research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,3,5,6-tetra­bromo­tereph­thalo­­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 March 2019; accepted 22 April 2019; online 25 April 2019)

The title crystal (systematic name: 2,3,5,6-tetra­bromo­benzene-1,4-dicarbonitrile), C8Br4N2, is the first bromo analog in a study of cyano-halo (C≡N⋯X) non-bonded contacts in crystals of halogenated di­cyano­benzenes. The complete mol­ecule is generated by a crystallographic center of symmetry. In the extended structure, each Br atom accepts one C≡N⋯Br inter­action, and each N atom is bis­ected by two. This contact network forms a nearly planar sheet structure propagating in the ([\overline{1}]01) plane, similar to that reported in hexa­methyl­benzene co-crystals of the tetra­chloro analog.

1. Chemical context

The title crystal is part of a study of solid-state C≡N⋯X (X = F, Cl, Br, I) non-bonded contacts in substituted benzo­nitriles. The question is whether these contacts will form for a given nitrile, and whether they are isolated or extended to create ribbon or sheet structures in their crystals. The prevailing trend is that C≡N⋯F contacts do not form (Bond et al., 2001[Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.]), C≡N⋯Cl contacts form in isolation or as inversion dimers (Pink et al., 2000[Pink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271-1273.]), and C≡N⋯Br and ⋯I contacts form networks (Noland et al., 2018[Noland, W. E., Britton, D., Sutton, G. K., Schneerer, A. K. & Tritch, K. J. (2018). Acta Cryst. E74, 98-102.]). Contact strength tends to increase with the polarizability of the halogen atom (Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]).

[Scheme 1]

The crystal structures of neat (i.e. not co-crystals, no solvent included in the crystal) halogenated terephthalodi­nitriles have followed this trend. The crystal of 2,3,5,6-tetra­fluoro­terephthalodi­nitrile (F4TN) does not contain any C≡N⋯F contacts, with mol­ecules adopting a sawtooth formation (Fig. 1[link]a; Hirshfeld, 1984[Hirshfeld, F. L. (1984). Acta Cryst. B40, 484-492.]), similar to a crystal of penta­fluoro­benzo­nitrile (Bond et al., 2001[Bond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231-o233.]). The crystal of the tetra­chloro analog (Cl4TN) contains one C≡N⋯Cl contact per N atom, forming staggered C22(14) chains (Britton, 1981b[Britton, D. (1981b). Cryst. Struct. Commun. 10, 1501-1508.]; Fig. 1[link]b). In co-crystals of Cl4TN with anthracene (Britton, 2005b[Britton, D. (2005b). Acta Cryst. E61, o1707-o1708.]), phenanthrene, or pyrene (Britton, 2005a[Britton, D. (2005a). Acta Cryst. C61, o662-o664.]), no C≡N⋯Cl contacts are found. However, Cl4TN and the corresponding ortho- and meta-di­cyano isomers each form co-crystals with hexa­methyl­benzene wherein C≡N⋯Cl-based sheets occur, in alternating layers with sheets of hexa­methyl­benzene (Britton, 2002[Britton, D. (2002). Acta Cryst. B58, 553-563.]). No crystals involving the title compound (Br4TN) have been reported previously.

[Figure 1]
Figure 1
Packing in the crystals of (a) F4TN, viewed along [5[\overline{1}]0]; (b) Cl4TN, viewed along [1[\overline{2}]0]. The dashed blue lines represent short contacts.

2. Structural commentary

In the crystal of Br4TN, the mol­ecules lie about an inversion center and a vertical mirror plane, and are almost planar (Fig. 2[link]). The ring C2/C3 atoms have r.m.s. deviations of 0.002 (2) Å from the plane of best fit. The Br1 and N1 atoms deviate from this plane by 0.038 (4) and 0.026 (9) Å, respectively. This distortion is chair-like, with adjacent ring positions bent to opposite sides of the best-fit plane.

[Figure 2]
Figure 2
The mol­ecular structure of Br4TN, with atom labeling and displacement ellipsoids at the 50% probability level. Unlabeled atoms are generated by the (x, −y + 1, z), (−x + 1, y, −z + 2), and (−x + 1, −y + 1, −z + 2) symmetry operations.

3. Supra­molecular features

C≡N⋯Br contacts are the most prominent packing feature (Table 1[link]). The length of these contacts is similar to 3.064 (4) Å, the mean C≡N⋯Br distance found in crystals of 2,4,6-tri­bromo­benzo­nitrile (Br3BN; Noland et al., 2018[Noland, W. E., Britton, D., Sutton, G. K., Schneerer, A. K. & Tritch, K. J. (2018). Acta Cryst. E74, 98-102.]). The N and ortho-Br atoms of Br3BN form a contact network similar to a half-mol­ecule of Br4TN. Pairs of these contacts form centrosymmetric R22(10) rings (Fig. 3[link]). Each mol­ecule of Br4TN participates in four such rings, generating a nearly planar sheet structure that is similar to Cl4TN layers in the Cl4TN-hexa­methyl­benzene co-crystal (Britton, 2002[Britton, D. (2002). Acta Cryst. B58, 553-563.]). In Br4TN, adjacent sheets stack roughly along [70[\overline{4}]], and the [001] translation relates mol­ecules in neighboring sheets.

Table 1
Contact geometry for Br4TN (Å, °).

C≡N⋯Br C≡N N⋯Br C≡N⋯Br
C1≡N1⋯Br1i 1.139 (5) 3.015 (2) 135.48 (5)
Symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1.
[Figure 3]
Figure 3
The nearly planar sheet structure in a crystal of Br4TN, viewed along [\overline{1}]01. The dashed blue lines represent short contacts.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found six additional reports similar to Br4TN. For F4TN, a co-crystal with 9-acetyl­anthracene (Wang et al., 2018[Wang, J., Li, A., Xu, S., Li, B., Song, C., Geng, Y., Chu, N., He, J. & Xu, W. (2018). J. Mater. Chem. C. 6, 8958-8965.]), and an η2-complex with tungsten(II) (Kiplinger et al., 1997[Kiplinger, J. L., Arif, A. M. & Richmond, T. G. (1997). Organometallics, 16, 246-254.]) are both given; these contain no C≡N⋯F contacts. Neat crystals are reported for the ortho- (Britton, 1981c[Britton, D. (1981c). Cryst. Struct. Commun. 10, 1509-1512.]) and meta-di­cyano (Hu et al., 2004[Hu, X., Yuan, Z. & Lu, G. (2004). Powder Diffr. 19, 325-328.]) isomers of Cl4TN, and 2,4,6-tri­chloro­tri­cyano­benzene (Britton, 1981a[Britton, D. (1981a). Cryst. Struct. Commun. 10, 1061-1064.]).

5. Synthesis and crystallization

2,3,5,6-Tetra­bromo­terephthaldi­amide (Br4TA), adapted from the work of Schäfer et al. (2017[Schäfer, J., Holzapfel, M., Mladenova, B., Kattnig, D., Krummenacher, I., Braunschweig, H., Grampp, G. & Lambert, C. (2017). J. Am. Chem. Soc. 139, 6200-6209.]): Tetra­bromo­terephthalic acid (4.01 g; Sigma–Aldrich, Inc., No. 524441) and thionyl chloride (24 mL) were combined in a round-bottomed flask. The resulting mixture was refluxed for 3 h, and then cooled to ambient temperature. The thionyl chloride was removed under reduced pressure. The resulting white solid was dissolved in 1,4-dioxane (60 mL). An ammonium hydroxide solution (15 M, 50 mL) was added and then the mixture was stirred for 18 h. Water (50 mL) and an Na2CO3 solution (2 M, 50 mL) were added, and then the mixture was stirred for 24 h. A precipitate was collected by suction filtration, and then washed with water, giving a white powder (5.71 g, 71%). A trace of ammonium chloride could not be removed, based on the MS results. M.p. 627 K (lit. 615 K; Knobloch & Ramirez, 1975[Knobloch, J. O. & Ramirez, F. (1975). J. Org. Chem. 40, 1101-1106.]); 1H NMR (500 MHz, DMSO-d6; 2 conformers obs.) δ 8.085 (s, 2H, both), 7.936 (s, 2H, minor), 7.889 (s, 2H, major); 13C NMR (126 MHz, DMSO-d6) δ 166.8 (2C), 143.4 (2C), 122.2 (4C); IR (KBr, cm−1) 3292, 3158, 2966, 2907, 2853, 1679, 1427, 1315, 1287, 1252, 1114, 1089, 866; MS (ESI, m/z) [M+35Cl] calculated for C8H479Br281Br2N2O2 514.6660, found 514.6672.

2,3,5,6-Tetra­bromo­terephthalodi­nitrile (Br4TN), adapted from the work of Schäfer et al. (2017[Schäfer, J., Holzapfel, M., Mladenova, B., Kattnig, D., Krummenacher, I., Braunschweig, H., Grampp, G. & Lambert, C. (2017). J. Am. Chem. Soc. 139, 6200-6209.]) (Fig. 4[link]): A portion of Br4TA (515 mg) and phospho­rus oxychloride (16 mL) were combined in a round-bottomed flask. The resulting mixture was refluxed for 24 h, then cooled to ambient temperature, and then poured into ice–water (200 mL). This mixture was stirred until the ice melted, then a precipitate was collected by suction filtration, and then washed with water, giving a white powder (342 mg, 72%). M.p. 603 K; 13C NMR (126 MHz, DMSO-d6) δ 129.6 (4C, C3), 123.5 (2C, C2), 116.0 (2C, C1); IR (KBr, cm−1) 2236, 1364, 1330, 1293, 1229, 1156, 1121, 732; MS (EI, m/z) [M]+ calculated for C879Br281Br2N2 443.6749, found 443.6764.

[Figure 4]
Figure 4
The synthesis of Br4TN via amination of 2,3,5,6-tetra­bromo­terephthalic acid, followed by dehydration.

Crystallization: A solution of Br4TN (150 mg) in bis­(2-meth­oxy­eth­yl) ether (10 mL) at 425 K was cooled by 30 K h−1 until a precipitate began to form. The temperature was held for 1 h, and then cooled by 10 K h−1 to ambient temperature. After 24 h, colorless, highly twinned, prismatic crystals were collected by deca­ntation and then washed with methanol. A monocrystalline tip similar to the one indicated in Fig. 5[link] was harvested for X-ray diffraction.

[Figure 5]
Figure 5
A confocal micrograph showing two colorless crystals of Br4TN. The apparent yellow colour is caused by the lighting. The blurry portions are out of the focal plane toward the viewer. A prismatic tip similar to the one indicated by the red arrow was used for X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]

Table 2
Experimental details

Crystal data
Chemical formula C8Br4N2
Mr 443.74
Crystal system, space group Monoclinic, C2/m
Temperature (K) 100
a, b, c (Å) 7.8500 (6), 9.8330 (8), 6.7540 (6)
β (°) 90.202 (4)
V3) 521.33 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 15.40
Crystal size (mm) 0.15 × 0.06 × 0.03
 
Data collection
Diffractometer Bruker VENTURE PHOTON-II area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.253, 0.494
No. of measured, independent and observed [I > 2σ(I)] reflections 3324, 837, 741
Rint 0.063
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.072, 1.04
No. of reflections 837
No. of parameters 38
Δρmax, Δρmin (e Å−3) 1.09, −1.01
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

2,3,5,6-Tetrabromobenzene-1,4-dinitrile top
Crystal data top
C8Br4N2Dx = 2.827 Mg m3
Mr = 443.74Melting point: 603 K
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 7.8500 (6) ÅCell parameters from 2993 reflections
b = 9.8330 (8) Åθ = 3.0–30.4°
c = 6.7540 (6) ŵ = 15.40 mm1
β = 90.202 (4)°T = 100 K
V = 521.33 (7) Å3Prism, colourless
Z = 20.15 × 0.06 × 0.03 mm
F(000) = 404
Data collection top
Bruker VENTURE PHOTON-II area detector
diffractometer
741 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.063
φ and ω scansθmax = 30.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.253, Tmax = 0.494k = 1314
3324 measured reflectionsl = 99
837 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0175P)2 + 0.7909P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.072Δρmax = 1.09 e Å3
S = 1.04Δρmin = 1.01 e Å3
837 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
38 parametersExtinction coefficient: 0.0029 (10)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40138 (3)0.78605 (3)0.77786 (4)0.01672 (15)
N10.2553 (5)0.5000000.4857 (5)0.0219 (7)
C10.3260 (5)0.5000000.6333 (6)0.0158 (7)
C20.4158 (5)0.5000000.8209 (6)0.0148 (7)
C30.4576 (3)0.6237 (3)0.9090 (4)0.0142 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0186 (2)0.0174 (2)0.0142 (2)0.00120 (9)0.00004 (12)0.00249 (9)
N10.0253 (19)0.0198 (18)0.0204 (19)0.0000.0045 (15)0.000
C10.0190 (19)0.0140 (19)0.0144 (18)0.0000.0032 (14)0.000
C20.0125 (17)0.021 (2)0.0113 (16)0.0000.0035 (13)0.000
C30.0138 (12)0.0151 (14)0.0136 (13)0.0007 (9)0.0026 (10)0.0018 (10)
Geometric parameters (Å, º) top
Br1—C31.878 (3)C2—C31.393 (3)
N1—C11.139 (5)C2—C3i1.393 (3)
C1—C21.448 (5)C3—C3ii1.395 (5)
N1—C1—C2180.0 (4)C2—C3—C3ii119.17 (17)
C3—C2—C3i121.7 (3)C2—C3—Br1119.1 (2)
C3—C2—C1119.17 (17)C3ii—C3—Br1121.75 (8)
C3i—C2—C1119.17 (17)
C3i—C2—C3—C3ii0.5 (6)C3i—C2—C3—Br1178.56 (19)
C1—C2—C3—C3ii179.2 (3)C1—C2—C3—Br11.7 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2.
Contact geometry for Br4TN (Å, °). top
CN···BrCNN···BrCN···Br
C1N1···Br1i1.139 (5)3.015 (2)135.48 (5)
Symmetry code: (i) -x + 1/2, -y + 1/2, -z + 1.
 

Acknowledgements

The authors thank Victor G. Young, Jr. (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project, and Doyle Britton (deceased July 7, 2015) for providing the basis of this project.

References

First citationBond, A. D., Davies, J. E., Griffiths, J. & Rawson, J. M. (2001). Acta Cryst. E57, o231–o233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D. (1981a). Cryst. Struct. Commun. 10, 1061–1064.  CAS Google Scholar
First citationBritton, D. (1981b). Cryst. Struct. Commun. 10, 1501–1508.  CAS Google Scholar
First citationBritton, D. (1981c). Cryst. Struct. Commun. 10, 1509–1512.  CAS Google Scholar
First citationBritton, D. (2002). Acta Cryst. B58, 553–563.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBritton, D. (2005a). Acta Cryst. C61, o662–o664.  CrossRef CAS IUCr Journals Google Scholar
First citationBritton, D. (2005b). Acta Cryst. E61, o1707–o1708.  CrossRef IUCr Journals Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1984). Acta Cryst. B40, 484–492.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, X., Yuan, Z. & Lu, G. (2004). Powder Diffr. 19, 325–328.  Web of Science CSD CrossRef CAS Google Scholar
First citationKiplinger, J. L., Arif, A. M. & Richmond, T. G. (1997). Organometallics, 16, 246–254.  CrossRef CAS Google Scholar
First citationKnobloch, J. O. & Ramirez, F. (1975). J. Org. Chem. 40, 1101–1106.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNoland, W. E., Britton, D., Sutton, G. K., Schneerer, A. K. & Tritch, K. J. (2018). Acta Cryst. E74, 98–102.  CSD CrossRef IUCr Journals Google Scholar
First citationPink, M., Britton, D., Noland, W. E. & Pinnow, M. J. (2000). Acta Cryst. C56, 1271–1273.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchäfer, J., Holzapfel, M., Mladenova, B., Kattnig, D., Krummenacher, I., Braunschweig, H., Grampp, G. & Lambert, C. (2017). J. Am. Chem. Soc. 139, 6200–6209.  PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, J., Li, A., Xu, S., Li, B., Song, C., Geng, Y., Chu, N., He, J. & Xu, W. (2018). J. Mater. Chem. C. 6, 8958–8965.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds