research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hy­dr­oxy scandium nitrate chloride

CROSSMARK_Color_square_no_text.svg

aSandia National Laboratories, Advanced Materials Laboratory, 1001 University, Boulevard, SE, Albuquerque, NM 87106, USA, and bUniversity of Hawaii - Manoa, Department of Chemistry, 2545 McCarthy Mall, Honolulu, HI 96822-2275, USA
*Correspondence e-mail: tjboyle@sandia.gov

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 April 2018; accepted 21 March 2019; online 2 April 2019)

Each Sc3+ ion in the title salt, di-μ-hydroxido-bis­[tri­aqua­(nitrato-κ2O,O′)scandium(III)] dichloride, [Sc2(NO3)2(OH)2(H2O)6]Cl2, is coordinated by a nitrate anion, two hydroxide ions and three water mol­ecules to generate a distorted penta­gonal–bipyramidal ScO7 coordination polyhedron. The complete {[(NO3)(μ-OH)Sc(H2O)3]2}2+ ion is generated by crystallographic inversion symmetry. The nitrate anion binds in a bidentate fashion whereas the hydroxide ions are bridged between two Sc centers. Two charge-balancing Cl ions are located in the outer sphere. In the extended structure, O—H⋯O and O—H⋯Cl hydrogen bonds connect the components into a three-dimensional network.

1. Chemical context

Scandium nitrate compounds have found widespread utility in a diverse number of applications, including catalysts for aqueous-based organic reactions (Kobayashi, 1999[Kobayashi, S. (1999). Eur. J. Org. Chem. pp. 15-27.]), heterogeneous Lewis acid catalysts (Cao et al., 2015[Cao, Y., Zhu, Z., Xu, J., Wang, L., Sun, J., Chen, X. & Fan, Y. (2015). Dalton Trans. 44, 1942-1947.]), cyano­silylation catalysis (Zhang et al., 2015[Zhang, L., Wang, L., Wang, P., Song, T., Li, D., Chen, X., Fan, Y. & Xu, J. (2015). Eur. J. Inorg. Chem. pp. 931-938.]) and films for use in optics and electronic manufacturing (Wang et al., 2013[Wang, W., Chang, I.-Y., Zakharov, L., Cheong, P. H.-Y. & Keszler, D. A. (2013). Inorg. Chem. 52, 1807-1811.]). Previously, the structural properties of scandium salts were reviewed and the wide variety of structure types available for Sc metal were presented (Sears et al., 2017[Sears, J. M. & Boyle, T. J. (2017). Coord. Chem. Rev. 340, 154-171.]). From this review, the diversity of structurally characterized scandium nitrate salts was illumin­ated. These were found to possess inner-sphere, outer-sphere and mixed-sphere nitrate ions. Additionally, a number of bridging ligands (OH, OMe) were present. As we continue to explore the fundamental coordination behavior of scandium with nitric acid as a means to recycle this multipurpose metal, another unusual scandium nitrate structure [(κ2-NO3)(μ-OH)Sc(H2O)3]22(Cl) (1) was isolated. This report details the structure and its relationship to known scandium nitrate derivatives.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is the third reported hydrated scandium nitrate salt. We previously isolated [(H2O)4Sc(k2-NO3)2](NO3)H2O and [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3) from the reaction of [(H2O)5Sc(μ-OH)]24(Cl)2(H2O) with concentrated nitric acid at elevated and room temperatures, respectively. Similarities between [(k2-NO3)(μ-OH)Sc(H2O)3]22(Cl) and [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3) were expected and observed.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with non-H atoms shown as displacement ellipsoids at the 50% probability level. Only one Cl ion is shown. Unlabeled atoms are generated by the symmetry operation 1 − x, −y, 1 − z.

The axial water mol­ecules are distorted from linearity more so for 1 [O1—Sc1—O4 = 166.48 (2)°] than for [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3) [O4—Sc—O6 = 171.52 (7)°]. The Sc—O (H2O) bond distances of 2.124 (1)–2.148 (1) Å for 1 are comparable to the 2.114 (2)–2.183 (1) Å distances reported for the other hydroxide-bridged NO3 salt. Bond angles between the axial water mol­ecules and the remaining nearly coplanar equatorial ligands range from 79.56 (2)–100.60 (2)° for 1 and 82.50 (6)–99.96 (6)° for [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3). The angles between the equatorial oxygen atoms range from 55.61 (2)–81.36 (2)° and 55.76 (5)–83.70 (6)°, respectively. The shortest Sc—O bond distances, 2.0542 (5)–2.0569 (5) Å for 1 and 2.053 (2)–2.076 (1) Å for [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3), occur for the bridging hydroxide ions. In both salts, the bidentate NO3 ions have the weakest inter­action with Sc—O bond distances of 2.291 (1)–2.314 (1) Å for 1 and 2.114 (2)–2.183 (1) Å for [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3).

The precursor to 1, [(H2O)5Sc(μ-OH)]24(Cl)2(H2O), is also a seven-coordinate Sc salt. Rotation of the precursor reveals a capped trigonal–prismatic geometry about the Sc centers that is useful for comparison. Equatorial ligand angles for [(H2O)5Sc(μ-OH)]24(Cl)2(H2O) had a much smaller range of 83.32–95.17°. Dihedral angles between axial and equatorial ligands for the precursor also have a significantly reduced range of 77.18–79.09°. These differences further support the distorted penta­gonal–bipyramidal geometry assigned to 1.

3. Supra­molecular features

A network of scandium hy­droxy nitrate dimer chains that inter­act via separate equatorial coordinated water mol­ecules and nitrate ions with one another is observed for [(k2-NO3)(μ-OH)Sc(H2O)3]22(Cl). These chains are further linked into a three-dimensional network (Fig. 2[link]) by O—H⋯Cl hydrogen bonds between axially as well as equatorially coordinated water mol­ecules and outer sphere Cl anions indicated by the symmetry operations in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.782 (16) 2.051 (16) 2.8175 (7) 166.6 (16)
O1—H1B⋯Cl1ii 0.787 (15) 2.300 (15) 3.0856 (6) 176.6 (14)
O2—H2⋯Cl1iii 0.692 (16) 2.617 (16) 3.2749 (5) 159.7 (17)
O3—H3A⋯Cl1iii 0.815 (16) 2.305 (16) 3.1017 (6) 165.9 (15)
O3—H3B⋯O5iv 0.811 (15) 1.989 (15) 2.7977 (7) 175.0 (14)
O4—H4A⋯Cl1v 0.859 (15) 2.316 (15) 3.1722 (6) 174.5 (13)
O4—H4B⋯Cl1 0.824 (16) 2.242 (16) 3.0658 (6) 179.0 (15)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x+1, y, z; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y, -z+2.
[Figure 2]
Figure 2
Partial packing diagram of the title compound, showing hydrogen bonds as dashed lines.

4. Database survey

There are two reports of hydrated scandium nitrates, [(H2O)4Sc(k2-NO3)2](NO3)(H2O) (Boyle et al., 2015[Boyle, T. J., Sears, J. M., Neville, M. L., Alam, T. M. & Young, V. G. Jr (2015). Inorg. Chem. 54, 11831-11841.]) and [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3) (Wang et al., 2013[Wang, W., Chang, I.-Y., Zakharov, L., Cheong, P. H.-Y. & Keszler, D. A. (2013). Inorg. Chem. 52, 1807-1811.]; Boyle et al. 2015[Boyle, T. J., Sears, J. M., Neville, M. L., Alam, T. M. & Young, V. G. Jr (2015). Inorg. Chem. 54, 11831-11841.]), and both contain outer-sphere nitrate anions. As expected a similar network is observed for [(H2O)3Sc(k2-NO3)(μ-OH)]22(NO3). Salt 1 is the first reported hydrated scandium nitrate to contain outer-sphere chloride anions.

5. Synthesis and crystallization

Salt 1 was isolated from a cooled (273 K) mixture of [(H2O)5Sc(μ-OH)]24(Cl)2(H2O) dissolved in water and an equal volume of concentrated HNO3(aq). The reaction was slowly warmed to room temperature and set aside for slow evaporation until crystals formed. From this mixture, a single crystal of 1 was selected and used for single crystal X-ray analysis. Note: Both [(H2O)4Sc(κ2-NO3)2]NO3(H2O) and [(H2O)3Sc(κ2-NO3)(μ-OH)]22(NO3) have also been isolated from this preparatory route (Boyle et al., 2015[Boyle, T. J., Sears, J. M., Neville, M. L., Alam, T. M. & Young, V. G. Jr (2015). Inorg. Chem. 54, 11831-11841.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Sc2(NO3)2(OH)2(H2O)6]2(Cl)
Mr 426.95
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.7221 (3), 7.6279 (4), 8.5181 (4)
α, β, γ (°) 100.904 (2), 110.125 (2), 102.329 (2)
V3) 383.87 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.52 × 0.24 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016)
Tmin, Tmax 0.634, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 21806, 5393, 4597
Rint 0.025
(sin θ/λ)max−1) 0.944
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.04
No. of reflections 5393
No. of parameters 119
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.50, −0.35
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT andSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Di-µ-hydroxido-bis[triaqua(nitrato-κ2O,O')scandium(III)] dichloride top
Crystal data top
[Sc2(NO3)2(OH)2(H2O)6]2(Cl)Z = 1
Mr = 426.95F(000) = 216
Triclinic, P1Dx = 1.847 Mg m3
a = 6.7221 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6279 (4) ÅCell parameters from 9960 reflections
c = 8.5181 (4) Åθ = 2.7–43.4°
α = 100.904 (2)°µ = 1.30 mm1
β = 110.125 (2)°T = 100 K
γ = 102.329 (2)°Plate, colourless
V = 383.87 (3) Å30.52 × 0.24 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
4597 reflections with I > 2σ(I)
Radiation source: fine–focus tubeRint = 0.025
φ and ω scansθmax = 42.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.634, Tmax = 0.749k = 1414
21806 measured reflectionsl = 1615
5393 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024All H-atom parameters refined
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.026P)2 + 0.0527P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5393 reflectionsΔρmax = 0.50 e Å3
119 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sc10.64421 (2)0.20102 (2)0.65362 (2)0.00619 (2)
O10.77577 (9)0.34667 (7)0.50248 (7)0.01145 (8)
H1A0.730 (3)0.425 (2)0.469 (2)0.037 (4)*
H1B0.814 (2)0.297 (2)0.4330 (19)0.031 (4)*
O20.66804 (8)0.04815 (7)0.53126 (6)0.00944 (8)
H20.755 (3)0.084 (2)0.562 (2)0.042 (4)*
O30.97436 (9)0.22378 (8)0.82658 (7)0.01256 (9)
H3A1.025 (3)0.136 (2)0.832 (2)0.036 (4)*
H3B1.042 (2)0.306 (2)0.919 (2)0.030 (4)*
O40.54719 (9)0.11936 (8)0.84788 (7)0.01370 (9)
H4A0.639 (2)0.131 (2)0.951 (2)0.032 (4)*
H4B0.425 (3)0.048 (2)0.829 (2)0.037 (4)*
O50.77362 (8)0.48678 (7)0.86375 (7)0.01144 (8)
O60.45946 (9)0.42130 (7)0.64820 (6)0.01136 (8)
O70.57811 (11)0.68156 (9)0.85879 (8)0.02282 (13)
N10.60275 (10)0.53719 (8)0.79388 (8)0.01116 (9)
Cl10.09630 (3)0.14716 (2)0.78189 (2)0.01058 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc10.00664 (4)0.00485 (4)0.00490 (4)0.00172 (3)0.00048 (3)0.00005 (3)
O10.0153 (2)0.0105 (2)0.0118 (2)0.00636 (17)0.00710 (17)0.00454 (16)
O20.00739 (17)0.00762 (18)0.00909 (18)0.00341 (14)0.00061 (14)0.00082 (14)
O30.01049 (19)0.00957 (19)0.0107 (2)0.00455 (16)0.00204 (16)0.00219 (16)
O40.0119 (2)0.0173 (2)0.00861 (19)0.00022 (17)0.00226 (16)0.00464 (17)
O50.00943 (18)0.00930 (19)0.01084 (19)0.00451 (15)0.00074 (15)0.00048 (15)
O60.01149 (19)0.00946 (19)0.00762 (18)0.00380 (15)0.00085 (15)0.00164 (15)
O70.0229 (3)0.0165 (3)0.0196 (3)0.0137 (2)0.0006 (2)0.0075 (2)
N10.0113 (2)0.0094 (2)0.0092 (2)0.00476 (17)0.00089 (17)0.00115 (17)
Cl10.01037 (6)0.01118 (6)0.01048 (6)0.00477 (5)0.00374 (5)0.00283 (5)
Geometric parameters (Å, º) top
Sc1—O22.0542 (5)O2—Sc1i2.0569 (5)
Sc1—O2i2.0569 (5)O2—H20.692 (16)
Sc1—O42.1238 (6)O3—H3A0.815 (16)
Sc1—O12.1399 (5)O3—H3B0.811 (15)
Sc1—O32.1482 (5)O4—H4A0.859 (15)
Sc1—O62.2910 (5)O4—H4B0.824 (16)
Sc1—O52.3140 (5)O5—N11.2752 (8)
Sc1—Sc1i3.3085 (3)O6—N11.2837 (8)
O1—H1A0.782 (16)O7—N11.2068 (8)
O1—H1B0.787 (15)
O2—Sc1—O2i72.83 (2)O4—Sc1—Sc1i95.494 (17)
O2—Sc1—O499.79 (2)O1—Sc1—Sc1i97.895 (16)
O2i—Sc1—O489.10 (2)O3—Sc1—Sc1i117.158 (16)
O2—Sc1—O192.12 (2)O6—Sc1—Sc1i114.024 (14)
O2i—Sc1—O1100.60 (2)O5—Sc1—Sc1i168.016 (14)
O4—Sc1—O1166.48 (2)Sc1—O1—H1A121.1 (11)
O2—Sc1—O381.36 (2)Sc1—O1—H1B122.4 (10)
O2i—Sc1—O3152.16 (2)H1A—O1—H1B107.7 (15)
O4—Sc1—O385.12 (2)Sc1—O2—Sc1i107.17 (2)
O1—Sc1—O390.41 (2)Sc1—O2—H2125.6 (14)
O2—Sc1—O6148.997 (19)Sc1i—O2—H2125.0 (14)
O2i—Sc1—O678.391 (19)Sc1—O3—H3A124.5 (11)
O4—Sc1—O690.93 (2)Sc1—O3—H3B122.1 (10)
O1—Sc1—O681.93 (2)H3A—O3—H3B108.8 (14)
O3—Sc1—O6128.81 (2)Sc1—O4—H4A124.1 (10)
O2—Sc1—O5154.887 (19)Sc1—O4—H4B125.0 (11)
O2i—Sc1—O5131.997 (19)H4A—O4—H4B108.9 (14)
O4—Sc1—O579.56 (2)N1—O5—Sc194.62 (4)
O1—Sc1—O586.94 (2)N1—O6—Sc195.45 (4)
O3—Sc1—O573.561 (19)O7—N1—O5122.93 (6)
O6—Sc1—O555.610 (18)O7—N1—O6122.90 (6)
O2—Sc1—Sc1i36.441 (14)O5—N1—O6114.17 (5)
O2i—Sc1—Sc1i36.388 (14)
Sc1—O5—N1—O7176.54 (7)Sc1—O6—N1—O7176.50 (7)
Sc1—O5—N1—O63.65 (6)Sc1—O6—N1—O53.69 (6)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6ii0.782 (16)2.051 (16)2.8175 (7)166.6 (16)
O1—H1B···Cl1i0.787 (15)2.300 (15)3.0856 (6)176.6 (14)
O2—H2···Cl1iii0.692 (16)2.617 (16)3.2749 (5)159.7 (17)
O3—H3A···Cl1iii0.815 (16)2.305 (16)3.1017 (6)165.9 (15)
O3—H3B···O5iv0.811 (15)1.989 (15)2.7977 (7)175.0 (14)
O4—H4A···Cl1v0.859 (15)2.316 (15)3.1722 (6)174.5 (13)
O4—H4B···Cl10.824 (16)2.242 (16)3.0658 (6)179.0 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+2; (v) x+1, y, z+2.
 

Funding information

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell Inter­national, Inc., for the US Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

References

First citationBoyle, T. J., Sears, J. M., Neville, M. L., Alam, T. M. & Young, V. G. Jr (2015). Inorg. Chem. 54, 11831–11841.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationBruker (2016). APEX2, SAINT andSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y., Zhu, Z., Xu, J., Wang, L., Sun, J., Chen, X. & Fan, Y. (2015). Dalton Trans. 44, 1942–1947.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKobayashi, S. (1999). Eur. J. Org. Chem. pp. 15–27.  CrossRef Google Scholar
First citationSears, J. M. & Boyle, T. J. (2017). Coord. Chem. Rev. 340, 154–171.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, W., Chang, I.-Y., Zakharov, L., Cheong, P. H.-Y. & Keszler, D. A. (2013). Inorg. Chem. 52, 1807–1811.  Web of Science CrossRef ICSD CAS PubMed Google Scholar
First citationZhang, L., Wang, L., Wang, P., Song, T., Li, D., Chen, X., Fan, Y. & Xu, J. (2015). Eur. J. Inorg. Chem. pp. 931–938.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds