research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Co-crystallization of a neutral mol­ecule and its zwitterionic tautomer: structure and Hirshfeld surface analysis of 5-methyl-4-(5-methyl-1H-pyrazol-3-yl)-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one 5-methyl-4-(5-methyl-1H-pyrazol-2-ium-3-yl)-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-1-ide monohydrate

CROSSMARK_Color_square_no_text.svg

aCenter of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and dResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 March 2019; accepted 31 March 2019; online 5 April 2019)

The title compound, 2C14H14N4O·H2O, comprises a neutral mol­ecule containing a central pyrazol-3-one ring flanked by an N-bound phenyl group and a C-bound 5-methyl-1H-pyrazol-3-yl group (at positions adjacent to the carbonyl substituent), its zwitterionic tautomer, whereby the N-bound proton of the central ring is now resident on the pendant ring, and a water mol­ecule of crystallization. Besides systematic variations in geometric parameters, the two independent organic mol­ecules have broadly similar conformations, as seen in the dihedral angle between the five-membered rings [9.72 (9)° for the neutral mol­ecule and 3.32 (9)° for the zwitterionic tautomer] and in the dihedral angles between the central and pendant five-membered rings [28.19 (8) and 20.96 (8)° (neutral mol­ecule); 11.33 (9) and 11.81 (9)°]. In the crystal, pyrazolyl-N—H⋯O(carbon­yl) and pyrazolium-N—H⋯N(pyrazol­yl) hydrogen bonds between the independent organic mol­ecules give rise to non-symmetric nine-membered {⋯HNNH⋯NC3O} and {⋯HNN⋯HNC3O} synthons, which differ in the positions of the N-bound H atoms. These aggregates are connected into a supra­molecular layer in the bc plane by water-O—H⋯N(pyrazolide), water-O—H⋯O(carbon­yl) and pyrazolyl-N—H⋯O(water) hydrogen bonding. The layers are linked into a three-dimensional architecture by methyl-C—H⋯π(phen­yl) inter­actions. The different inter­actions, in particular the weaker contacts, formed by the organic mol­ecules are clearly evident in the calculated Hirshfeld surfaces, and the calculated electrostatic potentials differentiate the tautomers.

1. Chemical context

Mol­ecules related to the title compound, i.e. containing a pyrazolone ring, are of particular inter­est owing to their pharmaceutical potential. Applications in this context include their possible utilization as cardiovascular drugs (Higashi et al., 2006[Higashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent. Pat. Cardiovasc. Drug. Discov. 1, 85-93.]), as hypoglycemic agents (Das et al., 2008[Das, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. Sect. B, 47, 1555-1558.]) and as anti-inflammatory and analgesic agents (Badawey & El-Ashmawey, 1998[Badawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349-361.]). This class of compound has also been evaluated as anti-microbials (Sahu et al., 2007[Sahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011-1015.]) and display fungicidal activities (Singh & Singh, 1991[Singh, D. & Singh, D. (1991). J. Indian Chem. Soc. 68, 165-167.]). In the course of studies in this area, the title compound, which has been synthesized previously (Kumar et al., 1995[Kumar, D., Singh, S. P., Martínez, A., Fruchier, A., Elguero, J., Martínez-Ripoll, M., Carrió, J. S. & Virgili, A. (1995). Tetrahedron, 51, 4891-4906.]), was characterized crystallographically on a crystal isolated from an ethanol solution and found to contain neutral and zwitterionic tautomers.

[Scheme 1]

Tautomerism relates to a phenomenon whereby isomeric structures undergo inter-conversion by the migration of, typically, an atom, often a proton, or small group within the mol­ecule. While different tautomers can co-exist in solution, in crystals usually only one form is found (Rubčić et al., 2012[Rubčić, M., Užarević, K., Halasz, I., Bregović, N., Mališ, M., Đilović, I., Kokan, Z., Stein, R. S., Dinnebier, R. E. & Tomišić, V. (2012). Chem. Eur. J. 18, 5620-5631.]). Notable examples of tautomers crystallizing in the same crystal begin with biologically relevant isocytosine (Sharma & McConnell, 1965[Sharma, B. D. & McConnell, J. F. (1965). Acta Cryst. 19, 797-806.]) and the histidine residue in the structure of L-His-Gly hemihydrate (Steiner & Koellner, 1997[Steiner, T. & Koellner, G. (1997). Chem. Commun. pp. 1207-1208.]). Such behaviour has also been observed, for example, in a synthetic compound, namely, N-(3-hy­droxy­salicyl­idene)-4-meth­oxy­aniline (Pizzala et al., 2000[Pizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Mol. Struct. 526, 261-268.]). Herein, the crystal and mol­ecular structures of the title compound, (I)[link], are described along with an analysis of the calculated Hirshfeld surfaces.

2. Structural commentary

The crystal of (I)[link], Fig. 1[link], comprises a neutral mol­ecule of 5-methyl-4-(5-methyl-1H-pyrazol-3-yl)-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one, its zwitterionic tautomer 5-methyl-4-(5-methyl-1H-pyrazol-2-ium-3-yl)-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-1-ide and a mol­ecule of water. Evidence of tautomerism is twofold. Firstly, in the nature of the hydrogen-bonding inter­actions operating in the crystal; see Supra­molecular features. Secondly, in small but systematic variations in key geometric parameters, Table 1[link]. Thus, the N5—N6 bond in the zwitterion is longer than the equivalent N1—N2 bond in the neutral species with a concomitant shortening of the C16—N6 and lengthening of the C16—C17 bonds with respect to the bonds in the neutral species. The most notable changes in angles relate to protonation/deprotonation. Thus, the angle at the protonated N2 atom is greater than the angle at the deprotonated N6, and the same is true for the angles subtended at the N7 and N3 atoms. Mol­ecules in (I)[link] may also exhibit rotational isomerism about the C3—C5 and C17—C19 bonds. In the present case, the carbonyl group is syn with the pendent ring imine-N atom in the neutral mol­ecule and is designated the NH-Z form (Kumar et al., 1995[Kumar, D., Singh, S. P., Martínez, A., Fruchier, A., Elguero, J., Martínez-Ripoll, M., Carrió, J. S. & Virgili, A. (1995). Tetrahedron, 51, 4891-4906.]); the zwitterionic tautomer has a similar conformation.

Table 1
Selected geometric parameters (Å, °) for (I)

Atoms Parameter Atoms Parameter
C1—O1 1.266 (2) C15—O2 1.263 (2)
N1—N2 1.376 (2) N5—N6 1.401 (2)
C1—N1 1.389 (2) C15—N5 1.396 (2)
C2—N2 1.338 (2) C17—N6 1.329 (2)
C1—C3 1.429 (2) C15—C17 1.416 (2)
C2—C3 1.391 (2) C16—C17 1.405 (2)
N3—N4 1.364 (2) N7—N8 1.349 (2)
C5—N3 1.346 (2) C19—N7 1.349 (2)
C7—N4 1.338 (2) C21—N8 1.337 (2)
C5—C6 1.414 (2) C19—C20 1.404 (2)
C6—C7 1.375 (2) C20—C21 1.389 (2)
N2—N1—C1 109.07 (13) C15—N5—N6 111.51 (13)
N2—N1—C9 121.16 (14) N6—N5—C23 119.25 (14)
C1—N1—C9 129.62 (14) C15—N5—C23 128.95 (15)
N1—N2—C2 108.78 (14) N5—N6—C16 105.37 (13)
N4—N3—C5 103.94 (14) N8—N7—C19 110.58 (14)
N3—N4—C7 113.60 (14) N7—N8—C21 108.36 (14)
[Figure 1]
Figure 1
The mol­ecular structures of the constituents of (I)[link], showing displacement ellipsoids at the 70% probability level. The pyrazolyl-N4, N8—H⋯O2, O1(carbon­yl), pyrazolium-N7—H⋯N3(pyrazol­yl) and water-O—H⋯N6(pyrazolium) hydrogen bonds are shown as dashed lines. Note the non-symmetric nine-membered {⋯HNNH⋯NC3O} and {⋯HNN⋯HNC3O} synthons formed between the neutral and tautomeric mol­ecules.

The differences in geometric parameters characterizing the two independent organic mol­ecules in (I)[link] notwithstanding, the mol­ecules present very similar conformations as highlighted in the overlay diagram, Fig. 2[link]. Thus, the r.m.s. deviations of the fitted atoms of the N1, N3, N5 and N7 rings are 0.019, 0.003, 0.006 and 0.006, respectively. The dihedral angle between the N1 and N3 rings is 9.72 (9)°, and that between each of these and the appended phenyl ring are 28.19 (8) and 20.96 (8)°. The comparable values for the zwitterionic tautomer are 3.32 (9), 11.33 (9) and 11.81 (9)°, respectively, indicating that this mol­ecule is closer to planar, as vindicated by the difference in the N2—N1—C9—C14 and N6—N5—C23—C28 torsion angles of 26.2 (2) and −7.4 (2)°, respectively.

[Figure 2]
Figure 2
Overlay diagram of the two organic mol­ecules in (I)[link]: neutral mol­ecule (blue image) and zwitterion (red). The mol­ecules have been overlapped so that the five-membered rings are coincident.

3. Supra­molecular features

The mol­ecular packing of (I)[link] features substantial conventional hydrogen-bonding inter­actions and the description of these can be conveniently divided by discussing inter­actions without the involvement of the water mol­ecule of crystallization and then considering the role of the water mol­ecule. Table 2[link] lists the geometric parameters of the specific inter­molecular inter­actions in the crystal of (I)[link]. There are three hydrogen bonds formed between the two organic mol­ecules comprising the asymmetric unit and these involve the three outer-ring amine-H atoms as donors and a ring-N and the two carbonyl-O atoms as acceptors. The resulting pyrazolyl-N4, N8—H⋯O1, O2(carbon­yl) and pyrazolium-N7—H⋯N3(pyrazol­yl) hydrogen bonds give rise to non-symmetric nine-membered {⋯HNNH⋯NC3O} and {⋯HNN⋯HNC3O} synthons, differing only in the relative placement of one of the ring-N-bound H atoms, Fig. 1[link]. The two-mol­ecule aggregates are assembled into a supra­molecular layer in the bc plane by hydrogen bonding involving the water mol­ecule, which functions as a donor to the pyrazolide-N6 and carbonyl-O1 atoms and as an acceptor from a pyrazolyl-N2 atom, Fig. 3[link]a. Further consolidation of the layers is provided by ππ inter­actions with the shortest of these involving the N1-pyrazolyl and phen­yl(C9–C14)i rings [inter-centroid separation = 3.5810 (9) Å, inter-planar angle = 6.29 (8)° for symmetry operation: (i) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z]. As shown in Fig. 3[link]b, the points of contact between layers involve methyl-C8—H⋯π inter­actions with the symmetry-related phenyl (C23–C28) ring, Table 2[link], resulting in a three-dimensional architecture.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (C23–C28) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1Wi 0.90 (1) 1.79 (1) 2.673 (2) 168 (2)
N4—H4N⋯O2 0.88 (1) 1.90 (1) 2.764 (2) 168 (2)
N7—H7N⋯N3 0.89 (1) 2.28 (2) 2.970 (2) 134 (1)
N8—H8N⋯O1 0.90 (1) 1.79 (1) 2.664 (2) 166 (2)
O1W—H1W⋯O1ii 0.85 (2) 1.92 (2) 2.7641 (17) 172 (2)
O1W—H2W⋯N6 0.86 (2) 1.94 (2) 2.7979 (19) 178 (2)
C8—H8ACg1iii 0.98 2.71 3.492 (2) 137
C8—H8BCg1iv 0.98 2.89 3.755 (2) 148
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+2, -y, -z+1.
[Figure 3]
Figure 3
Supra­molecular association in the crystal of (I)[link]: (a) a view of the supra­molecular layer in the bc plane whereby the dimeric aggregates shown in Fig. 1[link] are connected by water-O1W⋯O1(carbon­yl), water-O1W⋯N6(pyrazolide) (pink dashed lines) and pyrazolyl-N2—H⋯O1W(water) hydrogen bonds (blue dashed lines) and (b) a view of the unit-cell contents shown in projection down the c axis. The C—H⋯π inter­actions are shown as purple dashed lines. In both images, the non-participating and non-acidic H atoms are omitted.

4. Hirshfeld surface analysis

The Hirshfeld surface calculations for (I)[link] were calculated employing Crystal Explorer (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.]) and were conducted in accord with recent studies (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) to investigate the influence of inter­molecular inter­actions between the neutral and zwitterionic tautomers, along with the water mol­ecule of crystallization, on the mol­ecular packing.

The donors and acceptors of the hydrogen bonds summarized in Table 2[link] and discussed in the previous section are clearly evident as the broad and bright-red spots on the Hirshfeld surface mapped over dnorm for the neutral tautomer in Fig. 4[link]a and b and for the zwitterionic tautomer in Fig. 4[link]c. In addition to these, a short intra­molecular H⋯H contact between symmetry-related pyrazolyl-H4N and H7N atoms (Table 3[link]) is viewed as faint-red spots near these atoms on the dnorm-mapped Hirshfeld surfaces of the tautomers in Fig. 4[link]a and c. It is clear from the views of the Hirshfeld surfaces mapped over the calculated electrostatic potential for neutral mol­ecule in Fig. 5[link]a and b, and for the zwitterionic tautomer in Fig. 5[link]c and d, that they have quite distinct charge distributions on their surfaces. The presence of non-protonated pyrazolyl-N3 and N6 atoms results in a pronounced electronegative regions adjacent to carbonyl-O1 atom in the neutral form and opposite to carbonyl-O2 atom in the zwitterion as shown by the intense-red regions in Fig. 5[link]ad; hence facilitating the charge-assisted hydrogen bonds with pyrazolyl-N7 and water-O1W atoms, respectively. The donors and acceptors of inter­molecular water-O1W–-H⋯O1(carbon­yl) and pyrazolyl-N2—H⋯O1W(water) are also viewed as blue and red regions in Fig. 5[link]e and f.

Table 3
Summary of short inter­atomic contacts (Å) in (I)

Contact Distance Symmetry operation
H4N⋯H7N 2.05 x, y, z
H13⋯H18A 2.28 x, [{1\over 2}] − y, [{1\over 2}] + z
H14⋯H18A 2.05 x, [{1\over 2}] − y, [{1\over 2}] + z
C1⋯H1W 2.60 1 − x, 1 − y, 1 − z
C10⋯H1W 2.81 1 − x, 1 − y, 1 − z
C14⋯H18A 2.75 x, [{1\over 2}] − y, [{1\over 2}] + z
C28⋯H8B 2.75 2 − x, − y, 1 − z
N2⋯C14 3.238 (2) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
C2⋯C13 3.382 (3) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z
C8⋯C22 3.317 (2) 1 + x, y, z
C15⋯C22 3.352 (3) 1 − x, 1 − y, 1 − z
C17⋯C21 3.391 (3) 1 − x, 1 − y, 1 − z
[Figure 4]
Figure 4
Views of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.527 to +1.288 arbitrary units for (a) and (b) the neutral tautomer and (c) in the range −0.527 to +1.367 arbitrary units for the zwitterion and a short intra-atomic H⋯H contact by a yellow dashed line.
[Figure 5]
Figure 5
Views of Hirshfeld surface mapped over the calculated electrostatic potential for (a) and (b) the neutral tautomer in the range −0.157 to +0.225 atomic units (a.u.), (c) and (d) zwitterionic tautomer in the range −0.152 to +0.259 a.u., and (e) and (f) for the overall structure in the range −0.166 to +0.250 a.u.. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The short inter­atomic contacts characterizing weak inter­molecular inter­actions in the crystal of (I)[link] are viewed as characteristic red spots near the involved atoms on the Hirshfeld surface of the overall structure by modifying (making more sensitive) the dnorm range, see Fig. 6[link] and Table 3[link]. The short intra- and inter-layer C⋯C contacts formed by the methyl-C22 atom with methyl-C8 and pyrazolyl-C15 atoms (Table 3[link]) are viewed as small red spots near these atoms in Fig. 6[link]a. The presence of faint-red spots near pyrazole-N2, C2, C17, C21 and phenyl-C13, C14 atoms in Fig. 6[link] represent their participation in short inter­atomic C⋯C and C⋯N contacts (Table 3[link]) arising from ππ contacts between the N1-pyrazolyl and phenyl (C9–C14), and pyrazolyl-N5 and pyrazolyl-N7 rings (Table 5[link]). In addition to this, the influence of short inter­atomic H⋯H and C⋯H/H⋯C contacts (Table 3[link]) on the packing is also evident as the faint-red spots near methyl-H8B and phenyl-C28 atoms, and the spots near the methyl-H18A and phenyl-C14, H14 atoms in Fig. 6[link]. The involvement of the methyl-H8A and H8B atoms as the donors and the phenyl (C23–C28) ring as the acceptor in the C—H⋯π contacts are also confirmed from the Hirshfeld surface mapped with the shape-index property through blue and red regions, respectively, in Fig. 7[link].

Table 5
Geometric data (Å) for additional π–π inter­actions in the crystal of (I)

First ring Second ring Separation Symmetry operation
Cg(N1,N2,C1–C3) Cg(C9–C14) 3.5810 (9) 1 − x, [{1\over 2}] + y, [{3\over 2}] − z
Cg(N5,N6,C15–C17) Cg(N7,N8,C19–C21) 3.8064 (9) 1 − x, 1 − y, 1 − z
Cg (N7,N8,C19–C21) Cg(N7,N8,C19–C21) 3.6886 (10) 1 − x, − y, 1 − z
[Figure 6]
Figure 6
Views of Hirshfeld surfaces mapped over dnorm for the overall structure in the range −0.031 to +1.343 arbitrary units.
[Figure 7]
Figure 7
Views of Hirshfeld surfaces mapped with the shape-index property highlighting the donors (labelled `1′) and acceptors (`2′) of C—H⋯π contacts through blue and red regions, respectively.

The overall two dimensional fingerprint plot in Fig. 8[link]a and those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C, C⋯C and C⋯N/N⋯C contacts for the overall structure are illustrated in Fig. 8[link]bg and the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces of the neutral tautomer, zwitterion and the overall structure are summarized in Table 4[link].

Table 4
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I)

Contact   Percentage contribution  
  neutral tautomer zwitterion overall
H⋯H 49.8 52.4 52.4
O⋯H/H⋯O 11.1 9.4 8.8
N⋯H/H⋯N 8.2 14.0 9.1
C⋯H/H⋯C 21.5 15.1 19.9
C⋯C 5.2 5.9 5.9
C⋯N/N⋯C 4.9 3.1 3.7
C⋯O/O⋯C 0.2 0.1 0.2
[Figure 8]
Figure 8
(a) The full two-dimensional fingerprint plot for (I)[link] and (b)–(f) those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N, C⋯H/H⋯C, C⋯C and C⋯N/N⋯C contacts, respectively.

In the fingerprint plot delineated into H⋯H contacts, Fig. 8[link]b, the short contact involving the methyl-H18A and phenyl-H14 atoms, Table 3[link], are viewed as the pair of two adjacent short peaks at de + di ∼2.1 Å while the points corresponding to the H13⋯H18A contact are merged within the plot. The involvement of the water mol­ecule in the N—H⋯O hydrogen bond results in a pair of long spikes at de + di ∼1.8 Å in the fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 8[link]c; these encompass the pair of spikes corresponding to the O—H⋯O hydrogen bond involving carbonyl-O1 atom. The percentage contribution from these contacts to the Hirshfeld surface of the overall structure is less than the individual tautomers (Table 4[link]) as the atoms of the organic components comprising the asymmetric unit are self-associated by hydrogen bonds as well as participating in hydrogen bonding with the water mol­ecule.

The fingerprint plot delineated into N⋯H/H⋯N contacts in Fig. 8[link]d shows inter­atomic distances are at van der Waals separations or longer in the crystal. The significant 19.9% contribution from C⋯H/H⋯C contacts to the Hirshfeld surface of (I)[link], Table 4[link], arises from a significant number of methyl-C—H⋯π(phen­yl) inter­actions (Tables 2[link] and 3[link]) and short phenyl-, pyrazolyl-C⋯H(water, meth­yl) contacts (Table 3[link]). The presence of C—H⋯π inter­actions are viewed as the pair of characteristic wings in Fig. 8[link]e with the shortest C⋯H contact represented as the pair of peaks at de + di ∼2.7 Å, Table 3[link]. It is evident from the fingerprint plots delin­eated into C⋯C and C⋯N/N⋯C contacts in Fig. 8[link]f and g, arise from the presence of inter-layer ππ contacts between pyrazolyl and phenyl rings whereas the other short C⋯C contacts summarized in Table 3[link] are intra-layer, i.e. methyl-C8⋯C22(meth­yl). The small contribution from C⋯O/O⋯C contacts appears to have a negligible effect on the mol­ecular packing.

5. Database survey

There are no direct precedents for the neutral mol­ecule found in (I)[link] in the crystallographic literature. Arguably, the most closely related species is the compound whereby the nitro­gen-bound proton in the pendant five-membered ring has been substituted by a phenyl ring to give (II) – this structure has been reported three times [Bertolasi et al., 1995[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004-1015.] (ZILJIN); Kumar et al., 1995[Kumar, D., Singh, S. P., Martínez, A., Fruchier, A., Elguero, J., Martínez-Ripoll, M., Carrió, J. S. & Virgili, A. (1995). Tetrahedron, 51, 4891-4906.] (ZILJIN01); Ghandour et al., 2017[Ghandour, I., Mague, J. T., Bouayad, A., Chakroune, S., Essassi, E. M. & Kandri Rodi, Y. (2017). IUCrData, 2, x170853.] (ZILJIN02)]. Here, owing to the presence of the phenyl ring, there is a significant twist between the five-membered rings as seen in the Ccarbon­yl—C—C—Nexternal ring torsion angle of 57.1 (3)°. In two other derivatives, a similar situation pertains. In the derivative where the original phenyl ring of the neutral mol­ecule in (I)[link] is substituted with a benzene­sulfonamide group (EXIJEB; Asiri et al., 2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2474.]), the equivalent torsion angle is 132.9 (2)°. Finally, when both phenyl groups of (II) are substituted with 4-chloro­benzene rings (KUZPIF; Rabnawaz et al., 2010[Rabnawaz, M., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, o2569.]), Ccarbon­yl—C—C—Nexternal ring torsion angles of −57 (1) and 56 (1)° are found for the two crystallographically independent mol­ecules comprising the asymmetric unit.

6. Synthesis and crystallization

4-Acetoacetyl-3-methyl-1-phenyl-2-pyrazolin-5-one 1 (2.5 g, 10 mmol) and hydrazin hydrazine (1 ml) were refluxed in a mixture of ethanol (50 ml) and acetic acid (50 ml) for 2 h. The reaction mixture was allowed to stand at room temperature. The precipitate was filtered and recrystallized from ethanol solution as fine needles, M.p. 409–410 K. Yield: 70%.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The O- and N-bound H atoms were refined with distance restraints of 0.84±0.01 and 0.86±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N).

Table 6
Experimental details

Crystal data
Chemical formula 2C14H14N4O·H2O
Mr 526.60
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.7007 (6), 7.0419 (3), 31.2567 (17)
β (°) 98.379 (5)
V3) 2547.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.35 × 0.35 × 0.05
 
Data collection
Diffractometer Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.968, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 10823, 5838, 4411
Rint 0.031
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.06
No. of reflections 5838
No. of parameters 374
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.41
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMolGans & Shalloway (2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMolGans & Shalloway (2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

5-Methyl-4-(5-methyl-1H-pyrazol-3-yl)-2-phenyl-2,3-dihydro-1H-pyrazol-3-one 5-methyl-4-(5-methyl-1H-pyrazol-2-ium-3-yl)-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-1-ide monohydrate top
Crystal data top
2C14H14N4O·H2OF(000) = 1112
Mr = 526.60Dx = 1.373 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7007 (6) ÅCell parameters from 3750 reflections
b = 7.0419 (3) Åθ = 2.3–27.5°
c = 31.2567 (17) ŵ = 0.09 mm1
β = 98.379 (5)°T = 100 K
V = 2547.9 (2) Å3Plate, colourless
Z = 40.35 × 0.35 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5838 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4411 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 159
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 59
Tmin = 0.968, Tmax = 0.995l = 4039
10823 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.7451P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
5838 reflectionsΔρmax = 0.27 e Å3
374 parametersΔρmin = 0.40 e Å3
6 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50164 (10)0.12787 (17)0.64929 (4)0.0181 (3)
N10.53780 (11)0.0341 (2)0.72110 (5)0.0153 (3)
N20.63356 (12)0.0066 (2)0.75165 (5)0.0160 (3)
N30.73563 (12)0.1334 (2)0.61575 (5)0.0210 (3)
H2N0.6292 (16)0.025 (3)0.7792 (4)0.025*
N40.83286 (12)0.1666 (2)0.59759 (5)0.0208 (3)
H4N0.8238 (17)0.188 (3)0.5695 (3)0.025*
C10.57339 (14)0.0824 (2)0.68201 (5)0.0148 (3)
C20.72834 (14)0.0263 (2)0.73272 (6)0.0159 (4)
C30.69669 (14)0.0740 (2)0.68942 (5)0.0150 (3)
C40.84351 (14)0.0047 (3)0.75912 (6)0.0194 (4)
H4A0.8331180.0559010.7874600.029*
H4B0.8851220.1162390.7629750.029*
H4C0.8880100.0950290.7442970.029*
C50.77502 (14)0.1141 (2)0.65819 (6)0.0150 (3)
C60.89639 (14)0.1367 (2)0.66601 (6)0.0172 (4)
H60.9448990.1304600.6931340.021*
C70.92969 (14)0.1697 (2)0.62624 (6)0.0171 (4)
C81.04501 (14)0.1965 (3)0.61202 (6)0.0212 (4)
H8A1.0392700.2938260.5893970.032*
H8B1.0703080.0764380.6006110.032*
H8C1.1011640.2368340.6367180.032*
C90.42443 (14)0.0244 (2)0.73226 (6)0.0151 (3)
C100.33184 (14)0.0258 (2)0.70096 (6)0.0177 (4)
H100.3440900.0571240.6724190.021*
C110.22132 (14)0.0291 (2)0.71232 (6)0.0196 (4)
H110.1571800.0575780.6909790.024*
C120.20340 (14)0.0087 (2)0.75446 (6)0.0196 (4)
H120.1276280.0037400.7619510.024*
C130.29632 (14)0.0537 (3)0.78551 (6)0.0193 (4)
H130.2843740.0773600.8144480.023*
C140.40700 (14)0.0643 (2)0.77450 (6)0.0178 (4)
H140.4704140.0984770.7956490.021*
O20.77522 (10)0.25890 (19)0.51120 (4)0.0248 (3)
N50.74784 (12)0.3174 (2)0.43598 (5)0.0155 (3)
N60.65481 (12)0.3330 (2)0.40247 (5)0.0173 (3)
N70.56152 (12)0.2282 (2)0.53983 (5)0.0178 (3)
H7N0.6363 (9)0.222 (3)0.5506 (6)0.021*
N80.47846 (12)0.1938 (2)0.56454 (5)0.0177 (3)
H8N0.4983 (16)0.166 (3)0.5926 (3)0.021*
C150.71023 (14)0.2837 (2)0.47567 (6)0.0165 (4)
C160.56071 (14)0.3123 (2)0.42123 (6)0.0163 (4)
C170.58821 (14)0.2820 (2)0.46598 (5)0.0153 (3)
C180.44402 (15)0.3236 (3)0.39471 (6)0.0237 (4)
H18A0.4523530.3501970.3645430.036*
H18B0.3994610.4256080.4058060.036*
H18C0.4036350.2025390.3963710.036*
C190.51492 (14)0.2495 (2)0.49802 (5)0.0151 (3)
C200.39512 (14)0.2301 (2)0.49695 (6)0.0169 (4)
H200.3378940.2391860.4721400.020*
C210.37622 (14)0.1949 (2)0.53908 (6)0.0166 (4)
C220.26704 (15)0.1657 (3)0.55739 (6)0.0220 (4)
H22A0.2824580.0868690.5834330.033*
H22B0.2103560.1020770.5359500.033*
H22C0.2364200.2889510.5648620.033*
C230.86164 (14)0.3190 (2)0.42595 (6)0.0158 (4)
C240.95656 (15)0.3283 (3)0.45857 (6)0.0241 (4)
H240.9454720.3317690.4880710.029*
C251.06731 (16)0.3324 (3)0.44760 (7)0.0287 (5)
H251.1316850.3402110.4698810.034*
C261.08599 (15)0.3254 (3)0.40489 (6)0.0248 (4)
H261.1622740.3262280.3978460.030*
C270.99162 (15)0.3172 (3)0.37267 (6)0.0207 (4)
H271.0033850.3137700.3432460.025*
C280.87980 (14)0.3139 (2)0.38275 (6)0.0180 (4)
H280.8157600.3082610.3602970.022*
O1W0.65340 (10)0.59378 (18)0.33486 (4)0.0195 (3)
H1W0.6112 (15)0.686 (2)0.3408 (7)0.029*
H2W0.6537 (17)0.512 (2)0.3552 (5)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0169 (6)0.0268 (7)0.0107 (6)0.0025 (5)0.0026 (5)0.0029 (5)
N10.0152 (7)0.0215 (7)0.0092 (7)0.0003 (6)0.0020 (5)0.0006 (6)
N20.0162 (7)0.0228 (7)0.0090 (7)0.0007 (6)0.0017 (6)0.0018 (6)
N30.0169 (7)0.0347 (9)0.0125 (8)0.0008 (6)0.0064 (6)0.0028 (7)
N40.0173 (7)0.0344 (9)0.0117 (8)0.0005 (6)0.0052 (6)0.0054 (7)
C10.0185 (8)0.0150 (8)0.0116 (8)0.0001 (6)0.0042 (7)0.0001 (7)
C20.0183 (8)0.0167 (8)0.0136 (9)0.0010 (6)0.0047 (7)0.0004 (7)
C30.0164 (8)0.0174 (8)0.0114 (8)0.0005 (6)0.0031 (6)0.0009 (7)
C40.0182 (8)0.0248 (9)0.0150 (9)0.0011 (7)0.0016 (7)0.0021 (7)
C50.0168 (8)0.0161 (8)0.0124 (8)0.0002 (6)0.0035 (7)0.0008 (7)
C60.0158 (8)0.0238 (9)0.0122 (9)0.0001 (7)0.0023 (7)0.0012 (7)
C70.0180 (8)0.0185 (8)0.0158 (9)0.0023 (7)0.0056 (7)0.0025 (7)
C80.0186 (9)0.0255 (9)0.0215 (10)0.0017 (7)0.0092 (7)0.0046 (8)
C90.0162 (8)0.0160 (8)0.0141 (9)0.0008 (6)0.0054 (7)0.0038 (7)
C100.0213 (8)0.0199 (8)0.0124 (9)0.0004 (7)0.0038 (7)0.0014 (7)
C110.0188 (8)0.0212 (9)0.0180 (9)0.0016 (7)0.0000 (7)0.0011 (7)
C120.0170 (8)0.0224 (9)0.0206 (10)0.0006 (7)0.0068 (7)0.0012 (8)
C130.0211 (9)0.0255 (9)0.0126 (9)0.0021 (7)0.0065 (7)0.0005 (7)
C140.0177 (8)0.0234 (9)0.0123 (9)0.0007 (7)0.0023 (7)0.0011 (7)
O20.0178 (6)0.0448 (8)0.0114 (6)0.0039 (6)0.0005 (5)0.0048 (6)
N50.0149 (7)0.0214 (7)0.0103 (7)0.0001 (6)0.0025 (5)0.0021 (6)
N60.0153 (7)0.0249 (8)0.0111 (7)0.0002 (6)0.0003 (6)0.0011 (6)
N70.0153 (7)0.0268 (8)0.0118 (7)0.0001 (6)0.0038 (6)0.0005 (6)
N80.0192 (7)0.0247 (8)0.0101 (7)0.0011 (6)0.0050 (6)0.0012 (6)
C150.0185 (8)0.0197 (8)0.0116 (8)0.0021 (7)0.0031 (7)0.0008 (7)
C160.0176 (8)0.0197 (8)0.0122 (9)0.0002 (7)0.0043 (7)0.0011 (7)
C170.0167 (8)0.0182 (8)0.0115 (8)0.0014 (6)0.0036 (6)0.0008 (7)
C180.0165 (8)0.0415 (11)0.0132 (9)0.0004 (8)0.0023 (7)0.0054 (8)
C190.0182 (8)0.0166 (8)0.0109 (8)0.0002 (6)0.0032 (6)0.0012 (7)
C200.0161 (8)0.0222 (9)0.0124 (9)0.0011 (7)0.0027 (6)0.0001 (7)
C210.0181 (8)0.0169 (8)0.0155 (9)0.0002 (6)0.0046 (7)0.0006 (7)
C220.0220 (9)0.0267 (9)0.0190 (10)0.0002 (7)0.0094 (7)0.0006 (8)
C230.0156 (8)0.0176 (8)0.0151 (9)0.0000 (6)0.0053 (7)0.0016 (7)
C240.0199 (9)0.0377 (11)0.0148 (9)0.0012 (8)0.0033 (7)0.0013 (8)
C250.0189 (9)0.0462 (12)0.0206 (10)0.0001 (8)0.0014 (8)0.0044 (9)
C260.0174 (9)0.0330 (10)0.0257 (11)0.0013 (8)0.0085 (8)0.0033 (8)
C270.0214 (9)0.0252 (9)0.0172 (9)0.0017 (7)0.0090 (7)0.0000 (7)
C280.0180 (8)0.0224 (9)0.0136 (9)0.0002 (7)0.0027 (7)0.0000 (7)
O1W0.0239 (7)0.0224 (6)0.0131 (7)0.0050 (5)0.0058 (5)0.0022 (5)
Geometric parameters (Å, º) top
O1—C11.266 (2)N5—C151.396 (2)
N1—N21.3759 (19)N5—N61.4006 (19)
N1—C11.389 (2)N5—C231.412 (2)
N1—C91.422 (2)N6—C161.329 (2)
N2—C21.338 (2)N7—N81.3486 (19)
N2—H2N0.898 (9)N7—C191.349 (2)
N3—C51.346 (2)N7—H7N0.892 (9)
N3—N41.3636 (19)N8—C211.337 (2)
N4—C71.338 (2)N8—H8N0.894 (9)
N4—H4N0.882 (9)C15—C171.416 (2)
C1—C31.429 (2)C16—C171.405 (2)
C2—C31.391 (2)C16—C181.493 (2)
C2—C41.490 (2)C17—C191.429 (2)
C3—C51.461 (2)C18—H18A0.9800
C4—H4A0.9800C18—H18B0.9800
C4—H4B0.9800C18—H18C0.9800
C4—H4C0.9800C19—C201.404 (2)
C5—C61.414 (2)C20—C211.389 (2)
C6—C71.375 (2)C20—H200.9500
C6—H60.9500C21—C221.488 (2)
C7—C81.493 (2)C22—H22A0.9800
C8—H8A0.9800C22—H22B0.9800
C8—H8B0.9800C22—H22C0.9800
C8—H8C0.9800C23—C241.396 (2)
C9—C141.394 (2)C23—C281.397 (2)
C9—C101.395 (2)C24—C251.388 (2)
C10—C111.390 (2)C24—H240.9500
C10—H100.9500C25—C261.385 (3)
C11—C121.389 (2)C25—H250.9500
C11—H110.9500C26—C271.383 (3)
C12—C131.384 (2)C26—H260.9500
C12—H120.9500C27—C281.390 (2)
C13—C141.390 (2)C27—H270.9500
C13—H130.9500C28—H280.9500
C14—H140.9500O1W—H1W0.851 (9)
O2—C151.263 (2)O1W—H2W0.858 (9)
N2—N1—C1109.07 (13)C15—N5—C23128.95 (15)
N2—N1—C9121.16 (14)N6—N5—C23119.25 (14)
C1—N1—C9129.62 (14)C16—N6—N5105.37 (13)
C2—N2—N1108.78 (14)N8—N7—C19110.58 (14)
C2—N2—H2N128.0 (12)N8—N7—H7N121.6 (13)
N1—N2—H2N123.1 (12)C19—N7—H7N127.4 (13)
C5—N3—N4103.94 (14)C21—N8—N7108.36 (14)
C7—N4—N3113.60 (14)C21—N8—H8N131.8 (13)
C7—N4—H4N129.1 (13)N7—N8—H8N119.6 (13)
N3—N4—H4N117.2 (13)O2—C15—N5125.28 (15)
O1—C1—N1121.59 (14)O2—C15—C17130.23 (16)
O1—C1—C3132.57 (15)N5—C15—C17104.49 (14)
N1—C1—C3105.80 (14)N6—C16—C17111.82 (15)
N2—C2—C3109.58 (15)N6—C16—C18119.93 (15)
N2—C2—C4118.72 (15)C17—C16—C18128.26 (15)
C3—C2—C4131.70 (15)C16—C17—C15106.80 (14)
C2—C3—C1106.69 (14)C16—C17—C19130.42 (16)
C2—C3—C5126.36 (15)C15—C17—C19122.76 (15)
C1—C3—C5126.92 (15)C16—C18—H18A109.5
C2—C4—H4A109.5C16—C18—H18B109.5
C2—C4—H4B109.5H18A—C18—H18B109.5
H4A—C4—H4B109.5C16—C18—H18C109.5
C2—C4—H4C109.5H18A—C18—H18C109.5
H4A—C4—H4C109.5H18B—C18—H18C109.5
H4B—C4—H4C109.5N7—C19—C20105.87 (15)
N3—C5—C6110.48 (15)N7—C19—C17119.85 (15)
N3—C5—C3121.32 (15)C20—C19—C17134.28 (16)
C6—C5—C3128.19 (16)C21—C20—C19106.93 (15)
C7—C6—C5105.80 (15)C21—C20—H20126.5
C7—C6—H6127.1C19—C20—H20126.5
C5—C6—H6127.1N8—C21—C20108.26 (14)
N4—C7—C6106.17 (15)N8—C21—C22120.92 (16)
N4—C7—C8121.10 (16)C20—C21—C22130.81 (16)
C6—C7—C8132.67 (16)C21—C22—H22A109.5
C7—C8—H8A109.5C21—C22—H22B109.5
C7—C8—H8B109.5H22A—C22—H22B109.5
H8A—C8—H8B109.5C21—C22—H22C109.5
C7—C8—H8C109.5H22A—C22—H22C109.5
H8A—C8—H8C109.5H22B—C22—H22C109.5
H8B—C8—H8C109.5C24—C23—C28119.36 (15)
C14—C9—C10120.62 (15)C24—C23—N5120.93 (16)
C14—C9—N1119.57 (15)C28—C23—N5119.70 (15)
C10—C9—N1119.81 (15)C25—C24—C23119.51 (18)
C11—C10—C9118.77 (16)C25—C24—H24120.2
C11—C10—H10120.6C23—C24—H24120.2
C9—C10—H10120.6C26—C25—C24121.44 (18)
C12—C11—C10120.89 (16)C26—C25—H25119.3
C12—C11—H11119.6C24—C25—H25119.3
C10—C11—H11119.6C27—C26—C25118.82 (16)
C13—C12—C11119.79 (16)C27—C26—H26120.6
C13—C12—H12120.1C25—C26—H26120.6
C11—C12—H12120.1C26—C27—C28120.91 (17)
C12—C13—C14120.26 (16)C26—C27—H27119.5
C12—C13—H13119.9C28—C27—H27119.5
C14—C13—H13119.9C27—C28—C23119.95 (16)
C13—C14—C9119.61 (16)C27—C28—H28120.0
C13—C14—H14120.2C23—C28—H28120.0
C9—C14—H14120.2H1W—O1W—H2W107.0 (19)
C15—N5—N6111.51 (13)
C1—N1—N2—C23.11 (18)C15—N5—N6—C160.98 (18)
C9—N1—N2—C2179.05 (15)C23—N5—N6—C16175.29 (15)
C5—N3—N4—C70.2 (2)C19—N7—N8—C210.87 (19)
N2—N1—C1—O1175.10 (14)N6—N5—C15—O2178.15 (16)
C9—N1—C1—O10.4 (3)C23—N5—C15—O24.5 (3)
N2—N1—C1—C32.85 (17)N6—N5—C15—C171.05 (18)
C9—N1—C1—C3178.34 (16)C23—N5—C15—C17174.67 (16)
N1—N2—C2—C32.06 (19)N5—N6—C16—C170.50 (19)
N1—N2—C2—C4177.61 (14)N5—N6—C16—C18179.24 (15)
N2—C2—C3—C10.27 (19)N6—C16—C17—C150.1 (2)
C4—C2—C3—C1179.35 (17)C18—C16—C17—C15179.85 (17)
N2—C2—C3—C5177.71 (15)N6—C16—C17—C19178.60 (17)
C4—C2—C3—C52.7 (3)C18—C16—C17—C191.7 (3)
O1—C1—C3—C2176.04 (17)O2—C15—C17—C16178.44 (18)
N1—C1—C3—C21.59 (18)N5—C15—C17—C160.70 (18)
O1—C1—C3—C51.9 (3)O2—C15—C17—C190.2 (3)
N1—C1—C3—C5179.55 (15)N5—C15—C17—C19179.32 (15)
N4—N3—C5—C60.35 (19)N8—N7—C19—C201.01 (19)
N4—N3—C5—C3179.20 (15)N8—N7—C19—C17178.27 (15)
C2—C3—C5—N3170.80 (16)C16—C17—C19—N7178.44 (17)
C1—C3—C5—N311.6 (3)C15—C17—C19—N73.3 (3)
C2—C3—C5—C68.7 (3)C16—C17—C19—C202.5 (3)
C1—C3—C5—C6168.93 (17)C15—C17—C19—C20175.72 (18)
N3—C5—C6—C70.34 (19)N7—C19—C20—C210.76 (19)
C3—C5—C6—C7179.16 (16)C17—C19—C20—C21178.35 (18)
N3—N4—C7—C60.0 (2)N7—N8—C21—C200.35 (19)
N3—N4—C7—C8177.54 (15)N7—N8—C21—C22178.43 (15)
C5—C6—C7—N40.18 (19)C19—C20—C21—N80.26 (19)
C5—C6—C7—C8176.92 (18)C19—C20—C21—C22178.88 (18)
N2—N1—C9—C1426.2 (2)C15—N5—C23—C2415.1 (3)
C1—N1—C9—C14148.83 (17)N6—N5—C23—C24171.73 (15)
N2—N1—C9—C10153.49 (15)C15—N5—C23—C28165.82 (16)
C1—N1—C9—C1031.5 (3)N6—N5—C23—C287.4 (2)
C14—C9—C10—C112.1 (3)C28—C23—C24—C250.0 (3)
N1—C9—C10—C11178.19 (15)N5—C23—C24—C25179.08 (17)
C9—C10—C11—C122.8 (3)C23—C24—C25—C260.7 (3)
C10—C11—C12—C131.2 (3)C24—C25—C26—C271.0 (3)
C11—C12—C13—C141.1 (3)C25—C26—C27—C280.7 (3)
C12—C13—C14—C91.7 (3)C26—C27—C28—C230.0 (3)
C10—C9—C14—C130.1 (3)C24—C23—C28—C270.3 (3)
N1—C9—C14—C13179.61 (16)N5—C23—C28—C27179.44 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C23–C28) ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1Wi0.90 (1)1.79 (1)2.673 (2)168 (2)
N4—H4N···O20.88 (1)1.90 (1)2.764 (2)168 (2)
N7—H7N···N30.89 (1)2.28 (2)2.970 (2)134 (1)
N8—H8N···O10.90 (1)1.79 (1)2.664 (2)166 (2)
O1W—H1W···O1ii0.85 (2)1.92 (2)2.7641 (17)172 (2)
O1W—H2W···N60.86 (2)1.94 (2)2.7979 (19)178 (2)
C8—H8A···Cg1iii0.982.713.492 (2)137
C8—H8B···Cg1iv0.982.893.755 (2)148
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y, z+1.
Selected geometric parameters (Å, °) for (I) top
AtomsParameterAtomsParameter
C1—O11.266 (2)C15—O21.263 (2)
N1—N21.3759 (19)N5—N61.4006 (19)
C1—N11.389 (2)C15—N51.396 (2)
C2—N21.338 (2)C17—N61.329 (2)
C1—C31.429 (2)C15—C171.416 (2)
C2—C31.391 (2)C16—C171.405 (2)
N3—N41.3636 (19)N7—N81.3486 (19)
C5—N31.346 (2)C19—N71.349 (2)
C7—N41.338 (2)C21—N81.337 (2)
C5—C61.414 (2)C19—C201.404 (2)
C6—C71.375 (2)C20—C211.389 (2)
N2—N1—C1109.07 (13)C15—N5—N6111.51 (13)
N2—N1—C9121.16 (14)N6—N5—C23119.25 (14)
C1—N1—C9129.62 (14)C15—N5—C23128.95 (15)
N1—N2—C2108.78 (14)N5—N6—C16105.37 (13)
N4—N3—C5103.94 (14)N8—N7—C19110.58 (14)
N3—N4—C7113.60 (14)N7—N8—C21108.36 (14)
Summary of short interatomic contacts (Å) in (I) top
ContactDistanceSymmetry operation
H4N···H7N2.05x, y, z
H13···H18A2.28x, 1/2 - y, 1/2 + z
H14···H18A2.05x, 1/2 - y, 1/2 + z
C1···H1W2.601 - x, 1 - y, 1 - z
C10···H1W2.811 - x, 1 - y, 1 - z
C14···H18A2.75x, 1/2 - y, 1/2 + z
C28···H8B2.752 - x, - y, 1 - z
N2···C143.238 (2)1 - x, -1/2 + y, 3/2 - z
C2···C133.382 (3)1 - x, -1/2 + y, 3/2 - z
C8···C223.317 (2)1 + x, y, z
C15···C223.352 (3)1 - x, 1 - y, 1 - z
C17···C213.391 (3)1 - x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for (I) top
ContactPercentage contribution
neutral tautomerzwitterionoverall
H···H49.852.452.4
O···H/H···O11.19.48.8
N···H/H···N8.214.09.1
C···H/H···C21.515.119.9
C···C5.25.95.9
C···N/N···C4.93.13.7
C···O/O···C0.20.10.2
Geometric data (Å, °) for additional ππ interactions in the crystal of (I) top
First ringSecond ringSeparationSymmetry operation
Cg(N1,N2,C1–C3)Cg(C9–C14)3.5810 (9)1 - x, 1/2 + y, 3/2 - z
Cg(N5,N6,C15–C17)Cg(N7,N8,C19–C21)3.8064 (9)1 - x, 1 - y, 1 - z
Cg (N7,N8,C19–C21)Cg(N7,N8,C19–C21)3.6886 (10)1 - x, - y, 1 - z
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The University of Malaya's X-ray crystallography laboratory is thanked for the intensity data.

Funding information

This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant No. RG-03–102-428.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Alamry, K. A. & Ng, S. W. (2011). Acta Cryst. E67, o2474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBadawey, E. A. M. & El-Ashmawey, I. M. (1998). Eur. J. Med. Chem. 33, 349–361.  Web of Science CrossRef CAS Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1995). Acta Cryst. B51, 1004–1015.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDas, N., Verma, A., Shrivastava, P. K. & Shrivastava, S. K. (2008). Indian J. Chem. Sect. B, 47, 1555–1558.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGhandour, I., Mague, J. T., Bouayad, A., Chakroune, S., Essassi, E. M. & Kandri Rodi, Y. (2017). IUCrData, 2, x170853.  Google Scholar
First citationHigashi, Y., Jitsuiki, D., Chayama, K. & Yoshizumi, M. (2006). Recent. Pat. Cardiovasc. Drug. Discov. 1, 85–93.  CrossRef PubMed CAS Google Scholar
First citationKumar, D., Singh, S. P., Martínez, A., Fruchier, A., Elguero, J., Martínez-Ripoll, M., Carrió, J. S. & Virgili, A. (1995). Tetrahedron, 51, 4891–4906.  CSD CrossRef CAS Web of Science Google Scholar
First citationPizzala, H., Carles, M., Stone, W. E. E. & Thevand, A. (2000). J. Mol. Struct. 526, 261–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationRabnawaz, M., Raza Shah, M. & Ng, S. W. (2010). Acta Cryst. E66, o2569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRubčić, M., Užarević, K., Halasz, I., Bregović, N., Mališ, M., Đilović, I., Kokan, Z., Stein, R. S., Dinnebier, R. E. & Tomišić, V. (2012). Chem. Eur. J. 18, 5620–5631.  PubMed Google Scholar
First citationSahu, S. K., Azam, A. M., Banerjee, M., Choudhary, P., Sutradhar, S., Panda, P. K. & Misra, P. K. (2007). J. Indian Chem. Soc. 84, 1011–1015.  CAS Google Scholar
First citationSharma, B. D. & McConnell, J. F. (1965). Acta Cryst. 19, 797–806.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, D. & Singh, D. (1991). J. Indian Chem. Soc. 68, 165–167.  CAS Google Scholar
First citationSteiner, T. & Koellner, G. (1997). Chem. Commun. pp. 1207–1208.  CSD CrossRef Web of Science Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer v17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds