—C201.506 (6)
O2—Ni31.837 (3)C19—H19A0.9700
C3—C41.350 (7)C19—H19B0.9700
C3—H30.9300C20—H20A0.9700
N3—C181.295 (5)C20—H20B0.9700
N3—C191.461 (5)C21—C221.395 (6)
Ni3—S42.1888 (12)C21—C261.430 (6)
Ni3—S52.2262 (13)C22—C231.412 (6)
O3—C111.313 (5)C22—C281.435 (6)
C4—C51.395 (7)C23—C241.369 (6)
C4—H40.9300C23—H230.9300
N4—C311.333 (6)C24—C251.395 (6)
N4—C321.446 (6)C24—H240.9300
N4—C331.460 (6)C25—C261.370 (6)
O4—C61.366 (5)C25—H250.9300
O4—C71.430 (5)C27—H27A0.9600
S4—C301.821 (4)C27—H27B0.9600
C5—C61.373 (6)C27—H27C0.9600
C5—H50.9300C28—H280.9300
O5—C261.372 (5)C29—C301.496 (6)
O5—C271.429 (5)C29—H29A0.9700
S5—C101.808 (4)C29—H29B0.9700
O6—C161.376 (5)C30—H30A0.9700
O6—C171.417 (5)C30—H30B0.9700
S6—C201.818 (4)C31—H310.9300
C7—H7A0.9600C32—H32A0.9600
C7—H7B0.9600C32—H32B0.9600
C7—H7C0.9600C32—H32C0.9600
O7—C311.219 (6)C33—H33A0.9600
C8—H80.9300C33—H33B0.9600
C9—C101.502 (6)C33—H33C0.9600
O1—C1—C2124.1 (4)C13—C12—C18119.2 (4)
O1—C1—C6118.2 (4)C14—C13—C12121.4 (5)
C2—C1—C6117.7 (4)C14—C13—H13119.3
C8—N1—C9117.1 (4)C12—C13—H13119.3
C8—N1—Ni1126.3 (3)C13—C14—C15119.6 (5)
C9—N1—Ni1116.6 (3)C13—C14—H14120.2
O1—Ni1—N193.04 (14)C15—C14—H14120.2
O1—Ni1—S5171.92 (10)C16—C15—C14120.3 (5)
N1—Ni1—S589.61 (11)C16—C15—H15119.9
O1—Ni1—S690.77 (10)C14—C15—H15119.9
N1—Ni1—S6176.14 (12)C15—C16—O6123.9 (4)
S5—Ni1—S686.70 (4)C15—C16—C11121.5 (4)
C1—O1—Ni1129.0 (3)O6—C16—C11114.5 (4)
C1—C2—C8120.5 (4)O6—C17—H17A109.5
C1—C2—C3119.9 (4)O6—C17—H17B109.5
C8—C2—C3119.6 (4)H17A—C17—H17B109.5
C28—N2—C29117.4 (4)O6—C17—H17C109.5
C28—N2—Ni3125.7 (3)H17A—C17—H17C109.5
C29—N2—Ni3116.9 (3)H17B—C17—H17C109.5
O3—Ni2—N393.92 (14)N3—C18—C12126.8 (4)
O3—Ni2—S6172.82 (9)N3—C18—H18116.6
N3—Ni2—S688.83 (11)C12—C18—H18116.6
O3—Ni2—S490.36 (9)N3—C19—C20109.1 (4)
N3—Ni2—S4173.96 (11)N3—C19—H19A109.9
S6—Ni2—S486.43 (4)C20—C19—H19A109.9
C21—O2—Ni3128.2 (3)N3—C19—H19B109.9
C4—C3—C2120.8 (5)C20—C19—H19B109.9
C4—C3—H3119.6H19A—C19—H19B108.3
C2—C3—H3119.6C19—C20—S6108.2 (3)
C18—N3—C19116.9 (4)C19—C20—H20A110.1
C18—N3—Ni2125.5 (3)S6—C20—H20A110.1
C19—N3—Ni2117.6 (3)C19—C20—H20B110.1
O2—Ni3—N293.34 (14)S6—C20—H20B110.1
O2—Ni3—S4172.34 (10)H20A—C20—H20B108.4
N2—Ni3—S489.08 (11)O2—C21—C22125.0 (4)
O2—Ni3—S588.90 (10)O2—C21—C26117.6 (4)
N2—Ni3—S5177.25 (11)C22—C21—C26117.3 (4)
S4—Ni3—S588.50 (4)C21—C22—C23120.9 (4)
C11—O3—Ni2128.4 (3)C21—C22—C28119.8 (4)
C3—C4—C5120.0 (4)C23—C22—C28119.3 (4)
C3—C4—H4120.0C24—C23—C22120.2 (4)
C5—C4—H4120.0C24—C23—H23119.9
C31—N4—C32120.6 (4)C22—C23—H23119.9
C31—N4—C33121.4 (4)C23—C24—C25120.0 (4)
C32—N4—C33118.0 (4)C23—C24—H24120.0
C6—O4—C7117.6 (4)C25—C24—H24120.0
C30—S4—Ni396.96 (15)C26—C25—C24120.6 (4)
C30—S4—Ni2108.50 (15)C26—C25—H25119.7
Ni3—S4—Ni2109.46 (5)C24—C25—H25119.7
C6—C5—C4121.3 (5)C25—C26—O5125.7 (4)
C6—C5—H5119.4C25—C26—C21120.9 (4)
C4—C5—H5119.4O5—C26—C21113.4 (4)
C26—O5—C27116.9 (3)O5—C27—H27A109.5
C10—S5—Ni196.54 (15)O5—C27—H27B109.5
C10—S5—Ni3107.67 (15)H27A—C27—H27B109.5
Ni1—S5—Ni3111.94 (5)O5—C27—H27C109.5
O4—C6—C5125.7 (4)H27A—C27—H27C109.5
O4—C6—C1114.0 (4)H27B—C27—H27C109.5
C5—C6—C1120.3 (5)N2—C28—C22126.6 (4)
C16—O6—C17117.6 (4)N2—C28—H28116.7
C20—S6—Ni296.86 (15)C22—C28—H28116.7
C20—S6—Ni1107.85 (15)N2—C29—C30108.0 (4)
Ni2—S6—Ni1107.75 (5)N2—C29—H29A110.1
O4—C7—H7A109.5C30—C29—H29A110.1
O4—C7—H7B109.5N2—C29—H29B110.1
H7A—C7—H7B109.5C30—C29—H29B110.1
O4—C7—H7C109.5H29A—C29—H29B108.4
H7A—C7—H7C109.5C29—C30—S4109.0 (3)
H7B—C7—H7C109.5C29—C30—H30A109.9
N1—C8—C2126.9 (4)S4—C30—H30A109.9
N1—C8—H8116.6C29—C30—H30B109.9
C2—C8—H8116.6S4—C30—H30B109.9
N1—C9—C10108.9 (3)H30A—C30—H30B108.3
N1—C9—H9A109.9O7—C31—N4125.5 (5)
C10—C9—H9A109.9O7—C31—H31117.3
N1—C9—H9B109.9N4—C31—H31117.3
C10—C9—H9B109.9N4—C32—H32A109.5
H9A—C9—H9B108.3N4—C32—H32B109.5
C9—C10—S5109.3 (3)H32A—C32—H32B109.5
C9—C10—H10A109.8N4—C32—H32C109.5
S5—C10—H10A109.8H32A—C32—H32C109.5
C9—C10—H10B109.8H32B—C32—H32C109.5
S5—C10—H10B109.8N4—C33—H33A109.5
H10A—C10—H10B108.3N4—C33—H33B109.5
O3—C11—C12124.4 (4)H33A—C33—H33B109.5
O3—C11—C16118.5 (4)N4—C33—H33C109.5
C12—C11—C16117.1 (4)H33A—C33—H33C109.5
C11—C12—C13120.1 (4)H33B—C33—H33C109.5
C11—C12—C18120.6 (4)
C8—N1—Ni1—O15.2 (4)N3—Ni2—S6—Ni198.96 (11)
C9—N1—Ni1—O1175.5 (3)S4—Ni2—S6—Ni184.79 (5)
C8—N1—Ni1—S5167.2 (4)O1—Ni1—S6—C201.12 (18)
C9—N1—Ni1—S512.2 (3)N1—Ni1—S6—C20169.8 (17)
C8—N1—Ni1—S6176.1 (14)S5—Ni1—S6—C20173.45 (16)
C9—N1—Ni1—S64.5 (19)O1—Ni1—S6—Ni2104.70 (10)
C2—C1—O1—Ni11.8 (6)N1—Ni1—S6—Ni266.3 (17)
C6—C1—O1—Ni1177.5 (3)S5—Ni1—S6—Ni282.97 (5)
N1—Ni1—O1—C14.6 (4)C9—N1—C8—C2177.7 (4)
S5—Ni1—O1—C1104.4 (7)Ni1—N1—C8—C23.0 (7)
S6—Ni1—O1—C1176.0 (3)C1—C2—C8—N11.7 (7)
O1—C1—C2—C82.4 (7)C3—C2—C8—N1179.2 (4)
C6—C1—C2—C8178.3 (4)C8—N1—C9—C10141.1 (4)
O1—C1—C2—C3178.5 (4)Ni1—N1—C9—C1038.3 (4)
C6—C1—C2—C30.8 (6)N1—C9—C10—S548.1 (4)
C1—C2—C3—C40.1 (7)Ni1—S5—C10—C935.2 (3)
C8—C2—C3—C4179.0 (4)Ni3—S5—C10—C980.3 (3)
O3—Ni2—N3—C184.9 (4)Ni2—O3—C11—C122.9 (6)
S6—Ni2—N3—C18168.4 (4)Ni2—O3—C11—C16175.0 (3)
S4—Ni2—N3—C18130.1 (10)O3—C11—C12—C13179.4 (4)
O3—Ni2—N3—C19173.7 (3)C16—C11—C12—C131.6 (6)
S6—Ni2—N3—C1912.9 (3)O3—C11—C12—C182.3 (7)
S4—Ni2—N3—C1951.3 (12)C16—C11—C12—C18179.8 (4)
C21—O2—Ni3—N212.9 (4)C11—C12—C13—C141.0 (7)
C21—O2—Ni3—S495.3 (8)C18—C12—C13—C14179.3 (4)
C21—O2—Ni3—S5165.5 (3)C12—C13—C14—C150.1 (7)
C28—N2—Ni3—O27.8 (4)C13—C14—C15—C160.2 (7)
C29—N2—Ni3—O2171.1 (3)C14—C15—C16—O6177.9 (4)
C28—N2—Ni3—S4164.9 (3)C14—C15—C16—C110.4 (7)
C29—N2—Ni3—S416.2 (3)C17—O6—C16—C151.1 (6)
C28—N2—Ni3—S5137 (2)C17—O6—C16—C11178.7 (4)
C29—N2—Ni3—S544 (2)O3—C11—C16—C15179.3 (4)
N3—Ni2—O3—C115.6 (3)C12—C11—C16—C151.3 (6)
S6—Ni2—O3—C11106.8 (8)O3—C11—C16—O63.0 (6)
S4—Ni2—O3—C11170.2 (3)C12—C11—C16—O6179.0 (4)
C2—C3—C4—C50.8 (7)C19—N3—C18—C12176.9 (4)
O2—Ni3—S4—C3098.9 (8)Ni2—N3—C18—C121.8 (7)
N2—Ni3—S4—C309.66 (17)C11—C12—C18—N32.8 (7)
S5—Ni3—S4—C30169.04 (14)C13—C12—C18—N3178.9 (4)
O2—Ni3—S4—Ni2148.7 (7)C18—N3—C19—C20141.6 (4)
N2—Ni3—S4—Ni2102.80 (11)Ni2—N3—C19—C2039.6 (4)
S5—Ni3—S4—Ni278.49 (5)N3—C19—C20—S648.4 (4)
O3—Ni2—S4—C301.07 (17)Ni2—S6—C20—C1935.0 (3)
N3—Ni2—S4—C30134.1 (11)Ni1—S6—C20—C1976.1 (3)
S6—Ni2—S4—C30172.50 (15)Ni3—O2—C21—C2212.5 (6)
O3—Ni2—S4—Ni3103.62 (10)Ni3—O2—C21—C26167.4 (3)
N3—Ni2—S4—Ni3121.2 (11)O2—C21—C22—C23177.7 (4)
S6—Ni2—S4—Ni382.81 (5)C26—C21—C22—C232.5 (6)
C3—C4—C5—C61.0 (7)O2—C21—C22—C282.9 (7)
O1—Ni1—S5—C1096.8 (7)C26—C21—C22—C28176.9 (4)
N1—Ni1—S5—C1012.42 (18)C21—C22—C23—C240.6 (7)
S6—Ni1—S5—C10168.69 (15)C28—C22—C23—C24180.0 (4)
O1—Ni1—S5—Ni3151.1 (7)C22—C23—C24—C252.1 (7)
N1—Ni1—S5—Ni399.64 (11)C23—C24—C25—C260.4 (7)
S6—Ni1—S5—Ni379.25 (5)C24—C25—C26—O5175.7 (4)
O2—Ni3—S5—C104.21 (18)C24—C25—C26—C212.9 (7)
N2—Ni3—S5—C10149 (2)C27—O5—C26—C2514.6 (6)
S4—Ni3—S5—C10177.01 (15)C27—O5—C26—C21164.2 (4)
O2—Ni3—S5—Ni1109.11 (11)O2—C21—C26—C25175.9 (4)
N2—Ni3—S5—Ni1106 (2)C22—C21—C26—C254.3 (6)
S4—Ni3—S5—Ni178.09 (5)O2—C21—C26—O55.3 (6)
C7—O4—C6—C55.5 (6)C22—C21—C26—O5174.5 (4)
C7—O4—C6—C1173.1 (4)C29—N2—C28—C22176.7 (4)
C4—C5—C6—O4178.8 (4)Ni3—N2—C28—C222.2 (6)
C4—C5—C6—C10.3 (7)C21—C22—C28—N22.2 (7)
O1—C1—C6—O42.6 (6)C23—C22—C28—N2177.2 (4)
C2—C1—C6—O4178.1 (4)C28—N2—C29—C30138.8 (4)
O1—C1—C6—C5178.7 (4)Ni3—N2—C29—C3042.2 (4)
C2—C1—C6—C50.6 (6)N2—C29—C30—S448.7 (4)
O3—Ni2—S6—C20100.3 (8)Ni3—S4—C30—C2933.7 (3)
N3—Ni2—S6—C2012.30 (18)Ni2—S4—C30—C2979.5 (3)
S4—Ni2—S6—C20163.95 (15)C32—N4—C31—O71.1 (8)
O3—Ni2—S6—Ni1148.4 (8)C33—N4—C31—O7177.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C21–C26 and Ni1/O1/N1/C1/C2/C8, rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···O7i0.932.453.334 (6)159
C29—H29A···S5ii0.972.863.779 (5)159
C25—H25···O3iii0.932.713.6048 (4)163
C3—H3···C13iv0.932.853.7376 (4)160
C5—H5···Cg3v0.932.993.625 (5)127
C15—H15···Cg4vi0.932.833.604 (5)142
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x, y+3/2, z+1/2; (vi) x, y+2, z+1.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine (project No. 19BF037-05)

References

First citationAndruh, M. (2015). Dalton Trans. 44, 16633–16653.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBera, P., Butcher, R. J. & Saha, N. (1998). Chem. Lett. 27, 559–560.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Zhang, G., Häussinger, D., Housecroft, C. E. & Zampese, J. A. (2011). J. Am. Chem. Soc. 133, 10776–10779.  CSD CrossRef CAS PubMed Google Scholar
First citationEsteves-Souza, A., Pissinate, K., Nascimento, M. da G., Grynberg, N. F. & Echevarria, A. (2006). Bioorg. Med. Chem. 14, 492–499.  PubMed CAS Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationGladkikh, O. P., Inwood, H., Nicholls, D. & Weatherburn, D. C. (2002). Inorg. Chim. Acta, 331, 131–135.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalcrow, M. A. & Christou, G. (1994). Chem. Rev. 94, 2421–2481.  CrossRef CAS Web of Science Google Scholar
First citationHenkel, G., Kriege, M. & Matsumoto, K. (1988). J. Chem. Soc. Dalton Trans. pp. 657–659.  CSD CrossRef Google Scholar
First citationJamulitrat, S., Thongpiyapoom, S. & Suwalak, N. J. (2007). J. Med. Assoc. Thai. 90, 2181–2191.  PubMed Google Scholar
First citationKaasjager, V. E., van den Broeke, J., Henderson, R. K., Smeets, W. J. J., Spek, A. L., Driessen, W. L., Bouwman, E. & Reedijk, J. (2001). Inorg. Chim. Acta, 316, 99–104.  CSD CrossRef CAS Google Scholar
First citationLi, J., Nation, R. L., Owen, R. J., Wong, S., Spelman, D. & Franklin, C. (2007). Clin. Infect. Dis. 45, 594–598.  CrossRef PubMed CAS Google Scholar
First citationPeleg, A. Y., Seifert, H. & Paterson, D. L. (2008). Clin. Microbiol. Rev. 21, 538–582.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrabhakaran, R., Geetha, A., Thilagavathi, M., Karvembu, R., Krishnan, V., Bertagnolli, H. & Natarajan, K. (2004). J. Inorg. Biochem. 98, 2131–2140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStępień, M., Latos-Grażyński, L., Szterenberg, L., Panek, J. & Latajka, Z. (2004). J. Am. Chem. Soc. 126, 4566–4580.  PubMed Google Scholar
First citationTofazzal, M. D., Tarafder, H., Ali, A. M., Elias, M. S., Crouse, K. A. & Silong, S. (2000). Transit. Met. Chem. 25, 706–710.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W., Xuan, Y., Yin, J. L. & Shujie, L. (2014). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 44, 877–880.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds