research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of memantine–carb­­oxy­borane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Alaska Anchorage, Anchorage, AK 99508, USA, and bDepartment of Chemistry, University of California–San Diego, La Jolla, CA 92093, USA
*Correspondence e-mail: ndingra@alaska.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 February 2019; accepted 26 March 2019; online 2 April 2019)

The synthesis and crystal structure of the title compound, C13H24BNO2 [systematic name: 3,5-di­methyl­adamantanyl­amine–borane­carb­oxy­lic acid or N-(carb­oxy­boranyl­idene)-3,5-di­methyl­adamantan-1-amine], derived from the anti-Alzheimer's disease drug memantine is reported. The C—N—B—CO2 unit is almost planar (r.m.s. deviation = 0.095 Å). The extended structure shows typical carb­oxy­lic acid inversion dimers linked by pairwise O—H⋯O hydrogen bonds [O⋯O = 2.662 (3) Å]. The amino group forms a weak N—H⋯O hydrogen bond [N⋯O = 3.011 (3) Å], linking the dimers into [001] chains in the crystal. Highly disordered solvent mol­ecules were treated using the SQUEEZE routine of PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18], which treats the electron density as a diffuse contribution without assignment of specific atom locations. A scattering contribution of 255 electrons was removed. The crystal studied was refined as a two-component twin.

1. Chemical context

Memantine is a drug used for the treatment of mild and moderate-to-severe Alzheimer's disease as an inhibitor for N-methyl-D-aspartate (NMDA) receptors. As a result of its property as a low-affinity, open-channel blocker, memantine does not substanti­ally inter­fere with normal synaptic activity, thereby reducing side effects. This has led to clinical trials for other neurological disorders (Bullock, 2006[Bullock, R. (2006). Alzheimer Dis. Assoc. Disord. 20, 23-29.]; Lipton, 2005[Lipton, S. A. (2005). Curr. Alzheimer Res. 2, 155-165.]; Olivares et al., 2012[Olivares, D., Deshpande, V. K., Shi, Y., Lahiri, D. K., Greig, N. H., Rogers, J. T. & Huang, X. (2012). Curr. Alzheimer Res. 9, 746-758.]; Parsons et al., 2007[Parsons, C. G., Stöffler, A. & Danysz, W. (2007). Neuropharmacology, 53, 699-723.]). While memantine in its hydro­chloride form is useful in various treatment methods, some modifications were done on this drug to optimize the desired concentration in the system. As a means to preventing drug degradation, memantine has been further processed in a mixture with other compounds (McInnes et al., 2010[McInnes, F. J., Anthony, N. G., Kennedy, A. R. & Wheate, N. J. (2010). Org. Biomol. Chem. 8, 765-773.]; Plosker, 2015[Plosker, G. L. (2015). Drugs, 75, 887-897.]). The one-week extended release formula by Lyndra Therapeutics is currently under clinical trial phase I (clinicaltrials.gov, NCT03711825). Though efforts to maintain the long-term stability of memantine are underway, chemical modification of the memantine structure itself is rarely reported. Our attempt was to mask the compound with an additional moiety that can be removed under certain conditions, therefore releasing the drug. With this goal, memantine–carb­oxy­borane was synthesized since the carb­oxy­borate group is known to decompose into carbon monoxide and boric acid, leaving the drug mol­ecule itself (Ayudhya et al., 2017[Ayudhya, T. I., Raymond, C. C. & Dingra, N. N. (2017). Dalton Trans. 46, 882-889.], 2018[Ayudhya, T. I., Pellechia, P. J. & Dingra, N. N. (2018). Dalton Trans. 47, 538-543.]). The single crystal structure of the said compound, (I)[link], was solved and its features are described in this report.

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The C2–N1–B1–C1/O1/O2 fragment is almost planar (r.m.s. deviation = 0.095 Å) and the C atoms bonded to the B and N atoms take on an anti orientation [C1—B1—N1—C2 = 173.5 (3)°]. The stereogenic centres in the adamantane unit were assigned as C4 S and C8 R in the arbitrarily chosen asymmetric unit but crystal symmetry generates a racemic mixture. The bond lengths [C1—O1 = 1.340 (4), C1—O2 = 1.227 (4) Å] of the carb­oxy­lic acid group are in agreement with the data for related carb­oxy­lic acids and known amine–carb­oxy­boranes (Gavezzotti, 2008[Gavezzotti, A. (2008). Acta Cryst. B64, 401-403.]; Spielvogel et al., 1980[Spielvogel, B. F., Das, M. K., McPhail, A. T., Onan, K. D. & Hall, I. H. (1980). J. Am. Chem. Soc. 102, 6343-6344.]; Vyakaranam et al., 2002[Vyakaranam, K., Rana, G., Chong, G., Zheng, S. L., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 181-182.]; Ayudhya et al., 2017[Ayudhya, T. I., Raymond, C. C. & Dingra, N. N. (2017). Dalton Trans. 46, 882-889.]). The C—C—C bond angles of the adamantine cage fall within the expected ranges and the N1—C2 bond length at 1.504 (4) Å is comparable with previously reported values in amino­adamantane structures (Donohue & Goodman, 1967[Donohue, J. & Goodman, S. H. (1967). Acta Cryst. 22, 352-354.]; Chacko & Zand, 1973[Chacko, K. K. & Zand, R. (1973). Acta Cryst. B29, 2681-2686.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

A dimer is observed between the two memantine–carb­oxy­borane mol­ecules formed through conventional hydrogen bonding between the carb­oxy­lic acid moieties (Fig. 2[link]). The hydrogen-bond length listed in Table 1[link] [O1⋯O2 = 2.662 (3) Å] is consistent with the hydrogen-bond geometries found in carb­oxy­borane dimers such as ammonia–carb­oxy­borane [2.668 (2) Å; Spielvogel et al., 1980[Spielvogel, B. F., Das, M. K., McPhail, A. T., Onan, K. D. & Hall, I. H. (1980). J. Am. Chem. Soc. 102, 6343-6344.]], mophorline–carb­oxy­borane [2.712 (4) Å; Vyakaranam et al., 2002[Vyakaranam, K., Rana, G., Chong, G., Zheng, S. L., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 181-182.]] and tri­methyl­amine–carb­oxy­borane [2.714 Å; Spielvogel et al., 1976[Spielvogel, B. F., Wojnowich, L., Das, M. K., McPhail, A. T. & Hargrave, K. D. (1976). J. Am. Chem. Soc. 98, 5702-5703.]]. In (I)[link], these dimers form an extended structure through N1—H1B⋯O1 links (O1 is the protonated oxygen atom of the carb­oxy­lic acid), to form [001] chains. This motif has also been reported previously in ammonia–carb­oxy­borane, tri­methyl­amine–carb­oxy­borane, di­methyl­amine–carb­oxy­borane and methyl­amine–carb­oxy­borane (Spielvogel et al., 1980[Spielvogel, B. F., Das, M. K., McPhail, A. T., Onan, K. D. & Hall, I. H. (1980). J. Am. Chem. Soc. 102, 6343-6344.]). The adjacent dimers shown in Fig. 2[link] indicates that the planes of the carb­oxy­lic acids are not parallel, but twisted by 76.5° from each other.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.82 2.662 (3) 176
N1—H1B⋯O1ii 0.91 2.11 3.011 (3) 171
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [x, -y+2, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the hydrogen bonds in (I)[link] showing the carb­oxy­lic acid inversion dimers and N—H⋯O links between dimers.

Assessment of available crystal structures deposited with the Cambridge Structural Database (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates that not all amine–carb­oxy­boranes form dimers during crystallization. While some amine–carb­oxy­boranes described above are dimers, others such as piperidine–carb­oxy­borane and hexa­methyl­ene­tetra­mine–carb­oxy­borane do not form dimers, suggesting that the amine-group inter­action may influence the overall packing (Rana et al., 2002[Rana, G., Vyakaranam, K., Zheng, C., Li, S., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 107-108.]; Ayudhya et al., 2017[Ayudhya, T. I., Raymond, C. C. & Dingra, N. N. (2017). Dalton Trans. 46, 882-889.]). The extended structure of (I)[link] is shown in projection down the b- and c-axis directions in Fig. 3[link]a and 3b, respectively. No other contacts beyond the hydrogen bonds already mentioned are observed in this packing. Although the dimers appear to be parallel in Fig. 3[link]a, the twisted planes of hydrogen bonds are better represented in Fig. 3[link]b.

[Figure 3]
Figure 3
Packing diagrams of (I)[link]: (a) A view from the b axis to show aligned hydrogen-bonding dimers. (b) A view down the c axis to show the twisted planes.

4. Database survey

The memantine structure in its free (unprotonated) base form is not found in the literature, although the hydro­chloride salt with water mol­ecules of crystallization has been solved (Lou et al., 2009[Lou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191.]). Another memantine crystal structure reported was in a clathrate form with cucurbit[7]uril where memantine is completely bound within the cavity (McInnes et al., 2010[McInnes, F. J., Anthony, N. G., Kennedy, A. R. & Wheate, N. J. (2010). Org. Biomol. Chem. 8, 765-773.]). However, numerous crystal structures of the adamantane cage and its derivatives in various forms have been reported over many years (Nordman & Schmitkons, 1965[Nordman, C. E. & Schmitkons, D. L. (1965). Acta Cryst. 18, 764-767.]; Chacko & Zand, 1973[Chacko, K. K. & Zand, R. (1973). Acta Cryst. B29, 2681-2686.]; SiMa, 2009[SiMa, W. (2009). Acta Cryst. E65, o2492.]; Glaser et al., 2011[Glaser, R., Steinberg, A., Šekutor, M., Rominger, F., Trapp, O. & Mlinarić-Majerski, K. (2011). Eur. J. Org. Chem. pp. 3500-3506.]).

5. Synthesis and crystallization

Memantine, a derivative of adamantine, was first synthesized by Eli Lilly and Company. In an attempt to modify memantine into memantine–carb­oxy­borane, a reaction scheme as shown in Fig. 4[link] was carried out. Addition of the carb­oxy­borane moiety to memantine was done in a one-step reaction using an amine-exchange process as previously described (Spielvogel et al., 1980[Spielvogel, B. F., Das, M. K., McPhail, A. T., Onan, K. D. & Hall, I. H. (1980). J. Am. Chem. Soc. 102, 6343-6344.]). Tri­methyl­amine carb­oxy­borane (117 mg, 1.0 mmol) and memantine (780 mg, 4.4 mmol) were dissolved in tetra­hydro­furan (8.0 ml), and maintained at 328 K for 24 h under a nitro­gen atmosphere. The solution was concentrated by vacuum distillation and the resulting solid was dissolved in di­chloro­methane. The product was precipitated from the solvent by using 15 ml of hexane and the white solid crude product (208 mg) was filtered. This residue was purified by multiple recrystallization in di­chloro­methane/hexane to yield a white solid (15 mg, 6.3%). Crystals suitable for X-ray analysis were prepared by dissolving in toluene and slow cooling of the solution.

[Figure 4]
Figure 4
Reaction scheme for the synthesis of (I)[link] through an amine-exchange process.

6. Refinement

Crystal data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (O—H = 0.84, N—H = 0.91 and C—H = 0.98–0.99 Å) and refined as riding with Uiso(eq) = 1.5Ueq(C-methyl, O) and 1.2Ueq(C, N) for all others. The idealized methyl groups at C12 and C13 and the idealized tetra­hedral OH group at O1 were refined as rotating groups. The disordered solvent mol­ecules were treated with the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The crystal studied was refined as a two-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C13H24BNO2
Mr 237.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 34.229 (4), 11.1051 (12), 9.2922 (10)
β (°) 96.526 (5)
V3) 3509.3 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.06
Crystal size (mm) 0.32 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker APEXII Ultra
Absorption correction Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.300, 0.333
No. of measured, independent and observed [I > 2σ(I)] reflections 10740, 10740, 8531
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.154, 1.04
No. of reflections 10740
No. of parameters 166
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.94, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3,5-Dimethyladamantanylamine–boranecarboxylic acid top
Crystal data top
C13H24BNO2F(000) = 1040
Mr = 237.14Dx = 0.898 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 34.229 (4) ÅCell parameters from 1799 reflections
b = 11.1051 (12) Åθ = 2.9–25.6°
c = 9.2922 (10) ŵ = 0.06 mm1
β = 96.526 (5)°T = 100 K
V = 3509.3 (7) Å3Plate, colourless
Z = 80.32 × 0.30 × 0.10 mm
Data collection top
Bruker APEXII Ultra
diffractometer
10740 measured reflections
Radiation source: Micro Focus Rotating Anode, Bruker TXS10740 independent reflections
Double Bounce Multilayer Mirrors monochromator8531 reflections with I > 2σ(I)
Detector resolution: 8.258 pixels mm-1θmax = 25.7°, θmin = 1.2°
φ and ω scansh = 4141
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
k = 1313
Tmin = 0.300, Tmax = 0.333l = 1111
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0598P)2 + 6.9836P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
10740 reflectionsΔρmax = 0.94 e Å3
166 parametersΔρmin = 0.24 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54884 (6)0.9933 (2)1.1021 (3)0.0296 (6)
H10.52591.02051.09940.044*
O20.52308 (7)0.9168 (2)0.8929 (2)0.0373 (7)
N10.59334 (7)0.8289 (2)0.8033 (3)0.0214 (6)
H1A0.57630.76560.79740.026*
H1B0.58250.88650.74160.026*
C90.61930 (9)0.7507 (3)0.5864 (3)0.0203 (7)
H9A0.59930.68590.58060.024*
H9B0.60770.82090.53130.024*
C20.63037 (8)0.7867 (3)0.7461 (3)0.0172 (7)
C100.64666 (9)0.6768 (3)0.8315 (4)0.0224 (7)
H10A0.62670.61200.82570.027*
H10B0.65360.69830.93460.027*
C80.65553 (9)0.7071 (3)0.5192 (3)0.0213 (7)
C110.68651 (9)0.8083 (3)0.5324 (4)0.0241 (8)
H11A0.71030.78060.49060.029*
H11B0.67590.87930.47640.029*
C60.68384 (9)0.6335 (3)0.7642 (4)0.0229 (8)
H60.69510.56180.81930.027*
C10.55232 (10)0.9311 (3)0.9806 (4)0.0219 (8)
C40.69762 (9)0.8445 (3)0.6898 (4)0.0243 (8)
C30.66090 (9)0.8865 (3)0.7553 (4)0.0222 (7)
H3A0.66810.90950.85780.027*
H3B0.64980.95830.70230.027*
C70.67253 (9)0.5977 (3)0.6057 (4)0.0225 (7)
H7A0.65280.53230.60020.027*
H7B0.69600.56760.56390.027*
C50.71424 (9)0.7332 (3)0.7751 (4)0.0277 (8)
H5A0.73830.70500.73540.033*
H5B0.72140.75510.87800.033*
C130.64387 (10)0.6749 (3)0.3590 (4)0.0298 (9)
H13A0.62440.60990.35220.045*
H13B0.66720.64840.31570.045*
H13C0.63260.74580.30710.045*
C120.72819 (10)0.9460 (3)0.6973 (5)0.0397 (10)
H12A0.75150.91850.65430.060*
H12B0.73580.96830.79880.060*
H12C0.71691.01620.64380.060*
B10.59514 (12)0.8823 (4)0.9644 (4)0.0295 (10)
H1C0.6174 (10)0.964 (3)0.966 (4)0.042 (10)*
H1D0.6026 (11)0.810 (3)1.038 (4)0.050 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (12)0.0335 (13)0.0342 (14)0.0008 (11)0.0140 (12)0.0136 (11)
O20.0334 (14)0.0620 (17)0.0167 (12)0.0240 (13)0.0038 (12)0.0048 (13)
N10.0202 (14)0.0169 (13)0.0280 (15)0.0034 (11)0.0062 (12)0.0043 (12)
C90.0237 (18)0.0150 (16)0.0222 (17)0.0018 (13)0.0026 (15)0.0029 (15)
C20.0149 (16)0.0182 (16)0.0190 (16)0.0039 (13)0.0043 (14)0.0018 (14)
C100.0236 (18)0.0213 (17)0.0230 (17)0.0000 (14)0.0062 (15)0.0018 (15)
C80.0238 (18)0.0177 (16)0.0227 (18)0.0022 (14)0.0046 (15)0.0007 (15)
C110.0225 (18)0.0206 (17)0.032 (2)0.0023 (14)0.0134 (16)0.0027 (16)
C60.0221 (17)0.0197 (16)0.0268 (18)0.0032 (14)0.0027 (15)0.0045 (15)
C10.030 (2)0.0181 (17)0.0183 (17)0.0013 (14)0.0046 (16)0.0034 (15)
C40.0172 (17)0.0215 (17)0.035 (2)0.0027 (14)0.0082 (16)0.0072 (16)
C30.0238 (18)0.0193 (17)0.0235 (17)0.0012 (14)0.0024 (15)0.0002 (15)
C70.0214 (18)0.0187 (16)0.0287 (17)0.0021 (14)0.0079 (16)0.0043 (16)
C50.0170 (17)0.037 (2)0.0290 (19)0.0053 (15)0.0007 (16)0.0096 (18)
C130.033 (2)0.033 (2)0.023 (2)0.0073 (17)0.0038 (16)0.0011 (17)
C120.027 (2)0.036 (2)0.058 (3)0.0085 (17)0.012 (2)0.012 (2)
B10.025 (2)0.037 (3)0.028 (2)0.0001 (19)0.0062 (18)0.011 (2)
Geometric parameters (Å, º) top
O1—H10.8400C6—H61.0000
O1—C11.340 (4)C6—C71.532 (5)
O2—C11.227 (4)C6—C51.515 (4)
N1—H1A0.9100C1—B11.586 (5)
N1—H1B0.9100C4—C31.530 (4)
N1—C21.504 (4)C4—C51.541 (4)
N1—B11.605 (5)C4—C121.535 (4)
C9—H9A0.9900C3—H3A0.9900
C9—H9B0.9900C3—H3B0.9900
C9—C21.542 (4)C7—H7A0.9900
C9—C81.530 (4)C7—H7B0.9900
C2—C101.525 (4)C5—H5A0.9900
C2—C31.520 (4)C5—H5B0.9900
C10—H10A0.9900C13—H13A0.9800
C10—H10B0.9900C13—H13B0.9800
C10—C61.557 (4)C13—H13C0.9800
C8—C111.541 (4)C12—H12A0.9800
C8—C71.535 (4)C12—H12B0.9800
C8—C131.539 (5)C12—H12C0.9800
C11—H11A0.9900B1—H1C1.19 (3)
C11—H11B0.9900B1—H1D1.07 (4)
C11—C41.523 (5)
C1—O1—H1109.5O2—C1—O1118.8 (3)
H1A—N1—H1B106.9O2—C1—B1125.8 (3)
C2—N1—H1A107.3C11—C4—C3109.6 (3)
C2—N1—H1B107.3C11—C4—C5108.6 (3)
C2—N1—B1120.0 (3)C11—C4—C12109.4 (3)
B1—N1—H1A107.3C3—C4—C5108.2 (3)
B1—N1—H1B107.3C3—C4—C12110.1 (3)
H9A—C9—H9B108.1C12—C4—C5110.8 (3)
C2—C9—H9A109.5C2—C3—C4110.2 (2)
C2—C9—H9B109.5C2—C3—H3A109.6
C8—C9—H9A109.5C2—C3—H3B109.6
C8—C9—H9B109.5C4—C3—H3A109.6
C8—C9—C2110.7 (2)C4—C3—H3B109.6
N1—C2—C9107.2 (2)H3A—C3—H3B108.1
N1—C2—C10109.8 (2)C8—C7—H7A109.7
N1—C2—C3110.8 (2)C8—C7—H7B109.7
C10—C2—C9109.2 (2)C6—C7—C8109.7 (3)
C3—C2—C9109.6 (3)C6—C7—H7A109.7
C3—C2—C10110.2 (2)C6—C7—H7B109.7
C2—C10—H10A110.1H7A—C7—H7B108.2
C2—C10—H10B110.1C6—C5—C4109.9 (3)
C2—C10—C6107.8 (3)C6—C5—H5A109.7
H10A—C10—H10B108.5C6—C5—H5B109.7
C6—C10—H10A110.1C4—C5—H5A109.7
C6—C10—H10B110.1C4—C5—H5B109.7
C9—C8—C11108.6 (3)H5A—C5—H5B108.2
C9—C8—C7108.3 (3)C8—C13—H13A109.5
C9—C8—C13109.6 (3)C8—C13—H13B109.5
C7—C8—C11108.6 (3)C8—C13—H13C109.5
C7—C8—C13111.4 (3)H13A—C13—H13B109.5
C13—C8—C11110.3 (3)H13A—C13—H13C109.5
C8—C11—H11A109.4H13B—C13—H13C109.5
C8—C11—H11B109.4C4—C12—H12A109.5
H11A—C11—H11B108.0C4—C12—H12B109.5
C4—C11—C8111.3 (3)C4—C12—H12C109.5
C4—C11—H11A109.4H12A—C12—H12B109.5
C4—C11—H11B109.4H12A—C12—H12C109.5
C10—C6—H6109.0H12B—C12—H12C109.5
C7—C6—C10109.7 (3)N1—B1—H1C104.6 (18)
C7—C6—H6109.0N1—B1—H1D107 (2)
C5—C6—C10109.5 (3)C1—B1—N1106.1 (3)
C5—C6—H6109.0C1—B1—H1C109.7 (16)
C5—C6—C7110.5 (3)C1—B1—H1D111 (2)
O1—C1—B1115.4 (3)H1C—B1—H1D118 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.822.662 (3)176
N1—H1B···O1ii0.912.113.011 (3)171
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z1/2.
 

Acknowledgements

Funding for this research was provided by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant No. P20GM103395. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH.

Funding information

Funding for this research was provided by: National Institutes of Health, National Institute of General Medical Sciences (grant No. P20GM103395).

References

First citationAyudhya, T. I., Pellechia, P. J. & Dingra, N. N. (2018). Dalton Trans. 47, 538–543.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAyudhya, T. I., Raymond, C. C. & Dingra, N. N. (2017). Dalton Trans. 46, 882–889.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBullock, R. (2006). Alzheimer Dis. Assoc. Disord. 20, 23–29.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChacko, K. K. & Zand, R. (1973). Acta Cryst. B29, 2681–2686.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonohue, J. & Goodman, S. H. (1967). Acta Cryst. 22, 352–354.  CSD CrossRef IUCr Journals Google Scholar
First citationGavezzotti, A. (2008). Acta Cryst. B64, 401–403.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGlaser, R., Steinberg, A., Šekutor, M., Rominger, F., Trapp, O. & Mlinarić–Majerski, K. (2011). Eur. J. Org. Chem. pp. 3500–3506.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLipton, S. A. (2005). Curr. Alzheimer Res. 2, 155–165.  CrossRef PubMed CAS Google Scholar
First citationLou, W.-J., Hu, X.-R. & Gu, J.-M. (2009). Acta Cryst. E65, o2191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcInnes, F. J., Anthony, N. G., Kennedy, A. R. & Wheate, N. J. (2010). Org. Biomol. Chem. 8, 765–773.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNordman, C. E. & Schmitkons, D. L. (1965). Acta Cryst. 18, 764–767.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOlivares, D., Deshpande, V. K., Shi, Y., Lahiri, D. K., Greig, N. H., Rogers, J. T. & Huang, X. (2012). Curr. Alzheimer Res. 9, 746–758.  CrossRef CAS PubMed Google Scholar
First citationParsons, C. G., Stöffler, A. & Danysz, W. (2007). Neuropharmacology, 53, 699–723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlosker, G. L. (2015). Drugs, 75, 887–897.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRana, G., Vyakaranam, K., Zheng, C., Li, S., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 107–108.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiMa, W. (2009). Acta Cryst. E65, o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpielvogel, B. F., Das, M. K., McPhail, A. T., Onan, K. D. & Hall, I. H. (1980). J. Am. Chem. Soc. 102, 6343–6344.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpielvogel, B. F., Wojnowich, L., Das, M. K., McPhail, A. T. & Hargrave, K. D. (1976). J. Am. Chem. Soc. 98, 5702–5703.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationVyakaranam, K., Rana, G., Chong, G., Zheng, S. L., Spielvogel, B. F. & Hosmane, N. S. (2002). Main Group Met. Chem. 25, 181–182.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds