research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­aqua­(3,10-di­methyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne)copper(II) pamoate

CROSSMARK_Color_square_no_text.svg

aL.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028, Ukraine, and bInstitute of Inorganic Chemistry of the University of Vienna, Wahringer Str. 42, 1090 Vienna, Austria
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 March 2019; accepted 20 March 2019; online 2 April 2019)

The asymmetric unit of the title compound, trans-di­aqua­(3,10-dimethyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) 4,4′-methyl­ene­bis(3-hy­droxy­naphthalene-2-carboxyl­ate), [Cu(C10H26N6)(H2O)2](C23H14O6) {[Cu(L)(H2O)2](pam), where L = 3,10-dimethyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane and pam = dianion of pamoic acid} consists of two independent halves of the [Cu(L)(H2O)2]2+ cation and one di­carboxyl­ate anion. The CuII atoms, lying on inversion centres, are coordinated by the four secondary N atoms of the macrocyclic ligands and the mutually trans O atoms of the water mol­ecules in a tetra­gonally elongated octa­hedral geometry. The average equatorial Cu—N bond length is significantly shorter than the average axial Cu—O bond length [2.007 (10) and 2.486 (18) Å, respectively]. The macrocyclic ligand in the complex cations adopts the most energetically stable trans-III conformation. The complex cations and anions are connected via hydrogen-bonding inter­actions between the N—H groups of the macrocycles and the O—H groups of coordinated water mol­ecules as the proton donors and the O atoms of the carboxyl­ate as the proton acceptors into layers lying parallel to the (1[\overline{1}]1) plane.

1. Chemical context

Coordination compounds of cyclam-like tetra­dentate aza­macrocyclic ligands (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) have attracted considerable attention because of their high thermodynamic stability, kinetic inertness, unusual redox properties and spectroscopic features (Melson, 1979[Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds, New York: Plenum Press.]; Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metals Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. [In Russian.]]). Transition-metal complexes of this type of equatorial ligand possess two trans vacant sites in the axial positions and are suitable building blocks for the construction of metal–organic frameworks (MOFs) with potential applications in many areas including sorption, separation, gas storage, heterogeneous catalysis etc (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Suh et al., 2012[Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782-835.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]; Lee & Moon, 2018[Lee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237-249.]). The CuII complexes of N3,N10-dialkyl-substituted di­aza­cyclam (di­aza­cyclam = 1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne), readily obtainable via template-directed Mannich condensation of bis­(ethyl­enedi­amine) complexes with formaldehyde and primary amines (Costisor & Linert, 2000[Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63-126.]), represent widespread systems in this kind of investigation.

Pamoic acid [4,4′-methyl­ene-bis­(3-hy­droxy­naphthalene-2-carb­oxy­lic acid), H2pam] is widely used as a counter-ion in pharmaceutical formulations (Du et al., 2007[Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011-1028.] and references cited therein). This di­carb­oxy­lic acid is built from two naphthalene fragments, each bearing carb­oxy­lic and hydroxyl substituents and linked by a methyl­ene bridge. The combination of this potentially bridging ligand with a biometal complex (e.g. CuII) could be a promising candidate for the construction of the Bio–MOFs attracting currently considerable attention (Cai et al., 2019[Cai, H., Huang, Y.-L. & Li, D. (2019). Coord. Chem. Rev. 378, 207-221.]).

[Scheme 1]

Here, we report the synthesis and the crystal structure of the title di­aqua–CuII complex with a di­aza­cyclam ligand and pamoate dianion, namely trans-di­aqua­(3,10-dimethyl-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12)copper(II) pamoate, [CuL(H2O)2](pam), (I)[link].

2. Structural commentary

The title compound (I)[link] contains two crystallographically independent centrosymmetric complex cations. Each CuII ion lies on an inversion centre and is coordinated in the equatorial plane by four secondary amine N atoms of the aza­macrocyclic ligand in a square-planar fashion, and by two O atoms from the water mol­ecules in the axial positions, resulting in a tetra­gonally distorted octa­hedral geometry (Table 1[link], Fig. 1[link]).

Table 1
Selected bond lengths (Å)

Cu1—N3 2.000 (2) Cu2—N4 1.9987 (19)
Cu1—N1 2.017 (2) Cu2—N6 2.0113 (19)
Cu1—O1w 2.5033 (19) Cu2—O2w 2.4681 (18)
[Figure 1]
Figure 1
View of the mol­ecular structure of (I)[link], showing the partial atom-labelling scheme, with thermal displacement ellipsoids drawn at the 30% probability level. H atoms at carbon atoms have been omitted for clarity. Intra-anion hydrogen-bonding inter­actions are shown as dashed lines.

The CuN4 fragments in (I)[link] are strictly planar; at the same time they display some rhombic distortion. In particular, the Cu1—N3 and Cu2—N4 distances [av. 2.000 (1) Å] are shorter than those for Cu1—N1 and Cu2—N6 bonds [av. 2.014 (3) Å]. The axial bonds Cu—OW [av. 2.486 (17) Å] are longer than the equatorial bonds, which can be attributed to a large Jahn–Teller distortion. The coordinated macrocyclic ligand in both cations adopts the most energetically favourable trans-III (R,R,S,S) conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102-1108.]) with the five- and six-membered chelate rings in gauche and chair conformations, respectively. The bite angles in the five- and six-membered chelate rings equal 86.53 (8) and 93.47 (8)°, respectively. The methyl substituents at the distal nitro­gen atoms in the six-membered chelate rings are axially oriented. Therewith, the C—N—C angles at non-coordinated nitro­gen atoms (ca 115°) are larger than the canonical value for an sp3-hybridized nitro­gen atom (109°), thus indicating their partial sp2 character.

The V-shaped pamoate dianion is fully deprotonated to counterbalance the charge of the complex unit and possesses a twisted conformation with the joint angle between the naphthalene rings being 115.6 (2)° and the angle between the mean planes of naphthalene fragments being 88.6 (2)°. The carb­oxy­lic groups adopt a transoid configuration to minimize unfavorable steric hindrance (Du et al., 2007[Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011-1028.]). The C—O bond lengths in each carb­oxy­lic group are somewhat different [1.248 (3) versus 1.271 (3) and 1.245 (3) versus 1.279 (4) Å for the O1—C11—O2 and O4—C22—O5 fragments, respectively], thus indicating their incomplete delocalization. As expected, each hy­droxy­lic group exhibits a strong intra-anion O—H⋯O bond with the adjacent carboxyl oxygen (DA distances ca 2.5 Å; Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 1.00 2.50 3.272 (3) 134
N3—H3⋯O5 1.00 1.89 2.836 (3) 156
N4—H4⋯O2i 1.00 1.90 2.822 (3) 152
O3—H3C⋯O2 0.84 1.75 2.502 (2) 148
O6—H6C⋯O5 0.84 1.75 2.514 (3) 150
O1W—H1WA⋯O1ii 0.86 1.88 2.746 (2) 178
O1W—H1WB⋯O4 0.86 2.31 3.136 (3) 162
O1W—H1WB⋯O5 0.86 2.41 3.087 (3) 136
O2W—H2WA⋯O1i 0.86 2.05 2.901 (2) 169
O2W—H2WA⋯O2i 0.86 2.61 3.280 (2) 136
O2W—H2WB⋯O4iii 0.86 1.88 2.743 (3) 176
C2—H2B⋯O1iv 0.99 2.48 3.435 (3) 162
C5—H5B⋯O2i 0.98 2.45 3.316 (3) 147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.

3. Supra­molecular features

Each carboxyl­ate group of the pamoate anion acts as a proton acceptor by the formation of N—H⋯O hydrogen bonds with adjacent secondary amine groups of the aza­macrocyclic ligand and bifurcated OW—H⋯(O,O) hydrogen bonds with a coordinated water mol­ecule of the same cation (Fig. 2[link] and Table 2[link]). Additionally, the benzene fragments of the naphthalene rings are involved in two kinds of inter­molecular ππ inter­actions [inter­planar separation of 3.470 and 3.717 Å; centroid-to-centroid distances of 3.8996 (15) and 4.2107 (15) Å, respectively] (Fig. 2[link]). These supra­molecular inter­actions (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons.]) generate sheets of inter­acting ions parallel to (1[\overline{1}]1), and additional N1—H1⋯O3 contacts and C—H⋯O inter­actions link these sheets into a three-dimensional network.

[Figure 2]
Figure 2
Sheets of complex mol­ecules parallel to the (1[\overline{1}]1) plane. Supra­molecular inter­actions are shown as dashed lines (black for hydrogen bonding and green for ππ inter­actions). H atoms at carbon atoms and intra-anion hydrogen bonds are not shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that 65 CuII complexes of N3,N10-disubstituted di­aza­cyclams with various alkyl pendant groups have been reported and the majority of them were investigated as building blocks for supra­molecular chemistry. Among them, eight hits deal with a di­aqua aza­macrocyclic CuII cation. Surprisingly, only one structure with the dimethyl-substituted macrocycle L has been reported, i.e. [Cu(L)](ClO4)2 (LAWXIR; Zhang et al., 2005[Zhang, B., Kou, H.-Z., Cui, A.-L. & Wang, R.-J. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 1259-1263.]) and the title compound (I)[link] is the first example of a [Cu(L)(H2O)2]2+ cation described so far.

A search for pamoic acid gave 97 hits, only four of which concern compounds consisting of uncoordinated pamoate dianion and metal complex cations, i.e., [M(H2O)2(phen)2](pam)·H2O [M = ZnII (MEBGOQ), MnII (SIQDOM), CdII (YOLDEJ), phen = phenanthroline] and [Mn(H2O)4(DMF)2](pam) (SIQCOL) (Ma et al., 2006[Ma, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21-m23.]; Du et al., 2007[Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011-1028.]; Shi et al., 2008[Shi, Q., Sun, Y., Sheng, L., Ma, K., Hu, M., Hu, X. & Huang, S. (2008). Cryst. Growth Des. 8, 3401-3407.]). Except for nine hits concerning the non-deprotonated pamoic acid, all other 84 structures are coordination polymers, thus demonstrating the availability of the pamoic acid anion for the design of MOFs.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The starting complex, [Cu(L)](ClO4)2, was prepared by a method reported in the literature (Suh & Kang, 1988[Suh, M. P. & Kang, S.-G. (1988). Inorg. Chem. 27, 2544-2546.]). The title compound (I)[link] was prepared as follows. To a water/DMF solution (1/3 by volume, 5 ml) of [Cu(L)](ClO4)2 (123 mg, 0.25 mmol) was added a DMF solution (10 ml) containing pamoic acid (97 mg, 0.25 mmol) and 0.2 ml of tri­ethyl­amine. A pink precipitate was formed in three days. This was filtered off, washed with a small amount of DMF and diethyl ether, and dried in air. Yield: 82 mg (46%). Analysis calculated for C33H44N6CuO8: C 55.33, H 6.19, N 11.73%. Found: C 55.42, H 6.24, N 11.62%. Single crystals suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.98–0.99 Å (open-chain H atoms), N—H distance of 1.0 Å, hydroxyl O—H distance of 0.84 Å and aqua O—H distance of 0.86 Å with Uiso(H) values of 1.2 or 1.5Ueq times that of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C10H26N6)(H2O)2]C23H14O6
Mr 716.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.8877 (6), 12.1406 (7), 14.5760 (9)
α, β, γ (°) 71.594 (3), 81.128 (3), 88.249 (3)
V3) 1640.06 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.20 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.868, 0.918
No. of measured, independent and observed [I > 2σ(I)] reflections 52866, 6401, 4540
Rint 0.080
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.03
No. of reflections 6401
No. of parameters 438
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Diaqua(3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12)copper(II) 4,4'-methylenebis(3-hydroxynaphthalene-2-carboxylate) top
Crystal data top
[Cu(C10H26N6)(H2O)2]C23H14O6Z = 2
Mr = 716.28F(000) = 754
Triclinic, P1Dx = 1.450 Mg m3
a = 9.8877 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1406 (7) ÅCell parameters from 8230 reflections
c = 14.5760 (9) Åθ = 2.4–25.6°
α = 71.594 (3)°µ = 0.73 mm1
β = 81.128 (3)°T = 100 K
γ = 88.249 (3)°Block, pink
V = 1640.06 (17) Å30.20 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4540 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.868, Tmax = 0.918k = 1414
52866 measured reflectionsl = 1717
6401 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.6293P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6401 reflectionsΔρmax = 0.34 e Å3
438 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.50000.01499 (12)
Cu20.50000.50000.00000.01582 (12)
N10.8280 (2)0.58002 (17)0.45737 (15)0.0199 (5)
H10.84120.60500.38430.024*
N20.7064 (2)0.40151 (18)0.47031 (15)0.0239 (5)
N30.9443 (2)0.34915 (17)0.48721 (14)0.0194 (5)
H30.96440.35620.41620.023*
C40.8207 (3)0.6863 (2)0.48671 (19)0.0223 (6)
H4A0.78800.66690.55780.027*
H4B0.75660.74170.45100.027*
C10.6994 (3)0.5083 (2)0.49364 (19)0.0239 (6)
H1A0.67850.49010.56560.029*
H1B0.62320.55450.46500.029*
C20.7977 (3)0.3164 (2)0.52012 (19)0.0235 (6)
H2A0.78100.24160.50960.028*
H2B0.77610.30460.59120.028*
C31.0361 (3)0.2604 (2)0.53813 (19)0.0224 (6)
H3A1.03500.19100.51640.027*
H3B1.00570.23650.60970.027*
C50.7162 (3)0.4154 (2)0.3666 (2)0.0332 (7)
H5A0.72050.33880.35730.050*
H5B0.63560.45600.34180.050*
H5C0.79910.46070.33090.050*
N60.5743 (2)0.35155 (17)0.08194 (14)0.0190 (5)
H60.64530.32390.03790.023*
N40.6263 (2)0.58227 (17)0.05243 (14)0.0169 (5)
H40.57010.60380.10720.020*
N50.5995 (2)0.77617 (18)0.06320 (15)0.0234 (5)
C70.4716 (3)0.2553 (2)0.13005 (19)0.0244 (6)
H7A0.51870.18620.16710.029*
H7B0.40380.27880.17760.029*
C80.6454 (3)0.3839 (2)0.15230 (18)0.0229 (6)
H8A0.70820.32170.18070.028*
H8B0.57800.39520.20610.028*
C90.7253 (3)0.4959 (2)0.09671 (19)0.0222 (6)
H9A0.77090.52320.14180.027*
H9B0.79630.48360.04520.027*
C60.6926 (3)0.6918 (2)0.01746 (19)0.0223 (6)
H6A0.74710.72700.01810.027*
H6B0.75680.67230.06900.027*
C100.5140 (3)0.8320 (2)0.0004 (2)0.0290 (7)
H10A0.45440.88780.03910.043*
H10B0.45770.77300.05250.043*
H10C0.57240.87270.02760.043*
C110.4511 (3)0.3050 (2)0.24922 (17)0.0210 (6)
C120.4904 (3)0.1995 (2)0.27246 (17)0.0169 (6)
C130.6302 (3)0.1758 (2)0.27572 (17)0.0188 (6)
C140.6685 (3)0.0783 (2)0.29585 (17)0.0181 (6)
C150.5639 (3)0.0083 (2)0.32585 (17)0.0191 (6)
C160.5905 (3)0.0822 (2)0.36370 (18)0.0250 (6)
H160.68200.09840.36870.030*
C170.4868 (3)0.1461 (2)0.3929 (2)0.0327 (7)
H170.50680.20430.41990.039*
C180.3508 (3)0.1271 (2)0.3835 (2)0.0346 (7)
H180.27990.17390.40220.041*
C190.3211 (3)0.0418 (2)0.34780 (19)0.0275 (7)
H190.22920.02990.34090.033*
C200.4247 (3)0.0295 (2)0.32067 (17)0.0200 (6)
C210.3934 (3)0.1235 (2)0.29063 (17)0.0187 (6)
H210.30180.13460.28270.022*
C221.0315 (3)0.3478 (3)0.2154 (2)0.0297 (7)
C230.9735 (2)0.2584 (2)0.17946 (19)0.0199 (6)
C240.9275 (3)0.1467 (2)0.24487 (18)0.0216 (6)
C250.8696 (2)0.0657 (2)0.21366 (17)0.0178 (6)
C260.8648 (2)0.0906 (2)0.11176 (18)0.0168 (5)
C270.8225 (2)0.0078 (2)0.07126 (18)0.0203 (6)
H270.79340.06750.11320.024*
C280.8227 (3)0.0346 (2)0.02714 (19)0.0250 (6)
H280.79500.02270.05260.030*
C290.8634 (3)0.1459 (2)0.09125 (19)0.0285 (7)
H290.86070.16400.15930.034*
C300.9069 (3)0.2277 (2)0.05578 (19)0.0253 (6)
H300.93490.30250.09950.030*
C310.9107 (2)0.2024 (2)0.04560 (18)0.0189 (6)
C320.9621 (2)0.2839 (2)0.08278 (19)0.0203 (6)
H320.98970.35890.03930.024*
C330.8189 (3)0.0505 (2)0.28762 (18)0.0208 (6)
H33A0.87290.11280.26980.025*
H33B0.83760.05190.35280.025*
O10.32781 (19)0.32344 (15)0.24857 (13)0.0262 (4)
O20.54697 (19)0.37048 (15)0.23045 (13)0.0253 (4)
O30.72922 (18)0.25007 (14)0.25674 (13)0.0242 (4)
H3C0.69440.30070.23890.036*
O41.06005 (19)0.44690 (16)0.15717 (16)0.0377 (5)
O51.0477 (2)0.31618 (19)0.30534 (15)0.0416 (6)
O60.9387 (2)0.11959 (17)0.34181 (13)0.0319 (5)
H6C0.97510.17580.35140.048*
O1W1.07942 (19)0.56232 (16)0.31930 (13)0.0303 (5)
H1WA1.15740.59880.29850.045*
H1WB1.06030.52050.28490.045*
O2W0.32694 (18)0.51823 (16)0.13556 (13)0.0289 (5)
H2WA0.33810.56110.17080.043*
H2WB0.24260.49860.13940.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0177 (2)0.0117 (2)0.0152 (2)0.00018 (18)0.00184 (18)0.00397 (17)
Cu20.0159 (2)0.0148 (2)0.0163 (2)0.00108 (18)0.00325 (18)0.00389 (18)
N10.0235 (12)0.0179 (11)0.0181 (11)0.0009 (9)0.0016 (9)0.0062 (9)
N20.0277 (13)0.0216 (12)0.0224 (12)0.0033 (10)0.0082 (10)0.0044 (10)
N30.0248 (12)0.0166 (11)0.0157 (10)0.0005 (9)0.0033 (9)0.0036 (9)
C40.0272 (15)0.0188 (14)0.0218 (14)0.0048 (11)0.0041 (12)0.0075 (11)
C10.0198 (15)0.0239 (15)0.0252 (14)0.0004 (11)0.0018 (11)0.0043 (12)
C20.0266 (16)0.0189 (14)0.0235 (14)0.0052 (12)0.0056 (12)0.0030 (12)
C30.0297 (16)0.0142 (13)0.0221 (14)0.0029 (11)0.0045 (12)0.0040 (11)
C50.0401 (18)0.0313 (16)0.0332 (16)0.0010 (14)0.0185 (14)0.0109 (13)
N60.0192 (12)0.0179 (11)0.0183 (11)0.0017 (9)0.0026 (9)0.0038 (9)
N40.0126 (11)0.0189 (11)0.0190 (11)0.0020 (9)0.0014 (9)0.0065 (9)
N50.0256 (13)0.0190 (12)0.0239 (12)0.0029 (10)0.0006 (10)0.0061 (10)
C70.0265 (16)0.0194 (14)0.0215 (14)0.0014 (12)0.0010 (12)0.0003 (11)
C80.0223 (15)0.0265 (15)0.0206 (13)0.0054 (12)0.0069 (11)0.0068 (12)
C90.0177 (14)0.0282 (15)0.0240 (14)0.0044 (12)0.0077 (11)0.0111 (12)
C60.0169 (15)0.0235 (15)0.0260 (14)0.0055 (12)0.0035 (12)0.0100 (12)
C100.0319 (17)0.0210 (15)0.0339 (16)0.0007 (12)0.0008 (13)0.0106 (13)
C110.0306 (17)0.0190 (14)0.0108 (12)0.0038 (13)0.0002 (11)0.0021 (11)
C120.0226 (15)0.0136 (13)0.0131 (12)0.0037 (11)0.0000 (10)0.0030 (10)
C130.0231 (15)0.0154 (13)0.0154 (13)0.0013 (11)0.0009 (11)0.0035 (11)
C140.0234 (15)0.0148 (13)0.0126 (12)0.0040 (11)0.0018 (11)0.0004 (10)
C150.0287 (16)0.0134 (13)0.0112 (12)0.0029 (11)0.0016 (11)0.0002 (10)
C160.0308 (16)0.0223 (14)0.0195 (14)0.0076 (12)0.0022 (12)0.0050 (12)
C170.050 (2)0.0204 (15)0.0275 (15)0.0080 (14)0.0092 (14)0.0135 (13)
C180.0360 (19)0.0261 (16)0.0377 (17)0.0003 (14)0.0134 (14)0.0137 (14)
C190.0242 (16)0.0229 (15)0.0311 (15)0.0015 (12)0.0072 (12)0.0076 (13)
C200.0250 (15)0.0139 (13)0.0169 (13)0.0004 (11)0.0029 (11)0.0016 (11)
C210.0182 (14)0.0167 (13)0.0175 (13)0.0047 (11)0.0009 (11)0.0007 (11)
C220.0136 (15)0.0359 (18)0.048 (2)0.0057 (13)0.0084 (13)0.0299 (16)
C230.0114 (13)0.0225 (14)0.0286 (15)0.0029 (11)0.0009 (11)0.0135 (12)
C240.0182 (14)0.0287 (15)0.0205 (13)0.0029 (12)0.0017 (11)0.0118 (12)
C250.0153 (14)0.0188 (13)0.0193 (13)0.0010 (11)0.0021 (11)0.0061 (11)
C260.0112 (13)0.0169 (13)0.0228 (13)0.0003 (10)0.0025 (10)0.0072 (11)
C270.0176 (14)0.0205 (14)0.0233 (14)0.0017 (11)0.0018 (11)0.0080 (11)
C280.0206 (15)0.0325 (16)0.0267 (15)0.0009 (12)0.0049 (12)0.0151 (13)
C290.0248 (16)0.0410 (18)0.0190 (14)0.0022 (13)0.0064 (12)0.0073 (13)
C300.0190 (15)0.0272 (15)0.0234 (14)0.0004 (12)0.0025 (12)0.0003 (12)
C310.0135 (13)0.0205 (14)0.0211 (13)0.0040 (11)0.0024 (11)0.0047 (11)
C320.0110 (13)0.0167 (13)0.0317 (15)0.0002 (10)0.0000 (11)0.0070 (12)
C330.0237 (15)0.0168 (13)0.0206 (13)0.0015 (11)0.0072 (11)0.0020 (11)
O10.0259 (11)0.0282 (10)0.0274 (10)0.0085 (8)0.0012 (8)0.0133 (8)
O20.0339 (11)0.0203 (10)0.0270 (10)0.0040 (9)0.0069 (9)0.0139 (8)
O30.0240 (10)0.0182 (10)0.0325 (11)0.0020 (8)0.0035 (8)0.0116 (8)
O40.0215 (11)0.0226 (11)0.0751 (15)0.0041 (9)0.0059 (10)0.0245 (11)
O50.0363 (13)0.0581 (15)0.0435 (13)0.0177 (11)0.0053 (10)0.0381 (12)
O60.0359 (12)0.0423 (12)0.0222 (10)0.0133 (10)0.0075 (9)0.0143 (9)
O1W0.0328 (11)0.0330 (11)0.0267 (10)0.0130 (9)0.0071 (9)0.0159 (9)
O2W0.0228 (10)0.0384 (11)0.0321 (11)0.0106 (9)0.0054 (8)0.0237 (9)
Geometric parameters (Å, º) top
Cu1—N32.000 (2)C10—H10A0.9800
Cu1—N3i2.000 (2)C10—H10B0.9800
Cu1—N12.017 (2)C10—H10C0.9800
Cu1—N1i2.017 (2)C11—O11.248 (3)
Cu1—O1w2.5033 (19)C11—O21.271 (3)
Cu1—O1wi2.5033 (18)C11—C121.501 (3)
Cu2—N41.9987 (19)C12—C211.364 (3)
Cu2—N4ii1.9987 (19)C12—C131.431 (4)
Cu2—N62.0113 (19)C13—O31.367 (3)
Cu2—N6ii2.0114 (19)C13—C141.383 (3)
Cu2—O2w2.4681 (18)C14—C151.424 (4)
Cu2—O2wii2.4681 (18)C14—C331.514 (3)
N1—C41.479 (3)C15—C161.423 (3)
N1—C11.491 (3)C15—C201.426 (4)
N1—H11.0000C16—C171.363 (4)
N2—C11.438 (3)C16—H160.9500
N2—C21.442 (3)C17—C181.406 (4)
N2—C51.455 (3)C17—H170.9500
N3—C31.476 (3)C18—C191.355 (4)
N3—C21.480 (3)C18—H180.9500
N3—H31.0000C19—C201.411 (4)
C4—C3i1.518 (4)C19—H190.9500
C4—H4A0.9900C20—C211.403 (3)
C4—H4B0.9900C21—H210.9500
C1—H1A0.9900C22—O41.245 (3)
C1—H1B0.9900C22—O51.279 (4)
C2—H2A0.9900C22—C231.507 (4)
C2—H2B0.9900C23—C321.366 (4)
C3—C4i1.518 (4)C23—C241.429 (4)
C3—H3A0.9900C24—O61.367 (3)
C3—H3B0.9900C24—C251.378 (3)
C5—H5A0.9800C25—C261.427 (3)
C5—H5B0.9800C25—C331.523 (3)
C5—H5C0.9800C26—C271.417 (3)
N6—C81.481 (3)C26—C311.434 (3)
N6—C71.492 (3)C27—C281.366 (4)
N6—H61.0000C27—H270.9500
N4—C91.476 (3)C28—C291.407 (4)
N4—C61.493 (3)C28—H280.9500
N4—H41.0000C29—C301.362 (4)
N5—C61.429 (3)C29—H290.9500
N5—C7ii1.432 (3)C30—C311.418 (3)
N5—C101.460 (3)C30—H300.9500
C7—N5ii1.432 (3)C31—C321.409 (3)
C7—H7A0.9900C32—H320.9500
C7—H7B0.9900C33—H33A0.9900
C8—C91.518 (4)C33—H33B0.9900
C8—H8A0.9900O3—H3C0.8400
C8—H8B0.9900O6—H6C0.8400
C9—H9A0.9900O1W—H1WA0.8641
C9—H9B0.9900O1W—H1WB0.8606
C6—H6A0.9900O2W—H2WA0.8578
C6—H6B0.9900O2W—H2WB0.8629
N3—Cu1—N3i180.00H9A—C9—H9B108.6
N3—Cu1—N193.47 (8)N5—C6—N4114.6 (2)
N3i—Cu1—N186.53 (8)N5—C6—H6A108.6
N3—Cu1—N1i86.53 (8)N4—C6—H6A108.6
N3i—Cu1—N1i93.47 (8)N5—C6—H6B108.6
N1—Cu1—N1i180.0N4—C6—H6B108.6
N4—Cu2—N4ii180.00H6A—C6—H6B107.6
N4—Cu2—N686.53 (8)N5—C10—H10A109.5
N4ii—Cu2—N693.47 (8)N5—C10—H10B109.5
N4—Cu2—N6ii93.47 (8)H10A—C10—H10B109.5
N4ii—Cu2—N6ii86.53 (8)N5—C10—H10C109.5
N6—Cu2—N6ii180.0H10A—C10—H10C109.5
C4—N1—C1112.6 (2)H10B—C10—H10C109.5
C4—N1—Cu1105.83 (15)O1—C11—O2123.7 (2)
C1—N1—Cu1115.85 (15)O1—C11—C12118.9 (2)
C4—N1—H1107.4O2—C11—C12117.4 (2)
C1—N1—H1107.4C21—C12—C13118.5 (2)
Cu1—N1—H1107.4C21—C12—C11120.6 (2)
C1—N2—C2115.5 (2)C13—C12—C11120.9 (2)
C1—N2—C5114.8 (2)O3—C13—C14118.8 (2)
C2—N2—C5113.9 (2)O3—C13—C12119.5 (2)
C3—N3—C2112.89 (18)C14—C13—C12121.7 (2)
C3—N3—Cu1106.69 (15)C13—C14—C15118.4 (2)
C2—N3—Cu1115.45 (16)C13—C14—C33119.6 (2)
C3—N3—H3107.1C15—C14—C33122.0 (2)
C2—N3—H3107.1C16—C15—C14123.1 (2)
Cu1—N3—H3107.1C16—C15—C20117.2 (2)
N1—C4—C3i107.4 (2)C14—C15—C20119.7 (2)
N1—C4—H4A110.2C17—C16—C15121.1 (3)
C3i—C4—H4A110.2C17—C16—H16119.5
N1—C4—H4B110.2C15—C16—H16119.5
C3i—C4—H4B110.2C16—C17—C18120.9 (3)
H4A—C4—H4B108.5C16—C17—H17119.5
N2—C1—N1113.6 (2)C18—C17—H17119.5
N2—C1—H1A108.8C19—C18—C17119.8 (3)
N1—C1—H1A108.8C19—C18—H18120.1
N2—C1—H1B108.8C17—C18—H18120.1
N1—C1—H1B108.8C18—C19—C20121.0 (3)
H1A—C1—H1B107.7C18—C19—H19119.5
N2—C2—N3113.67 (19)C20—C19—H19119.5
N2—C2—H2A108.8C21—C20—C19121.3 (2)
N3—C2—H2A108.8C21—C20—C15118.8 (2)
N2—C2—H2B108.8C19—C20—C15119.9 (2)
N3—C2—H2B108.8C12—C21—C20122.1 (2)
H2A—C2—H2B107.7C12—C21—H21118.9
N3—C3—C4i107.57 (19)C20—C21—H21118.9
N3—C3—H3A110.2O4—C22—O5124.0 (3)
C4i—C3—H3A110.2O4—C22—C23119.0 (3)
N3—C3—H3B110.2O5—C22—C23117.0 (3)
C4i—C3—H3B110.2C32—C23—C24118.5 (2)
H3A—C3—H3B108.5C32—C23—C22120.0 (2)
N2—C5—H5A109.5C24—C23—C22121.4 (2)
N2—C5—H5B109.5O6—C24—C25118.7 (2)
H5A—C5—H5B109.5O6—C24—C23119.3 (2)
N2—C5—H5C109.5C25—C24—C23122.0 (2)
H5A—C5—H5C109.5C24—C25—C26119.0 (2)
H5B—C5—H5C109.5C24—C25—C33119.4 (2)
C8—N6—C7113.11 (19)C26—C25—C33121.5 (2)
C8—N6—Cu2105.86 (15)C27—C26—C25123.1 (2)
C7—N6—Cu2115.23 (15)C27—C26—C31117.6 (2)
C8—N6—H6107.4C25—C26—C31119.2 (2)
C7—N6—H6107.4C28—C27—C26121.1 (2)
Cu2—N6—H6107.4C28—C27—H27119.4
C9—N4—C6113.30 (18)C26—C27—H27119.4
C9—N4—Cu2106.73 (14)C27—C28—C29120.9 (2)
C6—N4—Cu2116.27 (15)C27—C28—H28119.6
C9—N4—H4106.6C29—C28—H28119.6
C6—N4—H4106.6C30—C29—C28120.0 (2)
Cu2—N4—H4106.6C30—C29—H29120.0
C6—N5—C7ii115.2 (2)C28—C29—H29120.0
C6—N5—C10116.4 (2)C29—C30—C31120.7 (2)
C7ii—N5—C10114.1 (2)C29—C30—H30119.6
N5ii—C7—N6113.9 (2)C31—C30—H30119.6
N5ii—C7—H7A108.8C32—C31—C30121.4 (2)
N6—C7—H7A108.8C32—C31—C26119.0 (2)
N5ii—C7—H7B108.8C30—C31—C26119.5 (2)
N6—C7—H7B108.8C23—C32—C31122.0 (2)
H7A—C7—H7B107.7C23—C32—H32119.0
N6—C8—C9107.5 (2)C31—C32—H32119.0
N6—C8—H8A110.2C14—C33—C25115.6 (2)
C9—C8—H8A110.2C14—C33—H33A108.4
N6—C8—H8B110.2C25—C33—H33A108.4
C9—C8—H8B110.2C14—C33—H33B108.4
H8A—C8—H8B108.5C25—C33—H33B108.4
N4—C9—C8107.08 (19)H33A—C33—H33B107.4
N4—C9—H9A110.3C13—O3—H3C109.5
C8—C9—H9A110.3C24—O6—H6C109.5
N4—C9—H9B110.3H1WA—O1W—H1WB114.2
C8—C9—H9B110.3H2WA—O2W—H2WB113.5
C1—N1—C4—C3i169.94 (19)C18—C19—C20—C153.3 (4)
Cu1—N1—C4—C3i42.4 (2)C16—C15—C20—C21175.3 (2)
C2—N2—C1—N168.3 (3)C14—C15—C20—C213.3 (3)
C5—N2—C1—N167.3 (3)C16—C15—C20—C193.2 (3)
C4—N1—C1—N2177.0 (2)C14—C15—C20—C19178.3 (2)
Cu1—N1—C1—N255.0 (2)C13—C12—C21—C205.8 (3)
C1—N2—C2—N369.9 (3)C11—C12—C21—C20174.5 (2)
C5—N2—C2—N366.1 (3)C19—C20—C21—C12174.1 (2)
C3—N3—C2—N2179.3 (2)C15—C20—C21—C124.4 (3)
Cu1—N3—C2—N257.6 (2)O4—C22—C23—C324.7 (4)
C2—N3—C3—C4i169.0 (2)O5—C22—C23—C32175.6 (2)
Cu1—N3—C3—C4i41.1 (2)O4—C22—C23—C24174.3 (2)
C8—N6—C7—N5ii179.2 (2)O5—C22—C23—C245.4 (4)
Cu2—N6—C7—N5ii57.3 (3)C32—C23—C24—O6179.7 (2)
C7—N6—C8—C9169.3 (2)C22—C23—C24—O61.2 (4)
Cu2—N6—C8—C942.3 (2)C32—C23—C24—C251.5 (4)
C6—N4—C9—C8171.1 (2)C22—C23—C24—C25177.6 (2)
Cu2—N4—C9—C841.8 (2)O6—C24—C25—C26176.4 (2)
N6—C8—C9—N457.0 (3)C23—C24—C25—C264.8 (4)
C7ii—N5—C6—N467.8 (3)O6—C24—C25—C330.5 (4)
C10—N5—C6—N469.6 (3)C23—C24—C25—C33178.3 (2)
C9—N4—C6—N5178.7 (2)C24—C25—C26—C27172.3 (2)
Cu2—N4—C6—N554.5 (3)C33—C25—C26—C274.5 (4)
O1—C11—C12—C211.3 (3)C24—C25—C26—C314.7 (4)
O2—C11—C12—C21178.1 (2)C33—C25—C26—C31178.5 (2)
O1—C11—C12—C13178.9 (2)C25—C26—C27—C28178.4 (2)
O2—C11—C12—C131.6 (3)C31—C26—C27—C281.3 (4)
C21—C12—C13—O3179.3 (2)C26—C27—C28—C290.8 (4)
C11—C12—C13—O30.5 (3)C27—C28—C29—C301.8 (4)
C21—C12—C13—C140.5 (3)C28—C29—C30—C310.5 (4)
C11—C12—C13—C14179.2 (2)C29—C30—C31—C32176.6 (2)
O3—C13—C14—C15173.3 (2)C29—C30—C31—C261.7 (4)
C12—C13—C14—C157.9 (3)C27—C26—C31—C32175.8 (2)
O3—C13—C14—C335.4 (3)C25—C26—C31—C321.4 (3)
C12—C13—C14—C33173.4 (2)C27—C26—C31—C302.6 (3)
C13—C14—C15—C16169.3 (2)C25—C26—C31—C30179.7 (2)
C33—C14—C15—C169.4 (3)C24—C23—C32—C312.1 (4)
C13—C14—C15—C209.2 (3)C22—C23—C32—C31178.9 (2)
C33—C14—C15—C20172.1 (2)C30—C31—C32—C23176.3 (2)
C14—C15—C16—C17179.0 (2)C26—C31—C32—C232.1 (4)
C20—C15—C16—C170.5 (3)C13—C14—C33—C25119.6 (3)
C15—C16—C17—C182.1 (4)C15—C14—C33—C2561.7 (3)
C16—C17—C18—C192.0 (4)C24—C25—C33—C14120.9 (3)
C17—C18—C19—C200.7 (4)C26—C25—C33—C1462.3 (3)
C18—C19—C20—C21175.1 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3iii1.002.503.272 (3)134
N3—H3···O51.001.892.836 (3)156
N4—H4···O2iii1.001.902.822 (3)152
O3—H3C···O20.841.752.502 (2)148
O6—H6C···O50.841.752.514 (3)150
O1W—H1WA···O1iv0.861.882.746 (2)178
O1W—H1WB···O40.862.313.136 (3)162
O1W—H1WB···O50.862.413.087 (3)136
O2W—H2WA···O1iii0.862.052.901 (2)169
O2W—H2WA···O2iii0.862.613.280 (2)136
O2W—H2WB···O4v0.861.882.743 (3)176
C2—H2B···O1vi0.992.483.435 (3)162
C5—H5B···O2iii0.982.453.316 (3)147
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x+1, y, z+1.
 

References

First citationBosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, H., Huang, Y.-L. & Li, D. (2019). Coord. Chem. Rev. 378, 207–221.  Web of Science CrossRef CAS Google Scholar
First citationCostisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 1, 63–126.  Google Scholar
First citationDu, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLee, J. H. & Moon, H. R. (2018). J. Incl. Phenom. Macrocycl. Chem. 92, 237–249.  Web of Science CrossRef CAS Google Scholar
First citationMa, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21–m23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMelson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds, New York: Plenum Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Q., Sun, Y., Sheng, L., Ma, K., Hu, M., Hu, X. & Huang, S. (2008). Cryst. Growth Des. 8, 3401–3407.  Web of Science CSD CrossRef CAS Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons.  Google Scholar
First citationSuh, M. P. & Kang, S.-G. (1988). Inorg. Chem. 27, 2544–2546.  CrossRef CAS Web of Science Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metals Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. [In Russian.]  Google Scholar
First citationZhang, B., Kou, H.-Z., Cui, A.-L. & Wang, R.-J. (2005). Jiegou Huaxue (Chin. J. Struct. Chem.), 24, 1259–1263.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds