research communications
trans-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane)copper(II) pamoate
ofaL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str. 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net
The trans-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) 4,4′-methylenebis(3-hydroxynaphthalene-2-carboxylate), [Cu(C10H26N6)(H2O)2](C23H14O6) {[Cu(L)(H2O)2](pam), where L = 3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane and pam = dianion of pamoic acid} consists of two independent halves of the [Cu(L)(H2O)2]2+ cation and one dicarboxylate anion. The CuII atoms, lying on inversion centres, are coordinated by the four secondary N atoms of the macrocyclic ligands and the mutually trans O atoms of the water molecules in a tetragonally elongated octahedral geometry. The average equatorial Cu—N bond length is significantly shorter than the average axial Cu—O bond length [2.007 (10) and 2.486 (18) Å, respectively]. The macrocyclic ligand in the complex cations adopts the most energetically stable trans-III conformation. The complex cations and anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors into layers lying parallel to the (11) plane.
of the title compound,Keywords: crystal structure; azamacrocyclic ligand; diazacyclam; copper; pamoic acid; hydrogen bonds.
CCDC reference: 1904400
1. Chemical context
Coordination compounds of cyclam-like tetradentate azamacrocyclic ligands (cyclam = 1,4,8,11-tetraazacyclotetradecane) have attracted considerable attention because of their high thermodynamic stability, kinetic inertness, unusual redox properties and spectroscopic features (Melson, 1979; Yatsimirskii & Lampeka, 1985). Transition-metal complexes of this type of equatorial ligand possess two trans vacant sites in the axial positions and are suitable building blocks for the construction of metal–organic frameworks (MOFs) with potential applications in many areas including sorption, separation, gas storage, etc (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018; Lee & Moon, 2018). The CuII complexes of N3,N10-dialkyl-substituted diazacyclam (diazacyclam = 1,3,5,8,10,12-hexaazacyclotetradecane), readily obtainable via template-directed Mannich condensation of bis(ethylenediamine) complexes with formaldehyde and primary (Costisor & Linert, 2000), represent widespread systems in this kind of investigation.
Pamoic acid [4,4′-methylene-bis(3-hydroxynaphthalene-2-carboxylic acid), H2pam] is widely used as a counter-ion in pharmaceutical formulations (Du et al., 2007 and references cited therein). This dicarboxylic acid is built from two naphthalene fragments, each bearing carboxylic and hydroxyl substituents and linked by a methylene bridge. The combination of this potentially bridging ligand with a biometal complex (e.g. CuII) could be a promising candidate for the construction of the Bio–MOFs attracting currently considerable attention (Cai et al., 2019).
Here, we report the synthesis and the II complex with a diazacyclam ligand and pamoate dianion, namely trans-diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) pamoate, [CuL(H2O)2](pam), (I).
of the title diaqua–Cu2. Structural commentary
The title compound (I) contains two crystallographically independent centrosymmetric complex cations. Each CuII ion lies on an inversion centre and is coordinated in the equatorial plane by four secondary amine N atoms of the azamacrocyclic ligand in a square-planar fashion, and by two O atoms from the water molecules in the axial positions, resulting in a tetragonally distorted octahedral geometry (Table 1, Fig. 1).
|
The CuN4 fragments in (I) are strictly planar; at the same time they display some rhombic distortion. In particular, the Cu1—N3 and Cu2—N4 distances [av. 2.000 (1) Å] are shorter than those for Cu1—N1 and Cu2—N6 bonds [av. 2.014 (3) Å]. The axial bonds Cu—OW [av. 2.486 (17) Å] are longer than the equatorial bonds, which can be attributed to a large Jahn–Teller distortion. The coordinated macrocyclic ligand in both cations adopts the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965) with the five- and six-membered chelate rings in gauche and chair conformations, respectively. The bite angles in the five- and six-membered chelate rings equal 86.53 (8) and 93.47 (8)°, respectively. The methyl substituents at the distal nitrogen atoms in the six-membered chelate rings are axially oriented. Therewith, the C—N—C angles at non-coordinated nitrogen atoms (ca 115°) are larger than the canonical value for an sp3-hybridized nitrogen atom (109°), thus indicating their partial sp2 character.
The V-shaped pamoate dianion is fully deprotonated to counterbalance the charge of the complex unit and possesses a twisted conformation with the joint angle between the naphthalene rings being 115.6 (2)° and the angle between the mean planes of naphthalene fragments being 88.6 (2)°. The carboxylic groups adopt a transoid configuration to minimize unfavorable et al., 2007). The C—O bond lengths in each carboxylic group are somewhat different [1.248 (3) versus 1.271 (3) and 1.245 (3) versus 1.279 (4) Å for the O1—C11—O2 and O4—C22—O5 fragments, respectively], thus indicating their incomplete delocalization. As expected, each hydroxylic group exhibits a strong intra-anion O—H⋯O bond with the adjacent carboxyl oxygen (D⋯A distances ca 2.5 Å; Table 2).
(Du3. Supramolecular features
Each carboxylate group of the pamoate anion acts as a proton acceptor by the formation of N—H⋯O hydrogen bonds with adjacent secondary amine groups of the azamacrocyclic ligand and bifurcated OW—H⋯(O,O) hydrogen bonds with a coordinated water molecule of the same cation (Fig. 2 and Table 2). Additionally, the benzene fragments of the naphthalene rings are involved in two kinds of intermolecular π–π interactions [interplanar separation of 3.470 and 3.717 Å; centroid-to-centroid distances of 3.8996 (15) and 4.2107 (15) Å, respectively] (Fig. 2). These supramolecular interactions (Steed & Atwood, 2009) generate sheets of interacting ions parallel to (11), and additional N1—H1⋯O3 contacts and C—H⋯O interactions link these sheets into a three-dimensional network.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016) indicated that 65 CuII complexes of N3,N10-disubstituted diazacyclams with various alkyl pendant groups have been reported and the majority of them were investigated as building blocks for supramolecular chemistry. Among them, eight hits deal with a diaqua azamacrocyclic CuII cation. Surprisingly, only one structure with the dimethyl-substituted macrocycle L has been reported, i.e. [Cu(L)](ClO4)2 (LAWXIR; Zhang et al., 2005) and the title compound (I) is the first example of a [Cu(L)(H2O)2]2+ cation described so far.
A search for pamoic acid gave 97 hits, only four of which concern compounds consisting of uncoordinated pamoate dianion and metal complex cations, i.e., [M(H2O)2(phen)2](pam)·H2O [M = ZnII (MEBGOQ), MnII (SIQDOM), CdII (YOLDEJ), phen = phenanthroline] and [Mn(H2O)4(DMF)2](pam) (SIQCOL) (Ma et al., 2006; Du et al., 2007; Shi et al., 2008). Except for nine hits concerning the non-deprotonated pamoic acid, all other 84 structures are coordination polymers, thus demonstrating the availability of the pamoic acid anion for the design of MOFs.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The starting complex, [Cu(L)](ClO4)2, was prepared by a method reported in the literature (Suh & Kang, 1988). The title compound (I) was prepared as follows. To a water/DMF solution (1/3 by volume, 5 ml) of [Cu(L)](ClO4)2 (123 mg, 0.25 mmol) was added a DMF solution (10 ml) containing pamoic acid (97 mg, 0.25 mmol) and 0.2 ml of triethylamine. A pink precipitate was formed in three days. This was filtered off, washed with a small amount of DMF and diethyl ether, and dried in air. Yield: 82 mg (46%). Analysis calculated for C33H44N6CuO8: C 55.33, H 6.19, N 11.73%. Found: C 55.42, H 6.24, N 11.62%. Single crystals suitable for X-ray were selected from the sample resulting from the synthesis.
Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.98–0.99 Å (open-chain H atoms), N—H distance of 1.0 Å, hydroxyl O—H distance of 0.84 Å and aqua O—H distance of 0.86 Å with Uiso(H) values of 1.2 or 1.5Ueq times that of the parent atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1904400
https://doi.org/10.1107/S2056989019003852/hb7810sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003852/hb7810Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C10H26N6)(H2O)2]C23H14O6 | Z = 2 |
Mr = 716.28 | F(000) = 754 |
Triclinic, P1 | Dx = 1.450 Mg m−3 |
a = 9.8877 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.1406 (7) Å | Cell parameters from 8230 reflections |
c = 14.5760 (9) Å | θ = 2.4–25.6° |
α = 71.594 (3)° | µ = 0.73 mm−1 |
β = 81.128 (3)° | T = 100 K |
γ = 88.249 (3)° | Block, pink |
V = 1640.06 (17) Å3 | 0.20 × 0.18 × 0.12 mm |
Bruker APEXII CCD diffractometer | 4540 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.080 |
φ and ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→12 |
Tmin = 0.868, Tmax = 0.918 | k = −14→14 |
52866 measured reflections | l = −17→17 |
6401 independent reflections |
Refinement on F2 | 6 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0378P)2 + 0.6293P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
6401 reflections | Δρmax = 0.34 e Å−3 |
438 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.0000 | 0.5000 | 0.5000 | 0.01499 (12) | |
Cu2 | 0.5000 | 0.5000 | 0.0000 | 0.01582 (12) | |
N1 | 0.8280 (2) | 0.58002 (17) | 0.45737 (15) | 0.0199 (5) | |
H1 | 0.8412 | 0.6050 | 0.3843 | 0.024* | |
N2 | 0.7064 (2) | 0.40151 (18) | 0.47031 (15) | 0.0239 (5) | |
N3 | 0.9443 (2) | 0.34915 (17) | 0.48721 (14) | 0.0194 (5) | |
H3 | 0.9644 | 0.3562 | 0.4162 | 0.023* | |
C4 | 0.8207 (3) | 0.6863 (2) | 0.48671 (19) | 0.0223 (6) | |
H4A | 0.7880 | 0.6669 | 0.5578 | 0.027* | |
H4B | 0.7566 | 0.7417 | 0.4510 | 0.027* | |
C1 | 0.6994 (3) | 0.5083 (2) | 0.49364 (19) | 0.0239 (6) | |
H1A | 0.6785 | 0.4901 | 0.5656 | 0.029* | |
H1B | 0.6232 | 0.5545 | 0.4650 | 0.029* | |
C2 | 0.7977 (3) | 0.3164 (2) | 0.52012 (19) | 0.0235 (6) | |
H2A | 0.7810 | 0.2416 | 0.5096 | 0.028* | |
H2B | 0.7761 | 0.3046 | 0.5912 | 0.028* | |
C3 | 1.0361 (3) | 0.2604 (2) | 0.53813 (19) | 0.0224 (6) | |
H3A | 1.0350 | 0.1910 | 0.5164 | 0.027* | |
H3B | 1.0057 | 0.2365 | 0.6097 | 0.027* | |
C5 | 0.7162 (3) | 0.4154 (2) | 0.3666 (2) | 0.0332 (7) | |
H5A | 0.7205 | 0.3388 | 0.3573 | 0.050* | |
H5B | 0.6356 | 0.4560 | 0.3418 | 0.050* | |
H5C | 0.7991 | 0.4607 | 0.3309 | 0.050* | |
N6 | 0.5743 (2) | 0.35155 (17) | 0.08194 (14) | 0.0190 (5) | |
H6 | 0.6453 | 0.3239 | 0.0379 | 0.023* | |
N4 | 0.6263 (2) | 0.58227 (17) | 0.05243 (14) | 0.0169 (5) | |
H4 | 0.5701 | 0.6038 | 0.1072 | 0.020* | |
N5 | 0.5995 (2) | 0.77617 (18) | −0.06320 (15) | 0.0234 (5) | |
C7 | 0.4716 (3) | 0.2553 (2) | 0.13005 (19) | 0.0244 (6) | |
H7A | 0.5187 | 0.1862 | 0.1671 | 0.029* | |
H7B | 0.4038 | 0.2788 | 0.1776 | 0.029* | |
C8 | 0.6454 (3) | 0.3839 (2) | 0.15230 (18) | 0.0229 (6) | |
H8A | 0.7082 | 0.3217 | 0.1807 | 0.028* | |
H8B | 0.5780 | 0.3952 | 0.2061 | 0.028* | |
C9 | 0.7253 (3) | 0.4959 (2) | 0.09671 (19) | 0.0222 (6) | |
H9A | 0.7709 | 0.5232 | 0.1418 | 0.027* | |
H9B | 0.7963 | 0.4836 | 0.0452 | 0.027* | |
C6 | 0.6926 (3) | 0.6918 (2) | −0.01746 (19) | 0.0223 (6) | |
H6A | 0.7471 | 0.7270 | 0.0181 | 0.027* | |
H6B | 0.7568 | 0.6723 | −0.0690 | 0.027* | |
C10 | 0.5140 (3) | 0.8320 (2) | −0.0004 (2) | 0.0290 (7) | |
H10A | 0.4544 | 0.8878 | −0.0391 | 0.043* | |
H10B | 0.4577 | 0.7730 | 0.0525 | 0.043* | |
H10C | 0.5724 | 0.8727 | 0.0276 | 0.043* | |
C11 | 0.4511 (3) | −0.3050 (2) | 0.24922 (17) | 0.0210 (6) | |
C12 | 0.4904 (3) | −0.1995 (2) | 0.27246 (17) | 0.0169 (6) | |
C13 | 0.6302 (3) | −0.1758 (2) | 0.27572 (17) | 0.0188 (6) | |
C14 | 0.6685 (3) | −0.0783 (2) | 0.29585 (17) | 0.0181 (6) | |
C15 | 0.5639 (3) | −0.0083 (2) | 0.32585 (17) | 0.0191 (6) | |
C16 | 0.5905 (3) | 0.0822 (2) | 0.36370 (18) | 0.0250 (6) | |
H16 | 0.6820 | 0.0984 | 0.3687 | 0.030* | |
C17 | 0.4868 (3) | 0.1461 (2) | 0.3929 (2) | 0.0327 (7) | |
H17 | 0.5068 | 0.2043 | 0.4199 | 0.039* | |
C18 | 0.3508 (3) | 0.1271 (2) | 0.3835 (2) | 0.0346 (7) | |
H18 | 0.2799 | 0.1739 | 0.4022 | 0.041* | |
C19 | 0.3211 (3) | 0.0418 (2) | 0.34780 (19) | 0.0275 (7) | |
H19 | 0.2292 | 0.0299 | 0.3409 | 0.033* | |
C20 | 0.4247 (3) | −0.0295 (2) | 0.32067 (17) | 0.0200 (6) | |
C21 | 0.3934 (3) | −0.1235 (2) | 0.29063 (17) | 0.0187 (6) | |
H21 | 0.3018 | −0.1346 | 0.2827 | 0.022* | |
C22 | 1.0315 (3) | 0.3478 (3) | 0.2154 (2) | 0.0297 (7) | |
C23 | 0.9735 (2) | 0.2584 (2) | 0.17946 (19) | 0.0199 (6) | |
C24 | 0.9275 (3) | 0.1467 (2) | 0.24487 (18) | 0.0216 (6) | |
C25 | 0.8696 (2) | 0.0657 (2) | 0.21366 (17) | 0.0178 (6) | |
C26 | 0.8648 (2) | 0.0906 (2) | 0.11176 (18) | 0.0168 (5) | |
C27 | 0.8225 (2) | 0.0078 (2) | 0.07126 (18) | 0.0203 (6) | |
H27 | 0.7934 | −0.0675 | 0.1132 | 0.024* | |
C28 | 0.8227 (3) | 0.0346 (2) | −0.02714 (19) | 0.0250 (6) | |
H28 | 0.7950 | −0.0227 | −0.0526 | 0.030* | |
C29 | 0.8634 (3) | 0.1459 (2) | −0.09125 (19) | 0.0285 (7) | |
H29 | 0.8607 | 0.1640 | −0.1593 | 0.034* | |
C30 | 0.9069 (3) | 0.2277 (2) | −0.05578 (19) | 0.0253 (6) | |
H30 | 0.9349 | 0.3025 | −0.0995 | 0.030* | |
C31 | 0.9107 (2) | 0.2024 (2) | 0.04560 (18) | 0.0189 (6) | |
C32 | 0.9621 (2) | 0.2839 (2) | 0.08278 (19) | 0.0203 (6) | |
H32 | 0.9897 | 0.3589 | 0.0393 | 0.024* | |
C33 | 0.8189 (3) | −0.0505 (2) | 0.28762 (18) | 0.0208 (6) | |
H33A | 0.8729 | −0.1128 | 0.2698 | 0.025* | |
H33B | 0.8376 | −0.0519 | 0.3528 | 0.025* | |
O1 | 0.32781 (19) | −0.32344 (15) | 0.24857 (13) | 0.0262 (4) | |
O2 | 0.54697 (19) | −0.37048 (15) | 0.23045 (13) | 0.0253 (4) | |
O3 | 0.72922 (18) | −0.25007 (14) | 0.25674 (13) | 0.0242 (4) | |
H3C | 0.6944 | −0.3007 | 0.2389 | 0.036* | |
O4 | 1.06005 (19) | 0.44690 (16) | 0.15717 (16) | 0.0377 (5) | |
O5 | 1.0477 (2) | 0.31618 (19) | 0.30534 (15) | 0.0416 (6) | |
O6 | 0.9387 (2) | 0.11959 (17) | 0.34181 (13) | 0.0319 (5) | |
H6C | 0.9751 | 0.1758 | 0.3514 | 0.048* | |
O1W | 1.07942 (19) | 0.56232 (16) | 0.31930 (13) | 0.0303 (5) | |
H1WA | 1.1574 | 0.5988 | 0.2985 | 0.045* | |
H1WB | 1.0603 | 0.5205 | 0.2849 | 0.045* | |
O2W | 0.32694 (18) | 0.51823 (16) | 0.13556 (13) | 0.0289 (5) | |
H2WA | 0.3381 | 0.5611 | 0.1708 | 0.043* | |
H2WB | 0.2426 | 0.4986 | 0.1394 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0177 (2) | 0.0117 (2) | 0.0152 (2) | −0.00018 (18) | −0.00184 (18) | −0.00397 (17) |
Cu2 | 0.0159 (2) | 0.0148 (2) | 0.0163 (2) | −0.00108 (18) | −0.00325 (18) | −0.00389 (18) |
N1 | 0.0235 (12) | 0.0179 (11) | 0.0181 (11) | −0.0009 (9) | −0.0016 (9) | −0.0062 (9) |
N2 | 0.0277 (13) | 0.0216 (12) | 0.0224 (12) | −0.0033 (10) | −0.0082 (10) | −0.0044 (10) |
N3 | 0.0248 (12) | 0.0166 (11) | 0.0157 (10) | 0.0005 (9) | −0.0033 (9) | −0.0036 (9) |
C4 | 0.0272 (15) | 0.0188 (14) | 0.0218 (14) | 0.0048 (11) | −0.0041 (12) | −0.0075 (11) |
C1 | 0.0198 (15) | 0.0239 (15) | 0.0252 (14) | 0.0004 (11) | −0.0018 (11) | −0.0043 (12) |
C2 | 0.0266 (16) | 0.0189 (14) | 0.0235 (14) | −0.0052 (12) | −0.0056 (12) | −0.0030 (12) |
C3 | 0.0297 (16) | 0.0142 (13) | 0.0221 (14) | 0.0029 (11) | −0.0045 (12) | −0.0040 (11) |
C5 | 0.0401 (18) | 0.0313 (16) | 0.0332 (16) | −0.0010 (14) | −0.0185 (14) | −0.0109 (13) |
N6 | 0.0192 (12) | 0.0179 (11) | 0.0183 (11) | 0.0017 (9) | −0.0026 (9) | −0.0038 (9) |
N4 | 0.0126 (11) | 0.0189 (11) | 0.0190 (11) | 0.0020 (9) | −0.0014 (9) | −0.0065 (9) |
N5 | 0.0256 (13) | 0.0190 (12) | 0.0239 (12) | −0.0029 (10) | 0.0006 (10) | −0.0061 (10) |
C7 | 0.0265 (16) | 0.0194 (14) | 0.0215 (14) | −0.0014 (12) | 0.0010 (12) | −0.0003 (11) |
C8 | 0.0223 (15) | 0.0265 (15) | 0.0206 (13) | 0.0054 (12) | −0.0069 (11) | −0.0068 (12) |
C9 | 0.0177 (14) | 0.0282 (15) | 0.0240 (14) | 0.0044 (12) | −0.0077 (11) | −0.0111 (12) |
C6 | 0.0169 (15) | 0.0235 (15) | 0.0260 (14) | −0.0055 (12) | 0.0035 (12) | −0.0100 (12) |
C10 | 0.0319 (17) | 0.0210 (15) | 0.0339 (16) | 0.0007 (12) | −0.0008 (13) | −0.0106 (13) |
C11 | 0.0306 (17) | 0.0190 (14) | 0.0108 (12) | −0.0038 (13) | −0.0002 (11) | −0.0021 (11) |
C12 | 0.0226 (15) | 0.0136 (13) | 0.0131 (12) | −0.0037 (11) | 0.0000 (10) | −0.0030 (10) |
C13 | 0.0231 (15) | 0.0154 (13) | 0.0154 (13) | 0.0013 (11) | 0.0009 (11) | −0.0035 (11) |
C14 | 0.0234 (15) | 0.0148 (13) | 0.0126 (12) | −0.0040 (11) | −0.0018 (11) | 0.0004 (10) |
C15 | 0.0287 (16) | 0.0134 (13) | 0.0112 (12) | −0.0029 (11) | 0.0016 (11) | −0.0002 (10) |
C16 | 0.0308 (16) | 0.0223 (14) | 0.0195 (14) | −0.0076 (12) | 0.0022 (12) | −0.0050 (12) |
C17 | 0.050 (2) | 0.0204 (15) | 0.0275 (15) | −0.0080 (14) | 0.0092 (14) | −0.0135 (13) |
C18 | 0.0360 (19) | 0.0261 (16) | 0.0377 (17) | 0.0003 (14) | 0.0134 (14) | −0.0137 (14) |
C19 | 0.0242 (16) | 0.0229 (15) | 0.0311 (15) | −0.0015 (12) | 0.0072 (12) | −0.0076 (13) |
C20 | 0.0250 (15) | 0.0139 (13) | 0.0169 (13) | −0.0004 (11) | 0.0029 (11) | −0.0016 (11) |
C21 | 0.0182 (14) | 0.0167 (13) | 0.0175 (13) | −0.0047 (11) | −0.0009 (11) | −0.0007 (11) |
C22 | 0.0136 (15) | 0.0359 (18) | 0.048 (2) | −0.0057 (13) | 0.0084 (13) | −0.0299 (16) |
C23 | 0.0114 (13) | 0.0225 (14) | 0.0286 (15) | −0.0029 (11) | 0.0009 (11) | −0.0135 (12) |
C24 | 0.0182 (14) | 0.0287 (15) | 0.0205 (13) | −0.0029 (12) | −0.0017 (11) | −0.0118 (12) |
C25 | 0.0153 (14) | 0.0188 (13) | 0.0193 (13) | −0.0010 (11) | −0.0021 (11) | −0.0061 (11) |
C26 | 0.0112 (13) | 0.0169 (13) | 0.0228 (13) | 0.0003 (10) | −0.0025 (10) | −0.0072 (11) |
C27 | 0.0176 (14) | 0.0205 (14) | 0.0233 (14) | −0.0017 (11) | −0.0018 (11) | −0.0080 (11) |
C28 | 0.0206 (15) | 0.0325 (16) | 0.0267 (15) | −0.0009 (12) | −0.0049 (12) | −0.0151 (13) |
C29 | 0.0248 (16) | 0.0410 (18) | 0.0190 (14) | 0.0022 (13) | −0.0064 (12) | −0.0073 (13) |
C30 | 0.0190 (15) | 0.0272 (15) | 0.0234 (14) | 0.0004 (12) | −0.0025 (12) | 0.0003 (12) |
C31 | 0.0135 (13) | 0.0205 (14) | 0.0211 (13) | 0.0040 (11) | −0.0024 (11) | −0.0047 (11) |
C32 | 0.0110 (13) | 0.0167 (13) | 0.0317 (15) | 0.0002 (10) | 0.0000 (11) | −0.0070 (12) |
C33 | 0.0237 (15) | 0.0168 (13) | 0.0206 (13) | −0.0015 (11) | −0.0072 (11) | −0.0020 (11) |
O1 | 0.0259 (11) | 0.0282 (10) | 0.0274 (10) | −0.0085 (8) | −0.0012 (8) | −0.0133 (8) |
O2 | 0.0339 (11) | 0.0203 (10) | 0.0270 (10) | 0.0040 (9) | −0.0069 (9) | −0.0139 (8) |
O3 | 0.0240 (10) | 0.0182 (10) | 0.0325 (11) | 0.0020 (8) | −0.0035 (8) | −0.0116 (8) |
O4 | 0.0215 (11) | 0.0226 (11) | 0.0751 (15) | −0.0041 (9) | −0.0059 (10) | −0.0245 (11) |
O5 | 0.0363 (13) | 0.0581 (15) | 0.0435 (13) | −0.0177 (11) | 0.0053 (10) | −0.0381 (12) |
O6 | 0.0359 (12) | 0.0423 (12) | 0.0222 (10) | −0.0133 (10) | −0.0075 (9) | −0.0143 (9) |
O1W | 0.0328 (11) | 0.0330 (11) | 0.0267 (10) | −0.0130 (9) | 0.0071 (9) | −0.0159 (9) |
O2W | 0.0228 (10) | 0.0384 (11) | 0.0321 (11) | −0.0106 (9) | 0.0054 (8) | −0.0237 (9) |
Cu1—N3 | 2.000 (2) | C10—H10A | 0.9800 |
Cu1—N3i | 2.000 (2) | C10—H10B | 0.9800 |
Cu1—N1 | 2.017 (2) | C10—H10C | 0.9800 |
Cu1—N1i | 2.017 (2) | C11—O1 | 1.248 (3) |
Cu1—O1w | 2.5033 (19) | C11—O2 | 1.271 (3) |
Cu1—O1wi | 2.5033 (18) | C11—C12 | 1.501 (3) |
Cu2—N4 | 1.9987 (19) | C12—C21 | 1.364 (3) |
Cu2—N4ii | 1.9987 (19) | C12—C13 | 1.431 (4) |
Cu2—N6 | 2.0113 (19) | C13—O3 | 1.367 (3) |
Cu2—N6ii | 2.0114 (19) | C13—C14 | 1.383 (3) |
Cu2—O2w | 2.4681 (18) | C14—C15 | 1.424 (4) |
Cu2—O2wii | 2.4681 (18) | C14—C33 | 1.514 (3) |
N1—C4 | 1.479 (3) | C15—C16 | 1.423 (3) |
N1—C1 | 1.491 (3) | C15—C20 | 1.426 (4) |
N1—H1 | 1.0000 | C16—C17 | 1.363 (4) |
N2—C1 | 1.438 (3) | C16—H16 | 0.9500 |
N2—C2 | 1.442 (3) | C17—C18 | 1.406 (4) |
N2—C5 | 1.455 (3) | C17—H17 | 0.9500 |
N3—C3 | 1.476 (3) | C18—C19 | 1.355 (4) |
N3—C2 | 1.480 (3) | C18—H18 | 0.9500 |
N3—H3 | 1.0000 | C19—C20 | 1.411 (4) |
C4—C3i | 1.518 (4) | C19—H19 | 0.9500 |
C4—H4A | 0.9900 | C20—C21 | 1.403 (3) |
C4—H4B | 0.9900 | C21—H21 | 0.9500 |
C1—H1A | 0.9900 | C22—O4 | 1.245 (3) |
C1—H1B | 0.9900 | C22—O5 | 1.279 (4) |
C2—H2A | 0.9900 | C22—C23 | 1.507 (4) |
C2—H2B | 0.9900 | C23—C32 | 1.366 (4) |
C3—C4i | 1.518 (4) | C23—C24 | 1.429 (4) |
C3—H3A | 0.9900 | C24—O6 | 1.367 (3) |
C3—H3B | 0.9900 | C24—C25 | 1.378 (3) |
C5—H5A | 0.9800 | C25—C26 | 1.427 (3) |
C5—H5B | 0.9800 | C25—C33 | 1.523 (3) |
C5—H5C | 0.9800 | C26—C27 | 1.417 (3) |
N6—C8 | 1.481 (3) | C26—C31 | 1.434 (3) |
N6—C7 | 1.492 (3) | C27—C28 | 1.366 (4) |
N6—H6 | 1.0000 | C27—H27 | 0.9500 |
N4—C9 | 1.476 (3) | C28—C29 | 1.407 (4) |
N4—C6 | 1.493 (3) | C28—H28 | 0.9500 |
N4—H4 | 1.0000 | C29—C30 | 1.362 (4) |
N5—C6 | 1.429 (3) | C29—H29 | 0.9500 |
N5—C7ii | 1.432 (3) | C30—C31 | 1.418 (3) |
N5—C10 | 1.460 (3) | C30—H30 | 0.9500 |
C7—N5ii | 1.432 (3) | C31—C32 | 1.409 (3) |
C7—H7A | 0.9900 | C32—H32 | 0.9500 |
C7—H7B | 0.9900 | C33—H33A | 0.9900 |
C8—C9 | 1.518 (4) | C33—H33B | 0.9900 |
C8—H8A | 0.9900 | O3—H3C | 0.8400 |
C8—H8B | 0.9900 | O6—H6C | 0.8400 |
C9—H9A | 0.9900 | O1W—H1WA | 0.8641 |
C9—H9B | 0.9900 | O1W—H1WB | 0.8606 |
C6—H6A | 0.9900 | O2W—H2WA | 0.8578 |
C6—H6B | 0.9900 | O2W—H2WB | 0.8629 |
N3—Cu1—N3i | 180.00 | H9A—C9—H9B | 108.6 |
N3—Cu1—N1 | 93.47 (8) | N5—C6—N4 | 114.6 (2) |
N3i—Cu1—N1 | 86.53 (8) | N5—C6—H6A | 108.6 |
N3—Cu1—N1i | 86.53 (8) | N4—C6—H6A | 108.6 |
N3i—Cu1—N1i | 93.47 (8) | N5—C6—H6B | 108.6 |
N1—Cu1—N1i | 180.0 | N4—C6—H6B | 108.6 |
N4—Cu2—N4ii | 180.00 | H6A—C6—H6B | 107.6 |
N4—Cu2—N6 | 86.53 (8) | N5—C10—H10A | 109.5 |
N4ii—Cu2—N6 | 93.47 (8) | N5—C10—H10B | 109.5 |
N4—Cu2—N6ii | 93.47 (8) | H10A—C10—H10B | 109.5 |
N4ii—Cu2—N6ii | 86.53 (8) | N5—C10—H10C | 109.5 |
N6—Cu2—N6ii | 180.0 | H10A—C10—H10C | 109.5 |
C4—N1—C1 | 112.6 (2) | H10B—C10—H10C | 109.5 |
C4—N1—Cu1 | 105.83 (15) | O1—C11—O2 | 123.7 (2) |
C1—N1—Cu1 | 115.85 (15) | O1—C11—C12 | 118.9 (2) |
C4—N1—H1 | 107.4 | O2—C11—C12 | 117.4 (2) |
C1—N1—H1 | 107.4 | C21—C12—C13 | 118.5 (2) |
Cu1—N1—H1 | 107.4 | C21—C12—C11 | 120.6 (2) |
C1—N2—C2 | 115.5 (2) | C13—C12—C11 | 120.9 (2) |
C1—N2—C5 | 114.8 (2) | O3—C13—C14 | 118.8 (2) |
C2—N2—C5 | 113.9 (2) | O3—C13—C12 | 119.5 (2) |
C3—N3—C2 | 112.89 (18) | C14—C13—C12 | 121.7 (2) |
C3—N3—Cu1 | 106.69 (15) | C13—C14—C15 | 118.4 (2) |
C2—N3—Cu1 | 115.45 (16) | C13—C14—C33 | 119.6 (2) |
C3—N3—H3 | 107.1 | C15—C14—C33 | 122.0 (2) |
C2—N3—H3 | 107.1 | C16—C15—C14 | 123.1 (2) |
Cu1—N3—H3 | 107.1 | C16—C15—C20 | 117.2 (2) |
N1—C4—C3i | 107.4 (2) | C14—C15—C20 | 119.7 (2) |
N1—C4—H4A | 110.2 | C17—C16—C15 | 121.1 (3) |
C3i—C4—H4A | 110.2 | C17—C16—H16 | 119.5 |
N1—C4—H4B | 110.2 | C15—C16—H16 | 119.5 |
C3i—C4—H4B | 110.2 | C16—C17—C18 | 120.9 (3) |
H4A—C4—H4B | 108.5 | C16—C17—H17 | 119.5 |
N2—C1—N1 | 113.6 (2) | C18—C17—H17 | 119.5 |
N2—C1—H1A | 108.8 | C19—C18—C17 | 119.8 (3) |
N1—C1—H1A | 108.8 | C19—C18—H18 | 120.1 |
N2—C1—H1B | 108.8 | C17—C18—H18 | 120.1 |
N1—C1—H1B | 108.8 | C18—C19—C20 | 121.0 (3) |
H1A—C1—H1B | 107.7 | C18—C19—H19 | 119.5 |
N2—C2—N3 | 113.67 (19) | C20—C19—H19 | 119.5 |
N2—C2—H2A | 108.8 | C21—C20—C19 | 121.3 (2) |
N3—C2—H2A | 108.8 | C21—C20—C15 | 118.8 (2) |
N2—C2—H2B | 108.8 | C19—C20—C15 | 119.9 (2) |
N3—C2—H2B | 108.8 | C12—C21—C20 | 122.1 (2) |
H2A—C2—H2B | 107.7 | C12—C21—H21 | 118.9 |
N3—C3—C4i | 107.57 (19) | C20—C21—H21 | 118.9 |
N3—C3—H3A | 110.2 | O4—C22—O5 | 124.0 (3) |
C4i—C3—H3A | 110.2 | O4—C22—C23 | 119.0 (3) |
N3—C3—H3B | 110.2 | O5—C22—C23 | 117.0 (3) |
C4i—C3—H3B | 110.2 | C32—C23—C24 | 118.5 (2) |
H3A—C3—H3B | 108.5 | C32—C23—C22 | 120.0 (2) |
N2—C5—H5A | 109.5 | C24—C23—C22 | 121.4 (2) |
N2—C5—H5B | 109.5 | O6—C24—C25 | 118.7 (2) |
H5A—C5—H5B | 109.5 | O6—C24—C23 | 119.3 (2) |
N2—C5—H5C | 109.5 | C25—C24—C23 | 122.0 (2) |
H5A—C5—H5C | 109.5 | C24—C25—C26 | 119.0 (2) |
H5B—C5—H5C | 109.5 | C24—C25—C33 | 119.4 (2) |
C8—N6—C7 | 113.11 (19) | C26—C25—C33 | 121.5 (2) |
C8—N6—Cu2 | 105.86 (15) | C27—C26—C25 | 123.1 (2) |
C7—N6—Cu2 | 115.23 (15) | C27—C26—C31 | 117.6 (2) |
C8—N6—H6 | 107.4 | C25—C26—C31 | 119.2 (2) |
C7—N6—H6 | 107.4 | C28—C27—C26 | 121.1 (2) |
Cu2—N6—H6 | 107.4 | C28—C27—H27 | 119.4 |
C9—N4—C6 | 113.30 (18) | C26—C27—H27 | 119.4 |
C9—N4—Cu2 | 106.73 (14) | C27—C28—C29 | 120.9 (2) |
C6—N4—Cu2 | 116.27 (15) | C27—C28—H28 | 119.6 |
C9—N4—H4 | 106.6 | C29—C28—H28 | 119.6 |
C6—N4—H4 | 106.6 | C30—C29—C28 | 120.0 (2) |
Cu2—N4—H4 | 106.6 | C30—C29—H29 | 120.0 |
C6—N5—C7ii | 115.2 (2) | C28—C29—H29 | 120.0 |
C6—N5—C10 | 116.4 (2) | C29—C30—C31 | 120.7 (2) |
C7ii—N5—C10 | 114.1 (2) | C29—C30—H30 | 119.6 |
N5ii—C7—N6 | 113.9 (2) | C31—C30—H30 | 119.6 |
N5ii—C7—H7A | 108.8 | C32—C31—C30 | 121.4 (2) |
N6—C7—H7A | 108.8 | C32—C31—C26 | 119.0 (2) |
N5ii—C7—H7B | 108.8 | C30—C31—C26 | 119.5 (2) |
N6—C7—H7B | 108.8 | C23—C32—C31 | 122.0 (2) |
H7A—C7—H7B | 107.7 | C23—C32—H32 | 119.0 |
N6—C8—C9 | 107.5 (2) | C31—C32—H32 | 119.0 |
N6—C8—H8A | 110.2 | C14—C33—C25 | 115.6 (2) |
C9—C8—H8A | 110.2 | C14—C33—H33A | 108.4 |
N6—C8—H8B | 110.2 | C25—C33—H33A | 108.4 |
C9—C8—H8B | 110.2 | C14—C33—H33B | 108.4 |
H8A—C8—H8B | 108.5 | C25—C33—H33B | 108.4 |
N4—C9—C8 | 107.08 (19) | H33A—C33—H33B | 107.4 |
N4—C9—H9A | 110.3 | C13—O3—H3C | 109.5 |
C8—C9—H9A | 110.3 | C24—O6—H6C | 109.5 |
N4—C9—H9B | 110.3 | H1WA—O1W—H1WB | 114.2 |
C8—C9—H9B | 110.3 | H2WA—O2W—H2WB | 113.5 |
C1—N1—C4—C3i | 169.94 (19) | C18—C19—C20—C15 | −3.3 (4) |
Cu1—N1—C4—C3i | 42.4 (2) | C16—C15—C20—C21 | −175.3 (2) |
C2—N2—C1—N1 | 68.3 (3) | C14—C15—C20—C21 | 3.3 (3) |
C5—N2—C1—N1 | −67.3 (3) | C16—C15—C20—C19 | 3.2 (3) |
C4—N1—C1—N2 | −177.0 (2) | C14—C15—C20—C19 | −178.3 (2) |
Cu1—N1—C1—N2 | −55.0 (2) | C13—C12—C21—C20 | −5.8 (3) |
C1—N2—C2—N3 | −69.9 (3) | C11—C12—C21—C20 | 174.5 (2) |
C5—N2—C2—N3 | 66.1 (3) | C19—C20—C21—C12 | −174.1 (2) |
C3—N3—C2—N2 | −179.3 (2) | C15—C20—C21—C12 | 4.4 (3) |
Cu1—N3—C2—N2 | 57.6 (2) | O4—C22—C23—C32 | 4.7 (4) |
C2—N3—C3—C4i | −169.0 (2) | O5—C22—C23—C32 | −175.6 (2) |
Cu1—N3—C3—C4i | −41.1 (2) | O4—C22—C23—C24 | −174.3 (2) |
C8—N6—C7—N5ii | 179.2 (2) | O5—C22—C23—C24 | 5.4 (4) |
Cu2—N6—C7—N5ii | 57.3 (3) | C32—C23—C24—O6 | 179.7 (2) |
C7—N6—C8—C9 | −169.3 (2) | C22—C23—C24—O6 | −1.2 (4) |
Cu2—N6—C8—C9 | −42.3 (2) | C32—C23—C24—C25 | −1.5 (4) |
C6—N4—C9—C8 | −171.1 (2) | C22—C23—C24—C25 | 177.6 (2) |
Cu2—N4—C9—C8 | −41.8 (2) | O6—C24—C25—C26 | −176.4 (2) |
N6—C8—C9—N4 | 57.0 (3) | C23—C24—C25—C26 | 4.8 (4) |
C7ii—N5—C6—N4 | −67.8 (3) | O6—C24—C25—C33 | 0.5 (4) |
C10—N5—C6—N4 | 69.6 (3) | C23—C24—C25—C33 | −178.3 (2) |
C9—N4—C6—N5 | 178.7 (2) | C24—C25—C26—C27 | 172.3 (2) |
Cu2—N4—C6—N5 | 54.5 (3) | C33—C25—C26—C27 | −4.5 (4) |
O1—C11—C12—C21 | −1.3 (3) | C24—C25—C26—C31 | −4.7 (4) |
O2—C11—C12—C21 | 178.1 (2) | C33—C25—C26—C31 | 178.5 (2) |
O1—C11—C12—C13 | 178.9 (2) | C25—C26—C27—C28 | −178.4 (2) |
O2—C11—C12—C13 | −1.6 (3) | C31—C26—C27—C28 | −1.3 (4) |
C21—C12—C13—O3 | −179.3 (2) | C26—C27—C28—C29 | −0.8 (4) |
C11—C12—C13—O3 | 0.5 (3) | C27—C28—C29—C30 | 1.8 (4) |
C21—C12—C13—C14 | −0.5 (3) | C28—C29—C30—C31 | −0.5 (4) |
C11—C12—C13—C14 | 179.2 (2) | C29—C30—C31—C32 | 176.6 (2) |
O3—C13—C14—C15 | −173.3 (2) | C29—C30—C31—C26 | −1.7 (4) |
C12—C13—C14—C15 | 7.9 (3) | C27—C26—C31—C32 | −175.8 (2) |
O3—C13—C14—C33 | 5.4 (3) | C25—C26—C31—C32 | 1.4 (3) |
C12—C13—C14—C33 | −173.4 (2) | C27—C26—C31—C30 | 2.6 (3) |
C13—C14—C15—C16 | 169.3 (2) | C25—C26—C31—C30 | 179.7 (2) |
C33—C14—C15—C16 | −9.4 (3) | C24—C23—C32—C31 | −2.1 (4) |
C13—C14—C15—C20 | −9.2 (3) | C22—C23—C32—C31 | 178.9 (2) |
C33—C14—C15—C20 | 172.1 (2) | C30—C31—C32—C23 | −176.3 (2) |
C14—C15—C16—C17 | −179.0 (2) | C26—C31—C32—C23 | 2.1 (4) |
C20—C15—C16—C17 | −0.5 (3) | C13—C14—C33—C25 | 119.6 (3) |
C15—C16—C17—C18 | −2.1 (4) | C15—C14—C33—C25 | −61.7 (3) |
C16—C17—C18—C19 | 2.0 (4) | C24—C25—C33—C14 | 120.9 (3) |
C17—C18—C19—C20 | 0.7 (4) | C26—C25—C33—C14 | −62.3 (3) |
C18—C19—C20—C21 | 175.1 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3iii | 1.00 | 2.50 | 3.272 (3) | 134 |
N3—H3···O5 | 1.00 | 1.89 | 2.836 (3) | 156 |
N4—H4···O2iii | 1.00 | 1.90 | 2.822 (3) | 152 |
O3—H3C···O2 | 0.84 | 1.75 | 2.502 (2) | 148 |
O6—H6C···O5 | 0.84 | 1.75 | 2.514 (3) | 150 |
O1W—H1WA···O1iv | 0.86 | 1.88 | 2.746 (2) | 178 |
O1W—H1WB···O4 | 0.86 | 2.31 | 3.136 (3) | 162 |
O1W—H1WB···O5 | 0.86 | 2.41 | 3.087 (3) | 136 |
O2W—H2WA···O1iii | 0.86 | 2.05 | 2.901 (2) | 169 |
O2W—H2WA···O2iii | 0.86 | 2.61 | 3.280 (2) | 136 |
O2W—H2WB···O4v | 0.86 | 1.88 | 2.743 (3) | 176 |
C2—H2B···O1vi | 0.99 | 2.48 | 3.435 (3) | 162 |
C5—H5B···O2iii | 0.98 | 2.45 | 3.316 (3) | 147 |
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x−1, y, z; (vi) −x+1, −y, −z+1. |
References
Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cai, H., Huang, Y.-L. & Li, D. (2019). Coord. Chem. Rev. 378, 207–221. Web of Science CrossRef CAS Google Scholar
Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63–126. Google Scholar
Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Lee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237–249. Web of Science CrossRef CAS Google Scholar
Ma, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21–m23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds, New York: Plenum Press. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Q., Sun, Y., Sheng, L., Ma, K., Hu, M., Hu, X. & Huang, S. (2008). Cryst. Growth Des. 8, 3401–3407. Web of Science CSD CrossRef CAS Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons. Google Scholar
Suh, M. P. & Kang, S.-G. (1988). Inorg. Chem. 27, 2544–2546. CrossRef CAS Web of Science Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metals Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. [In Russian.] Google Scholar
Zhang, B., Kou, H.-Z., Cui, A.-L. & Wang, R.-J. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 1259–1263. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.