research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and optical properties of fused-ring chalcone (E)-3-(anthracen-9-yl)-1-(4-nitro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Fundamental Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by H. Ishida, Okayama University, Japan (Received 25 March 2019; accepted 16 April 2019; online 25 April 2019)

The title compound, C23H15NO3, adopts an s-cis conformation with respect to the ethyl­ene C=C and carbonyl C=O double bonds in the enone unit. The mol­ecule is significantly twisted with a dihedral angle of 48.63 (14)° between the anthracene ring system and the benzene ring. In the crystal, mol­ecules are linked into inversion dimers with an R22(10) graph-set motif via pairs of C—H⋯O hydrogen bonds. The inter­molecular inter­actions were analysed and qu­anti­fied by Hirshfeld surface analysis. The mol­ecular structure was optimized and a small HOMO–LUMO energy gap of 2.55 eV was obtained using the DFT method at the B3LYP/6–311 G++(d,p) level of theory. This value is in close agreement with the experimental value of 2.52 eV obtained from the UV–vis analysis. The crystal used was a two-component merohedral twin with a refined ratio of 0.1996 (16):0.8004 (16).

1. Chemical context

Conjugated organic mol­ecules with multiple fused aromatic rings have attracted a great deal of inter­est from researchers because of their excellent performance in organic semiconductor devices (Gu et al., 2015[Gu, P.-Y., Zhao, Y., He, J.-H., Zhang, J., Wang, C., Xu, Q.-F., Lu, J.-M., Sun, X. W. & Zhang, Q. (2015). J. Org. Chem. 80, 3030-3035.]). These organic mol­ecules with a delocalized π-system represent attractive targets for applications in light-emitting diodes. In addition, the selection of the organic π-system with an electron donor (D) and an electron acceptor (A) is important because it exhibits an essential role in charge transfer in the mol­ecule, where the aromatic groups may lead to delocalization of electronic charge distribution, imparting higher polarization of the push–pull configuration and generation of a mol­ecular dipole (Bureš, 2014[Bureš, F. (2014). RSC Adv. 4, 58826-58851.]). An organic chalcone derivative with a π-conjugated system provides a large transfer axis with appropriate substituent groups on both terminal aromatic rings. The chalcone π-bridge consists of a α,β-unsaturated carbonyl unit which is responsible for intra­molecular charge transfer. From the previous studies by Xu et al. (2015[Xu, L., Zhao, Y., Long, G., Wang, Y., Zhao, J., Li, D., Li, J., Ganguly, R., Li, Y., Sun, H., Sun, X. W. & Zhang, Q. (2015). RSC Adv. 5, 63080-63086.]), the introduction of fused aromatic rings into the push–pull system could lead to enhanced carrier mobility and a lower band gap. In a continuation of our previous work on the effect of a fused-ring substituent, i.e. naphthalene or pyrene, on anthracene chalcones (Zaini et al., 2018[Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589-1594.]), we have synthesized the title compound and report herein on its molecular and crystal structure, and optical properties.

[Scheme 1]

2. Structural commentary

The title chalcone compound consists of an anthracene ring system and a para-substituted nitro­benzene unit, representing a donor–π–acceptor (DπA) system (Fig. 1[link]a). The mol­ecular structure was optimized with the Gaussian09W software package (Frisch et al., 2009[Frisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA.]) using the DFT method at the B3LYP/6-311G++(d,p) level of theory. All geometrical parameters calculated agree well with the experimental values. The compound adopts an s-cis conformation with respect to the C15=C16 [1.326 (5) Å; 1.347 (DFT) Å] and C17=O1 [1.232 (4) Å; 1.223 (DFT) Å] double bonds in the enone unit (C15=C16—C17=O1) and the structure is twisted around the C14—C15 bond with a C1—C14—C15—C16 torsion angle of 51.1 (6)° and slightly deviated around the C17—C18 bond with a C16—C17—C18—C19 torsion angle of −15.6 (5)°. The corresponding values by DFT are 44.8 and 18.5°, respectively (Fig. 1[link]b). These large twist angles are due to the bulkiness of the strong-electron-donor anthracene ring system (Zainuri et al., 2018[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 650-655.]) and are also expected from the steric repulsion between the H atoms of the anthracene ring system and the ethyl­ene group. In addition, the enone unit [maximum deviation 0.020 (3) Å at C17] forms dihedral angles of 52.0 (2) and 15.8 (2)°, respectively, with the anthracene ring system [C1–C14, maximum deviation of 0.034 (4) Å at C5] and the nitro­benzene ring [C18–C23, maximum deviation 0.011 (4) Å at C20] (Fig. 1[link]c). Furthermore, a large dihedral angle of 48.63 (14)° is observed between the anthracene ring system and the nitro­benzene ring (Fig. 1[link]d); this could diminish the electronic effect between the two ring systems (Jung et al., 2008[Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861-867.]).

[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound based DπA system with displacement ellipsoids drawn at the 50% probability level and the optimized structure, (b) a representation of the twisted structures showing torsion angles, (c) and (d) the twisted structures showing dihedral angles.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via pairs of inter­molecular C—H⋯O inter­actions [C23—H23⋯O1i; symmetry code (i): −x + 1, −y + 2, −z + 1; Table 1[link]), forming inversion dimers with an [R_{2}^{2}](10) graph-set motif. These dimers are stacked along the b-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1i 0.93 2.49 3.240 (4) 138
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 2]
Figure 2
Packing diagrams of the title compound, showing C—H⋯O inter­actions (dashed lines).

The Hirshfeld surfaces and the related two dimensional fingerprint plots were generated using Crystal Explorer3.1 (Wolff et al., 2012[Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. The University of Western Australia Perth, Australia.]). The dnorm and de surfaces are presented in Fig. 3[link]a and Fig. 3[link]b, respectively. In the dnorm surface, the bright-red spots indicate the inter­molecular C—H⋯O inter­actions. These contacts are also confirmed by the pale-orange region marked with arrows in the de surface. The fingerprint plots (Ternavisk et al., 2014[Ternavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526-2536.]) of the inter­molecular contacts with the corresponding dnorm surfaces (Fig. 4[link]) show that the percentage contributions to the total Hirshfeld surface are 23.8, 19.6 and 12.6%, respectively, for the O⋯H/H⋯O, C⋯H/H⋯C and C⋯C contacts.

[Figure 3]
Figure 3
The Hirshfeld surfaces mapped over (a) dnorm and (b) de, displaying the inter­molecular inter­actions.
[Figure 4]
Figure 4
The fingerprint plots of the inter­molecular contacts with the corresponding dnorm surfaces, listing the percentage contributions to the total Hirshfeld surface.

4. UV–vis analysis and frontier mol­ecular orbitals

The measurement of the UV–vis absorption spectrum was carried out in an aceto­nitrile solution (10−5 M) with cut-off wavelength of 190 nm. Two major peaks at 253 and 427 nm were observed (Fig. 5[link]). The strong band of 253 nm was assigned to the nπ* transition. This sharp absorption peak arises due to the presence of carbonyl (C=O) and nitro substituent (NO2) functional groups (Zaini et al., 2018[Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589-1594.]). The energy band gap of 2.52 eV was evaluated from the UV–vis absorption edge (λa.e) at 492.06 nm (Fig. 5[link]). This small band-gap energy is suitable for optoelectronic applications as previously reported for the structure of chalcone (Prabhu et al., 2016[Prabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. S. (2016). Mol. Cryst. Liq. Cryst. 637, 76-86.]), and therefore exhibits a semiconducting nature (Rosencher & Vinter, 2002[Rosencher, E. & Vinter, B. (2002). Optoelectronics. Cambridge University Press.]). The highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO), known as frontier orbitals, obtained with the B3LYP/6-311G++(d,p) level calculation are illustrated in Fig. 6[link]. The HOMO is mainly delocalized at the anthracene ring system. After excitation, the charge is localized at the enone and nitro­benzene moieties as depicted in the LUMO. The calculated HOMO–LUMO energy gap is 2.55 eV which is comparable with the UV–vis energy band gap obtained from the UV–vis absorption edge.

[Figure 5]
Figure 5
UV–vis spectrum of the title compound. Inset showed the experimental energy band gap obtained from absorption edge wavelength (λa.e).
[Figure 6]
Figure 6
The spatial distributions of the HOMO and LUMO calculated for the title compound.

5. Database survey

A search of the Cambridge Structural Database (Version 5.40, last update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed six closely related fused-ring chalcones, namely, trans-3-(9-anthr­yl)-1-(4-meth­oxy­phen­yl)prop-2-en-1-one (refcode EMULIT; Zhang et al., 2016[Zhang, R., Wang, M., Sun, H., Khan, A., Usman, R., Wang, S., Gu, X., Wang, J. & Xu, C. (2016). New J. Chem. 40, 6441-6450.]), 3-(anthracen-9-yl)-1-(4-chloro­phen­yl)prop-2-en-1-one (JAHPUG; Yu et al., 2017[Yu, F., Wang, M., Sun, H., Shan, Y., Du, M., Khan, A., Usman, R., Zhang, W., Shan, H. & Xu, C. (2017). RSC Adv. 7, 8491-8503.]), (E)-3-(anthracen-9-yl)-1-(4-bromo­phen­yl)prop-2-en-1-one (POP­BAY; Suwunwong et al., 2009[Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420-o421.]), (Z)-3-(anthracen-9-yl)-1-(2-eth­oxy­phen­yl)prop-2-en-1-one (KABHUS; Joothamongkhon et al., 2010[Joothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669-o2670.]), (E)-3-(anthracen-9-yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one (UNUDUD; Jasinski et al., 2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795.]; UNUDUD01; Chantrapromma et al., 2011[Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Joothamongkhon, J. & Fun, H.-K. (2011). Acta Cryst. E67, o2554-o2555.]), (E)-3-(anthracen-9-yl)-1-(2-bromo­phen­yl)prop-2-en-1-one (WAFGOB; Fun et al., 2010[Fun, H.-K., Kobkeatthawin, T., Joothamongkhon, J. & Chantrapromma, S. (2010). Acta Cryst. E66, o3312-o3313.]). Compounds EMULIT, JAHPUG and POPBAY are meth­oxy, chloro and bromo derivatives, respectively, substituted at the para position on the phenyl ring, while compounds KABHUS, UNUDUD (UNUDUD01) and WAFGOB are ortho-substituted eth­oxy, hy­droxy and bromo derivatives, respectively. Dihedral angles between the enone unit and the anthracene ring system and between the enone unit and the benzene ring are 81.6 (3) and 8.2 (4)°, respectively, for EMULIJ, 47.1 (3) and 22.9 (3)° for JAHPUG, 45.79 (10) and 20.88 (11)° for POPBAY, 82.49 (11) and 35.54 (13)° for KABHUS, 61.51 (9) and 14.56 (10)° [62.05 (9) and 11.04 (10)°] for UNUDUD, and 42.62 (16) and 63.00 (17)° for WAFGOB. The large dihedral angle of 82.49 (11)° between the enone unit and the anthracene ring system observed for KABHUS is due to the Z configuration of the mol­ecule. Inter­estingly, EMULIJ with an E configuration also shows a large dihedral angle of 81.6 (3)° between the enone unit and the anthracene ring system, whereas the dihedral angle between the enone unit and the benzene ring is extremely small [8.2 (4)°].

6. Synthesis and crystallization

A mixture of 4-nitro­aceto­phenone (0.5 mmol) and 9-anthracencarboxaldehyde (0.5 mmol) was dissolved in methanol (20 ml) and the solution stirred continuously. A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise until a precipitate formed and the reaction was stirred continuously for about 5 h at room temperature. After stirring, the solution was poured into 60 ml of ice-cold distilled water. The resultant crude product was filtered and washed several times with with distilled water until the filtrate turned colourless. The dried precipitate was further recrystallized to obtain the corresponding chalcone. Red plate-shaped single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). Four outliers (002), (420), (300) and ([\overline{4}]52) were omitted in the last cycle of refinement. The crystal used was a two-component merohedral twin (twin law [\overline1] 0 0 0 [\overline1] 0 1 0 1). The refined ratio of the twin components was 0.1996 (16):0.8004 (16).

Table 2
Experimental details

Crystal data
Chemical formula C23H15NO3
Mr 353.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 10.8204 (10), 3.9364 (3), 40.420 (3)
β (°) 97.651 (3)
V3) 1706.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.26 × 0.17 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.771, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 45734, 3608, 2570
Rint 0.113
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.178, 1.09
No. of reflections 3608
No. of parameters 245
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-3-(Anthracen-9-yl)-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C23H15NO3F(000) = 736
Mr = 353.36Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.8204 (10) ÅCell parameters from 9886 reflections
b = 3.9364 (3) Åθ = 2.3–30.2°
c = 40.420 (3) ŵ = 0.09 mm1
β = 97.651 (3)°T = 296 K
V = 1706.3 (2) Å3Plate, red
Z = 40.26 × 0.17 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
2570 reflections with I > 2σ(I)
φ and ω scansRint = 0.113
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.0°, θmin = 1.5°
Tmin = 0.771, Tmax = 0.970h = 1313
45734 measured reflectionsk = 44
3608 independent reflectionsl = 4949
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0651P)2 + 1.4385P],
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3608 reflectionsΔρmax = 0.20 e Å3
245 parametersΔρmin = 0.21 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71075 3.957 11.583 40.623 82.797 90.074 69.980

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4171 (2)0.9048 (7)0.44992 (6)0.0512 (7)
O20.0772 (4)0.1119 (11)0.57047 (8)0.0950 (12)
O30.2506 (4)0.2855 (14)0.59652 (8)0.1070 (16)
N10.1793 (4)0.2508 (11)0.57135 (9)0.0638 (10)
C10.1551 (3)0.5116 (9)0.33952 (8)0.0394 (9)
C20.0565 (4)0.6557 (11)0.35514 (8)0.0487 (10)
H2A0.07490.75400.37610.058*
C30.0635 (4)0.6530 (12)0.34009 (9)0.0572 (11)
H3A0.12600.74490.35110.069*
C40.0939 (4)0.5133 (13)0.30826 (10)0.0601 (12)
H4A0.17650.51280.29830.072*
C50.0048 (4)0.3793 (11)0.29185 (9)0.0527 (10)
H5A0.02690.28600.27080.063*
C60.1232 (3)0.3783 (10)0.30643 (8)0.0420 (9)
C70.2156 (4)0.2487 (10)0.28935 (8)0.0469 (9)
H7A0.19360.16260.26790.056*
C80.3404 (4)0.2438 (10)0.30333 (8)0.0433 (9)
C90.4357 (4)0.1017 (11)0.28588 (9)0.0537 (10)
H9A0.41400.01360.26450.064*
C100.5562 (4)0.0937 (12)0.29994 (10)0.0598 (11)
H10A0.61720.00860.28800.072*
C110.5891 (4)0.2144 (12)0.33262 (10)0.0604 (11)
H11A0.67170.20020.34240.072*
C120.5027 (3)0.3513 (11)0.35013 (9)0.0513 (10)
H12A0.52750.43380.37150.062*
C130.3747 (3)0.3710 (9)0.33633 (8)0.0399 (8)
C140.2818 (3)0.5076 (9)0.35409 (8)0.0377 (8)
C150.3204 (3)0.6376 (9)0.38796 (8)0.0423 (9)
H15A0.38550.79370.39010.051*
C160.2745 (4)0.5611 (9)0.41586 (8)0.0424 (9)
H16A0.20550.41900.41490.051*
C170.3311 (3)0.6979 (9)0.44821 (8)0.0367 (8)
C180.2866 (3)0.5810 (8)0.47993 (7)0.0345 (8)
C190.1747 (3)0.4084 (10)0.48049 (8)0.0447 (9)
H19A0.12390.35990.46060.054*
C200.1392 (4)0.3096 (10)0.51059 (9)0.0481 (10)
H20A0.06360.19870.51110.058*
C210.2152 (3)0.3743 (10)0.53969 (8)0.0433 (9)
C220.3264 (3)0.5453 (10)0.53986 (8)0.0448 (9)
H22A0.37750.58900.55980.054*
C230.3599 (3)0.6495 (10)0.50987 (8)0.0412 (9)
H23A0.43380.76940.50970.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0545 (16)0.0532 (16)0.0449 (13)0.0130 (15)0.0028 (12)0.0031 (13)
O20.087 (2)0.121 (3)0.083 (2)0.033 (3)0.0344 (19)0.006 (2)
O30.095 (3)0.178 (5)0.0471 (17)0.025 (3)0.0076 (18)0.017 (2)
N10.069 (2)0.073 (3)0.053 (2)0.001 (2)0.0200 (19)0.0001 (19)
C10.051 (2)0.0347 (19)0.0338 (17)0.0008 (17)0.0093 (16)0.0037 (15)
C20.058 (3)0.051 (2)0.0376 (18)0.007 (2)0.0070 (18)0.0028 (18)
C30.052 (2)0.067 (3)0.053 (2)0.013 (2)0.0126 (19)0.012 (2)
C40.050 (2)0.073 (3)0.055 (2)0.002 (2)0.003 (2)0.013 (2)
C50.062 (3)0.053 (2)0.041 (2)0.007 (2)0.0009 (19)0.0046 (19)
C60.051 (2)0.041 (2)0.0337 (17)0.0066 (19)0.0058 (16)0.0053 (16)
C70.069 (3)0.039 (2)0.0327 (17)0.003 (2)0.0071 (18)0.0038 (16)
C80.058 (2)0.0345 (19)0.0385 (18)0.0002 (19)0.0109 (18)0.0030 (16)
C90.067 (3)0.049 (2)0.047 (2)0.002 (2)0.019 (2)0.0030 (19)
C100.062 (3)0.055 (3)0.068 (3)0.009 (2)0.028 (2)0.004 (2)
C110.050 (2)0.062 (3)0.070 (3)0.002 (2)0.012 (2)0.007 (2)
C120.051 (2)0.054 (3)0.049 (2)0.001 (2)0.0065 (19)0.0017 (19)
C130.050 (2)0.0312 (18)0.0397 (18)0.0006 (18)0.0097 (16)0.0052 (16)
C140.047 (2)0.0307 (19)0.0352 (17)0.0004 (17)0.0048 (15)0.0031 (15)
C150.048 (2)0.0350 (19)0.0425 (18)0.0003 (18)0.0015 (16)0.0009 (16)
C160.052 (2)0.0357 (19)0.0382 (18)0.0012 (19)0.0019 (16)0.0003 (16)
C170.035 (2)0.0345 (19)0.0395 (18)0.0067 (18)0.0008 (15)0.0026 (15)
C180.0365 (19)0.0290 (17)0.0370 (17)0.0099 (16)0.0013 (14)0.0049 (15)
C190.040 (2)0.050 (2)0.0421 (19)0.0021 (19)0.0001 (16)0.0099 (18)
C200.044 (2)0.047 (2)0.055 (2)0.0051 (19)0.0129 (18)0.0060 (19)
C210.047 (2)0.045 (2)0.0392 (18)0.011 (2)0.0118 (16)0.0021 (17)
C220.042 (2)0.054 (2)0.0371 (18)0.007 (2)0.0015 (15)0.0059 (17)
C230.039 (2)0.044 (2)0.0396 (18)0.0033 (18)0.0036 (15)0.0052 (17)
Geometric parameters (Å, º) top
O1—C171.232 (4)C10—H10A0.9300
O2—N11.229 (5)C11—C121.358 (5)
O3—N11.200 (4)C11—H11A0.9300
N1—C211.468 (5)C12—C131.424 (5)
C1—C141.418 (5)C12—H12A0.9300
C1—C21.427 (5)C13—C141.417 (5)
C1—C61.435 (5)C14—C151.469 (5)
C2—C31.359 (5)C15—C161.326 (5)
C2—H2A0.9300C15—H15A0.9300
C3—C41.398 (6)C16—C171.470 (5)
C3—H3A0.9300C16—H16A0.9300
C4—C51.348 (6)C17—C181.500 (5)
C4—H4A0.9300C18—C231.382 (4)
C5—C61.431 (5)C18—C191.392 (5)
C5—H5A0.9300C19—C201.379 (5)
C6—C71.386 (5)C19—H19A0.9300
C7—C81.393 (5)C20—C211.366 (5)
C7—H7A0.9300C20—H20A0.9300
C8—C131.427 (5)C21—C221.378 (5)
C8—C91.438 (5)C22—C231.373 (5)
C9—C101.352 (6)C22—H22A0.9300
C9—H9A0.9300C23—H23A0.9300
C10—C111.404 (6)
O3—N1—O2123.3 (4)C11—C12—C13121.2 (4)
O3—N1—C21119.1 (4)C11—C12—H12A119.4
O2—N1—C21117.6 (4)C13—C12—H12A119.4
C14—C1—C2123.9 (3)C14—C13—C12122.7 (3)
C14—C1—C6118.8 (3)C14—C13—C8119.5 (3)
C2—C1—C6117.2 (3)C12—C13—C8117.8 (3)
C3—C2—C1121.6 (3)C13—C14—C1120.4 (3)
C3—C2—H2A119.2C13—C14—C15118.1 (3)
C1—C2—H2A119.2C1—C14—C15121.5 (3)
C2—C3—C4120.6 (4)C16—C15—C14128.4 (4)
C2—C3—H3A119.7C16—C15—H15A115.8
C4—C3—H3A119.7C14—C15—H15A115.8
C5—C4—C3120.7 (4)C15—C16—C17121.0 (4)
C5—C4—H4A119.6C15—C16—H16A119.5
C3—C4—H4A119.6C17—C16—H16A119.5
C4—C5—C6121.0 (4)O1—C17—C16120.9 (3)
C4—C5—H5A119.5O1—C17—C18118.7 (3)
C6—C5—H5A119.5C16—C17—C18120.3 (3)
C7—C6—C5121.2 (3)C23—C18—C19118.7 (3)
C7—C6—C1119.9 (3)C23—C18—C17118.5 (3)
C5—C6—C1118.8 (3)C19—C18—C17122.8 (3)
C6—C7—C8121.8 (3)C20—C19—C18119.8 (3)
C6—C7—H7A119.1C20—C19—H19A120.1
C8—C7—H7A119.1C18—C19—H19A120.1
C7—C8—C13119.5 (3)C21—C20—C19120.1 (4)
C7—C8—C9121.8 (3)C21—C20—H20A120.0
C13—C8—C9118.7 (3)C19—C20—H20A120.0
C10—C9—C8121.2 (4)C20—C21—C22121.3 (3)
C10—C9—H9A119.4C20—C21—N1119.3 (4)
C8—C9—H9A119.4C22—C21—N1119.3 (3)
C9—C10—C11119.8 (4)C23—C22—C21118.3 (3)
C9—C10—H10A120.1C23—C22—H22A120.9
C11—C10—H10A120.1C21—C22—H22A120.9
C12—C11—C10121.2 (4)C22—C23—C18121.8 (4)
C12—C11—H11A119.4C22—C23—H23A119.1
C10—C11—H11A119.4C18—C23—H23A119.1
C14—C1—C2—C3180.0 (4)C8—C13—C14—C15179.7 (3)
C6—C1—C2—C33.1 (6)C2—C1—C14—C13177.5 (3)
C1—C2—C3—C41.3 (7)C6—C1—C14—C130.6 (5)
C2—C3—C4—C50.1 (7)C2—C1—C14—C153.6 (6)
C3—C4—C5—C60.4 (7)C6—C1—C14—C15179.5 (3)
C4—C5—C6—C7178.4 (4)C13—C14—C15—C16127.8 (4)
C4—C5—C6—C12.3 (6)C1—C14—C15—C1651.1 (6)
C14—C1—C6—C70.1 (5)C14—C15—C16—C17175.5 (3)
C2—C1—C6—C7177.1 (3)C15—C16—C17—O15.0 (5)
C14—C1—C6—C5179.4 (3)C15—C16—C17—C18173.6 (3)
C2—C1—C6—C53.5 (5)O1—C17—C18—C2313.9 (5)
C5—C6—C7—C8179.5 (4)C16—C17—C18—C23164.7 (3)
C1—C6—C7—C80.2 (6)O1—C17—C18—C19165.7 (3)
C6—C7—C8—C130.9 (6)C16—C17—C18—C1915.6 (5)
C6—C7—C8—C9178.5 (4)C23—C18—C19—C200.1 (5)
C7—C8—C9—C10179.0 (4)C17—C18—C19—C20179.7 (3)
C13—C8—C9—C101.4 (6)C18—C19—C20—C211.4 (6)
C8—C9—C10—C112.4 (7)C19—C20—C21—C221.6 (6)
C9—C10—C11—C122.4 (7)C19—C20—C21—N1176.7 (4)
C10—C11—C12—C131.4 (7)O3—N1—C21—C20174.4 (4)
C11—C12—C13—C14179.0 (4)O2—N1—C21—C204.7 (6)
C11—C12—C13—C80.4 (6)O3—N1—C21—C223.9 (6)
C7—C8—C13—C141.5 (5)O2—N1—C21—C22177.1 (4)
C9—C8—C13—C14179.1 (3)C20—C21—C22—C230.2 (6)
C7—C8—C13—C12178.0 (4)N1—C21—C22—C23178.1 (3)
C9—C8—C13—C120.3 (5)C21—C22—C23—C181.4 (5)
C12—C13—C14—C1178.1 (4)C19—C18—C23—C221.5 (5)
C8—C13—C14—C11.3 (5)C17—C18—C23—C22178.8 (3)
C12—C13—C14—C150.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O1i0.932.493.240 (4)138
Symmetry code: (i) x+1, y+2, z+1.
 

Funding information

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing facilities, Fundamental Research Grant Scheme (FRGS) No. 203.PFIZIK.6711606 and Research University Grant (RUI) No. 1001.PFIZIK.8011081 for supplying the chemicals to conduct this research.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBureš, F. (2014). RSC Adv. 4, 58826–58851.  Google Scholar
First citationChantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Joothamongkhon, J. & Fun, H.-K. (2011). Acta Cryst. E67, o2554–o2555.  CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2009). Gaussian 09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationFun, H.-K., Kobkeatthawin, T., Joothamongkhon, J. & Chantrapromma, S. (2010). Acta Cryst. E66, o3312–o3313.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, P.-Y., Zhao, Y., He, J.-H., Zhang, J., Wang, C., Xu, Q.-F., Lu, J.-M., Sun, X. W. & Zhang, Q. (2015). J. Org. Chem. 80, 3030–3035.  CrossRef CAS PubMed Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoothamongkhon, J., Chantrapromma, S., Kobkeatthawin, T. & Fun, H.-K. (2010). Acta Cryst. E66, o2669–o2670.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrabhu, A. N., Upadhyaya, V., Jayarama, A. & Bhat, K. S. (2016). Mol. Cryst. Liq. Cryst. 637, 76–86.  CrossRef CAS Google Scholar
First citationRosencher, E. & Vinter, B. (2002). Optoelectronics. Cambridge University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTernavisk, R. R., Camargo, A. J., Machado, F. B., Rocco, J. A., Aquino, G. L., Silva, V. H. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526–2536.  CrossRef PubMed Google Scholar
First citationWolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). CrystalExplorer. The University of Western Australia Perth, Australia.  Google Scholar
First citationXu, L., Zhao, Y., Long, G., Wang, Y., Zhao, J., Li, D., Li, J., Ganguly, R., Li, Y., Sun, H., Sun, X. W. & Zhang, Q. (2015). RSC Adv. 5, 63080–63086.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, F., Wang, M., Sun, H., Shan, Y., Du, M., Khan, A., Usman, R., Zhang, W., Shan, H. & Xu, C. (2017). RSC Adv. 7, 8491–8503.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 650–655.  CrossRef IUCr Journals Google Scholar
First citationZhang, R., Wang, M., Sun, H., Khan, A., Usman, R., Wang, S., Gu, X., Wang, J. & Xu, C. (2016). New J. Chem. 40, 6441–6450.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds