research communications
(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-([2,2′-bithiophen]-5-yl)prop-2-en-1-one: UV–Vis analysis and theoretical studies of a new π-conjugated chalcone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my
In the title compound, C18H12O3S2, synthesized by the Claisen–Schmidt condensation method, the essentially planar chalcone unit adopts an s-cis configuration with respect to the carbonyl group within the ethylenic bridge. In the crystal, weak C—H⋯π interactions connect the molecules into zigzag chains along the b-axis direction. The molecular structure was optimized geometrically using Density Functional Theory (DFT) calculations at the B3LYP/6–311 G++(d,p) basis set level and compared with the experimental values. Molecular orbital calculations providing electron-density plots of HOMO and LUMO molecular orbitals and molecular electrostatic potentials (MEP) were also computed both with the DFT/B3LYP/6–311 G++(d,p) basis set. The experimental energy gap is 3.18 eV, whereas the theoretical HOMO–LUMO energy gap value is 2.73 eV. Hirshfeld surface analysis was used to further investigate the weak interactions present.
Keywords: crystal structure; DFT; UV–Vis; HOMO–LUMO; Hirshfeld surface.
CCDC reference: 1899823
1. Chemical context
α,β-unsaturated carbonyl system (Zingales et al., 2016). Compounds with the chalcone backbone are becoming important in the design of new materials, employing donor–π–acceptor (D–π–A) bridge systems to further enhance their future development for optoelectronic applications. In principle, the intermolecular charge-transfer (ICT), HOMO–LUMO gap and optical properties can be tailored by attaching electron donors and acceptors of various electronic nature, assuring efficient D⋯A interactions and planarization of the entire molecule (Bureš, 2014). The presence of long π-conjugated systems in have been shown to turn them into chromophores whereby certain colours can be displayed as a result of absorbing light in the visible region (Asiri et al., 2017). Electron-donating and accepting groups containing these chromophores have been examined for their applications in the field of material science. Additionally, the substitution of a phenyl group into a polythiophene compound stabilizes the conjugated π-bond system and forms a smaller band-gap material for supercapacitor applications (Mei-Rong et al., 2014). As part of our ongoing studies utilizing thiophene-ring substituents with chalcone derivatives (Zainuri et al., 2017), we hereby report the synthesis, structural, UV–Vis, Hirshfeld surface and DFT analyses of the title compound, (I).
are organic compounds composed of open-chain in which the two aromatic rings are joined by a three-carbon2. Structural commentary
The experimental and optimized structures of (I) are shown in Fig. 1a and 1b, respectively. The molecular structure consists of a 1,3-benzodioxole ring system (A; O1/O2/C1–C7) and two thiophene rings, B (S1/C11–C14) and C (S2/C15–C18), these substituent rings representing a donor–linker–acceptor Ring A [maximum deviation of 0.011 (4) Å at C3] forms dihedral angles of 1.88 (15) and 5.37 (16)°, respectively, with rings B [maximum deviations of 0.002 (3) and −0.002 (4) Å for C11 and C12, respectively] and C [maximum deviations of −0.009 (3) and 0.009 (3) Å for C15 and C16 respectively], respectively. The enone moiety [O3/C8–C10, maximum deviation of 0.014 (3) Å at C8] forms dihedral angles of 3.3 (2), 4.3 (2) and 7.4 (2)° with rings A, B and C, respectively. This planar conformation for the molecule indicates that the 1,3-benzodioxole group and the thiophene rings have stabilized the conjugated π-bond system.
The molecule adopts an s-cis configuration with respect to the C8=O3 [experimental = 1.229 (4) Å and DFT = 1.227 Å] bond length within the enone moiety (O3/C8–C10). The molecule is observed to be essentially planar (Fig. 1c) about the C9—C10 bond with a C8—C9—C10—C11 torsion angle of 178.5 (3)°, whereas the corresponding DFT value is 179.6°. The slight difference is the result of the optimization being carried out in an isolated gaseous state whereas the experimental molecular structure could easily be affected by its normal environment (Zaini et al., 2018).
For the theoretical geometry optimization calculation, the starting geometries of the compound were taken from the single-crystal X-ray Gaussian09W software package (Frisch et al., 2009). Selected bond lengths and angles for the experimental and theoretical (DFT) studies are compared in the supporting information; all values are within normal ranges (Allen et al., 1987).
data. The optimization of the molecular geometries leading to energy minima was achieved using DFT [Becke's non-local three parameter exchange and Lee-Yang-Parr's correlation functional (B3LYP)] with the 6-311++G(d,p) basis set as implemented in the3. Supramolecular features
In the crystal, molecules are linked in a head-to-tail manner via C3—H3A⋯Cg(−x + 1, y − , −z + ) interactions involving ring C (Table 1, Fig. 2), forming zigzag chains along the b-axis direction. In the absence of any classical hydrogen bonds, this interaction stabilizes the The chains stack along the c-axis direction.
4. Hirshfeld surface analysis
Hirshfeld surface analysis was undertaken using Crystal Explorer 3.1 (Wolff et al., 2012) to investigate the molecular packing. H⋯H interactions are the most important, contributing 31.1% to the overall crystal packing. In the fingerprint plot (Fig. 3) they are seen as widely scattered points of high density due to the large hydrogen-atom content of the molecule, with de + di = 2.50 Å (di and de are the distances to the nearest atom inside and outside the surface; Shit et al., 2016). C⋯H/H⋯C contacts (16.7%) are indicated by a pair of peaks at de + di = 2.75 Å, while the H⋯O/O⋯H contacts (19.4%) are represented by a pair of short spikes at de + di = 2.60 Å. The significant contributions by H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that weak hydrogen bonding and van der Waals interactions do play relevant roles in the crystal packing (Hathwar et al., 2015). The surface mapped over shape-index reveals small changes in the surface shape, indicating the C—H⋯π (Fig. 4) interaction. The bright concave red spots in the region marked by arrows indicate atoms of the π-stacked molecule, whereas the convex blue spots indicate ring atoms of the molecule inside the surface (Chkirate et al., 2018).
5. UV–Vis and frontier molecular orbital analyses
The experimental UV–Vis a), while the simulated value is observed at 422 nm (Fig. 5b). The absorption maximum is assigned to the π–π* transitions that arise from the carbonyl group (C=O) of the compound. The slight difference in wavelength is due to the fact that the experimental study is conducted in solution whereas the theoretical study is performed for a gaseous environment (Zainuri et al., 2018a). The strong cut-off wavelength for the experimental study is 455 nm (Fig. 5a) with an energy band gap of 2.73 eV.
consists of one major band that lies in the visible region at 400 nm (Fig. 5The highest occupied molecular orbital (HOMO) acts as an et al., 2018). The HOMO and LUMO electron-density plots were computed using the DFT/B3LYP/6-311 G++(d,p) basis set. The EHOMO – ELUMO gap is calculated to be 3.18 eV. Generally, the value of the energy gap characterizes the chemical stability of the molecule (Zainuri et al., 2018b). As shown in Fig. 6, the charge densities are accumulated over the entire molecule for the HOMO and LUMO states. A large HOMO–LUMO energy gap defines it as a `hard' molecule while a small one defines a `soft' molecule (Bayar et al., 2018). Hard molecules are less polarizable than the soft ones as there is a need of higher energy for excitation (Balasubramani et al., 2018). The energy gap value in the title compound indicates good stability and a high chemical hardness.
and represents the ability to donate electrons while the lowest unoccupied molecular orbital (LUMO) acts as the representing the ability to accept electrons (Balasubramani6. Molecular electrostatic potentials
Molecular electrostatic potentials (MEP) are useful in investigating the relationship between the molecular structure and its physicochemical properties, visualizing the molecular size and shape, along with the charge distributions in molecules in terms of colour grading (Zainuri et al., 2018b). The MEP map (Fig. 7) was calculated at the B3LYP/6-311G++ (d,p) level of theory. The red- and blue-coloured regions indicate nucleophiles that are electron rich, and regions that are electron poor, respectively. The remaining white regions indicate neutral atoms. Information about intermolecular interactions within the compound can be obtained from these regions (Gunasekaran et al., 2008). In the title molecule, the reactive site, localized in the carbonyl group, is shown in red. It possesses the most negative potential and is thus the strongest repulsion site (electrophilic attack). The blue spots indicate the strongest attraction regions, which are occupied mostly by hydrogen atoms (Zaini et al., 2019).
7. Database survey
A search of the Cambridge Structural Database (Version 5.39, last update November 2017; Groom et al., 2016) revealed four thiophene-substituted compounds with a different ketone on the chalcone: (E)-1-(2-aminophenyl)-3-(thiophen-2-yl)prop-2-en-1-one (Chantrapromma et al., 2013), (2E)-3-(5-bromo-2-thienyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Narayana et al., 2007), 1-(4-bromophenyl)-3-(2-thienyl)prop-2-en-1-one (Patil et al., 2006) and (2E)-1-(4-bromophenyl)-3-(thiophen-2-yl)prop-2-en-1-one (Arshad et al., 2017). Other related compounds that have a similar benzo[d]dioxol substituent on the chalcone are (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Sreevidya et al., 2010) and (E)-1-(1,3-benzodioxol-5-yl)-3-(3-bromophenyl)prop-2-en-1-one (Li et al., 2008).
In terms of intermolecular interactions, (E)-1-(2-aminophenyl)-3-(thiophen-2-yl)prop-2-en-1-one (Chantrapromma et al., 2013) exhibits a strong intermolecular C—H⋯O interaction by which two adjacent molecules are linked in an anti-parallel face-to-face manner into chains along the c-axis direction. Meanwhile, a weak intermolecular O—H⋯O interaction is observed in (2E)-3-(5-bromo-2-thienyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Narayana et al., 2007). Similar to the situation in (I), weak intermolecular C—H⋯π interactions link the molecules of 1-(4-bromophenyl)-3-(2-thienyl)prop-2-en-1-one (Patil et al., 2006) into chains along the b-axis direction. Lastly, an intermolecular C—H⋯Cl interaction, involving the terminal chloro-substituted phenyl ring, is also found in (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Sreevidya et al., 2010).
8. Synthesis and crystallization
A mixture of 3′,4′-(methylenedioxy)acetophenone (0.5 mmol) and 2,2′-bithiophene-5-carboxaldehyde (0.5 mmol) was dissolved in methanol. A catalytic amount of NaOH was added dropwise with vigorous stirring. The reaction mixture was stirred for about 5 h at room temperature and then poured into ice-cold water. The resulting crude solid was collected by filtration. Single crystals were grown from an acetone solution by slow evaporation.
9. Refinement
Crystal data collection and structure . All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). One outlier (104) was omitted from the final refinement.
details are summarized in Table 2Supporting information
CCDC reference: 1899823
https://doi.org/10.1107/S2056989019004912/jj2209sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004912/jj2209Isup2.hkl
Comparison between calculated (DFT) and X-ray of selected geometrical data. DOI: https://doi.org/10.1107/S2056989019004912/jj2209sup3.docx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004912/jj2209Isup4.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C18H12O3S2 | F(000) = 704 |
Mr = 340.40 | Dx = 1.471 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.030 (1) Å | Cell parameters from 3229 reflections |
b = 24.875 (5) Å | θ = 2.6–19.6° |
c = 11.239 (2) Å | µ = 0.36 mm−1 |
β = 114.249 (2)° | T = 296 K |
V = 1537.1 (5) Å3 | Plate, yellow |
Z = 4 | 0.19 × 0.15 × 0.06 mm |
Bruker APEXII CCD diffractometer | 2096 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.078 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 26.0°, θmin = 2.2° |
Tmin = 0.875, Tmax = 0.924 | h = −7→7 |
30820 measured reflections | k = −30→30 |
3024 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.164 | w = 1/[σ2(Fo2) + (0.074P)2 + 1.2156P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3024 reflections | Δρmax = 0.41 e Å−3 |
208 parameters | Δρmin = −0.47 e Å−3 |
Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71075 11.261 24.951 12.083 90.028 114.196 90.000 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.28791 (16) | 0.61675 (4) | −0.12250 (9) | 0.0500 (3) | |
S2 | 0.7476 (2) | 0.71610 (5) | −0.24635 (12) | 0.0759 (4) | |
O1 | 0.3608 (5) | 0.35799 (12) | 0.5854 (3) | 0.0715 (8) | |
O2 | 0.7813 (5) | 0.35937 (12) | 0.6897 (3) | 0.0693 (8) | |
O3 | 0.1080 (4) | 0.48699 (11) | 0.1984 (3) | 0.0628 (8) | |
C1 | 0.3315 (6) | 0.42199 (14) | 0.4126 (3) | 0.0458 (8) | |
H1A | 0.1626 | 0.4211 | 0.3711 | 0.055* | |
C2 | 0.4540 (6) | 0.39239 (14) | 0.5213 (3) | 0.0468 (8) | |
C3 | 0.5656 (8) | 0.33666 (17) | 0.6914 (4) | 0.0681 (11) | |
H3A | 0.5690 | 0.2979 | 0.6837 | 0.082* | |
H3B | 0.5551 | 0.3452 | 0.7731 | 0.082* | |
C4 | 0.7034 (7) | 0.39318 (14) | 0.5843 (3) | 0.0495 (9) | |
C5 | 0.8413 (6) | 0.42354 (15) | 0.5408 (4) | 0.0549 (9) | |
H5A | 1.0100 | 0.4239 | 0.5838 | 0.066* | |
C6 | 0.7201 (6) | 0.45425 (14) | 0.4288 (3) | 0.0478 (8) | |
H6A | 0.8102 | 0.4754 | 0.3965 | 0.057* | |
C7 | 0.4692 (6) | 0.45409 (13) | 0.3647 (3) | 0.0388 (7) | |
C8 | 0.3316 (6) | 0.48707 (13) | 0.2464 (3) | 0.0439 (8) | |
C9 | 0.4651 (6) | 0.52000 (14) | 0.1886 (3) | 0.0472 (8) | |
H9A | 0.6341 | 0.5210 | 0.2290 | 0.057* | |
C10 | 0.3511 (6) | 0.54804 (13) | 0.0810 (3) | 0.0443 (8) | |
H10A | 0.1824 | 0.5455 | 0.0418 | 0.053* | |
C11 | 0.4651 (6) | 0.58250 (13) | 0.0185 (3) | 0.0420 (8) | |
C12 | 0.7044 (6) | 0.59448 (15) | 0.0536 (3) | 0.0502 (9) | |
H12A | 0.8296 | 0.5800 | 0.1266 | 0.060* | |
C13 | 0.7433 (6) | 0.63090 (15) | −0.0313 (4) | 0.0514 (9) | |
H13A | 0.8971 | 0.6429 | −0.0195 | 0.062* | |
C14 | 0.5365 (6) | 0.64701 (13) | −0.1323 (3) | 0.0406 (8) | |
C15 | 0.5055 (6) | 0.68374 (13) | −0.2391 (3) | 0.0440 (8) | |
C16 | 0.2850 (6) | 0.69828 (13) | −0.3490 (3) | 0.0414 (8) | |
H16A | 0.1299 | 0.6861 | −0.3641 | 0.050* | |
C17 | 0.3416 (9) | 0.73361 (17) | −0.4296 (4) | 0.0707 (12) | |
H17A | 0.2237 | 0.7470 | −0.5069 | 0.085* | |
C18 | 0.5754 (9) | 0.74663 (17) | −0.3879 (4) | 0.0745 (13) | |
H18A | 0.6365 | 0.7699 | −0.4319 | 0.089* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0423 (5) | 0.0579 (6) | 0.0427 (5) | −0.0005 (4) | 0.0104 (4) | 0.0114 (4) |
S2 | 0.0742 (8) | 0.0772 (8) | 0.0827 (9) | −0.0029 (6) | 0.0389 (7) | 0.0186 (6) |
O1 | 0.0704 (18) | 0.0748 (19) | 0.0736 (19) | 0.0013 (15) | 0.0338 (16) | 0.0314 (16) |
O2 | 0.0705 (18) | 0.0690 (19) | 0.0551 (17) | 0.0058 (15) | 0.0124 (14) | 0.0231 (14) |
O3 | 0.0410 (14) | 0.0757 (19) | 0.0598 (17) | −0.0031 (12) | 0.0086 (12) | 0.0221 (14) |
C1 | 0.0394 (18) | 0.050 (2) | 0.046 (2) | 0.0012 (15) | 0.0160 (15) | 0.0002 (16) |
C2 | 0.053 (2) | 0.043 (2) | 0.048 (2) | −0.0008 (16) | 0.0243 (17) | 0.0030 (16) |
C3 | 0.094 (3) | 0.057 (3) | 0.054 (2) | 0.003 (2) | 0.031 (2) | 0.011 (2) |
C4 | 0.058 (2) | 0.044 (2) | 0.0394 (19) | 0.0029 (17) | 0.0126 (17) | 0.0026 (15) |
C5 | 0.0418 (19) | 0.058 (2) | 0.053 (2) | −0.0009 (17) | 0.0081 (17) | 0.0032 (19) |
C6 | 0.0446 (19) | 0.049 (2) | 0.046 (2) | −0.0024 (15) | 0.0139 (16) | 0.0039 (16) |
C7 | 0.0427 (17) | 0.0354 (17) | 0.0361 (17) | −0.0030 (14) | 0.0139 (14) | −0.0039 (14) |
C8 | 0.0471 (19) | 0.0412 (19) | 0.0389 (18) | −0.0015 (15) | 0.0131 (15) | −0.0026 (15) |
C9 | 0.0430 (18) | 0.049 (2) | 0.046 (2) | −0.0044 (15) | 0.0148 (16) | 0.0025 (17) |
C10 | 0.0440 (18) | 0.0462 (19) | 0.0408 (19) | −0.0014 (15) | 0.0155 (15) | 0.0005 (16) |
C11 | 0.0443 (18) | 0.0437 (19) | 0.0364 (18) | 0.0052 (14) | 0.0152 (15) | 0.0000 (15) |
C12 | 0.0418 (19) | 0.061 (2) | 0.042 (2) | 0.0075 (16) | 0.0112 (15) | 0.0116 (17) |
C13 | 0.0394 (18) | 0.059 (2) | 0.055 (2) | 0.0030 (16) | 0.0191 (17) | 0.0067 (18) |
C14 | 0.0456 (18) | 0.0368 (18) | 0.0411 (18) | 0.0019 (14) | 0.0196 (15) | −0.0016 (14) |
C15 | 0.056 (2) | 0.0369 (18) | 0.0430 (19) | 0.0032 (15) | 0.0236 (16) | −0.0011 (15) |
C16 | 0.0505 (19) | 0.0413 (19) | 0.0311 (17) | −0.0042 (15) | 0.0155 (15) | 0.0005 (14) |
C17 | 0.091 (3) | 0.067 (3) | 0.048 (2) | 0.024 (2) | 0.021 (2) | 0.006 (2) |
C18 | 0.115 (4) | 0.059 (3) | 0.066 (3) | 0.004 (3) | 0.055 (3) | 0.014 (2) |
S1—C14 | 1.720 (3) | C6—H6A | 0.9300 |
S1—C11 | 1.728 (3) | C7—C8 | 1.491 (4) |
S2—C18 | 1.682 (4) | C8—C9 | 1.473 (5) |
S2—C15 | 1.698 (3) | C9—C10 | 1.318 (5) |
O1—C2 | 1.378 (4) | C9—H9A | 0.9300 |
O1—C3 | 1.420 (5) | C10—C11 | 1.448 (4) |
O2—C4 | 1.369 (4) | C10—H10A | 0.9300 |
O2—C3 | 1.425 (5) | C11—C12 | 1.364 (5) |
O3—C8 | 1.229 (4) | C12—C13 | 1.404 (5) |
C1—C2 | 1.356 (5) | C12—H12A | 0.9300 |
C1—C7 | 1.409 (5) | C13—C14 | 1.357 (5) |
C1—H1A | 0.9300 | C13—H13A | 0.9300 |
C2—C4 | 1.375 (5) | C14—C15 | 1.458 (5) |
C3—H3A | 0.9700 | C15—C16 | 1.441 (5) |
C3—H3B | 0.9700 | C16—C17 | 1.401 (5) |
C4—C5 | 1.355 (5) | C16—H16A | 0.9300 |
C5—C6 | 1.395 (5) | C17—C18 | 1.330 (6) |
C5—H5A | 0.9300 | C17—H17A | 0.9300 |
C6—C7 | 1.383 (4) | C18—H18A | 0.9300 |
C14—S1—C11 | 92.72 (16) | C10—C9—C8 | 121.6 (3) |
C18—S2—C15 | 92.9 (2) | C10—C9—H9A | 119.2 |
C2—O1—C3 | 105.6 (3) | C8—C9—H9A | 119.2 |
C4—O2—C3 | 105.3 (3) | C9—C10—C11 | 125.8 (3) |
C2—C1—C7 | 117.6 (3) | C9—C10—H10A | 117.1 |
C2—C1—H1A | 121.2 | C11—C10—H10A | 117.1 |
C7—C1—H1A | 121.2 | C12—C11—C10 | 130.2 (3) |
C1—C2—C4 | 122.1 (3) | C12—C11—S1 | 109.9 (3) |
C1—C2—O1 | 128.3 (3) | C10—C11—S1 | 119.9 (2) |
C4—C2—O1 | 109.6 (3) | C11—C12—C13 | 113.4 (3) |
O1—C3—O2 | 109.0 (3) | C11—C12—H12A | 123.3 |
O1—C3—H3A | 109.9 | C13—C12—H12A | 123.3 |
O2—C3—H3A | 109.9 | C14—C13—C12 | 113.9 (3) |
O1—C3—H3B | 109.9 | C14—C13—H13A | 123.0 |
O2—C3—H3B | 109.9 | C12—C13—H13A | 123.0 |
H3A—C3—H3B | 108.3 | C13—C14—C15 | 129.5 (3) |
C5—C4—O2 | 127.7 (3) | C13—C14—S1 | 110.1 (3) |
C5—C4—C2 | 121.7 (3) | C15—C14—S1 | 120.4 (3) |
O2—C4—C2 | 110.5 (3) | C16—C15—C14 | 128.6 (3) |
C4—C5—C6 | 117.3 (3) | C16—C15—S2 | 110.4 (2) |
C4—C5—H5A | 121.3 | C14—C15—S2 | 121.0 (3) |
C6—C5—H5A | 121.3 | C17—C16—C15 | 109.2 (3) |
C7—C6—C5 | 121.6 (3) | C17—C16—H16A | 125.4 |
C7—C6—H6A | 119.2 | C15—C16—H16A | 125.4 |
C5—C6—H6A | 119.2 | C18—C17—C16 | 115.4 (4) |
C6—C7—C1 | 119.6 (3) | C18—C17—H17A | 122.3 |
C6—C7—C8 | 123.5 (3) | C16—C17—H17A | 122.3 |
C1—C7—C8 | 116.9 (3) | C17—C18—S2 | 112.1 (3) |
O3—C8—C9 | 120.5 (3) | C17—C18—H18A | 123.9 |
O3—C8—C7 | 119.9 (3) | S2—C18—H18A | 123.9 |
C9—C8—C7 | 119.6 (3) | ||
C7—C1—C2—C4 | 0.2 (5) | C7—C8—C9—C10 | 177.2 (3) |
C7—C1—C2—O1 | −179.5 (3) | C8—C9—C10—C11 | 178.5 (3) |
C3—O1—C2—C1 | 179.0 (4) | C9—C10—C11—C12 | −0.8 (6) |
C3—O1—C2—C4 | −0.6 (4) | C9—C10—C11—S1 | −179.8 (3) |
C2—O1—C3—O2 | 0.5 (4) | C14—S1—C11—C12 | −0.3 (3) |
C4—O2—C3—O1 | −0.2 (4) | C14—S1—C11—C10 | 178.8 (3) |
C3—O2—C4—C5 | −179.0 (4) | C10—C11—C12—C13 | −178.6 (3) |
C3—O2—C4—C2 | −0.2 (4) | S1—C11—C12—C13 | 0.4 (4) |
C1—C2—C4—C5 | −0.2 (6) | C11—C12—C13—C14 | −0.3 (5) |
O1—C2—C4—C5 | 179.5 (3) | C12—C13—C14—C15 | −179.5 (3) |
C1—C2—C4—O2 | −179.2 (3) | C12—C13—C14—S1 | 0.1 (4) |
O1—C2—C4—O2 | 0.5 (4) | C11—S1—C14—C13 | 0.1 (3) |
O2—C4—C5—C6 | 178.7 (3) | C11—S1—C14—C15 | 179.8 (3) |
C2—C4—C5—C6 | 0.0 (6) | C13—C14—C15—C16 | 176.6 (3) |
C4—C5—C6—C7 | 0.3 (6) | S1—C14—C15—C16 | −3.0 (5) |
C5—C6—C7—C1 | −0.4 (5) | C13—C14—C15—S2 | −3.2 (5) |
C5—C6—C7—C8 | 178.7 (3) | S1—C14—C15—S2 | 177.20 (19) |
C2—C1—C7—C6 | 0.1 (5) | C18—S2—C15—C16 | −1.2 (3) |
C2—C1—C7—C8 | −179.0 (3) | C18—S2—C15—C14 | 178.6 (3) |
C6—C7—C8—O3 | −176.3 (3) | C14—C15—C16—C17 | −178.2 (3) |
C1—C7—C8—O3 | 2.9 (5) | S2—C15—C16—C17 | 1.6 (4) |
C6—C7—C8—C9 | 3.1 (5) | C15—C16—C17—C18 | −1.4 (5) |
C1—C7—C8—C9 | −177.8 (3) | C16—C17—C18—S2 | 0.5 (5) |
O3—C8—C9—C10 | −3.5 (5) | C15—S2—C18—C17 | 0.4 (4) |
Cg is the centroid of the S2/C15–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cgi | 0.97 | 2.74 | 3.472 (5) | 132 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Funding information
The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing facilities and funding to conduct this work under the Fundamental Research Grant Scheme (FGRS) No. 203.PFIZIK.6711606.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Arshad, M. N., Al-Dies, A. M., Asiri, A. M., Khalid, M., Birinji, A. S., Al-Amry, K. A. & Braga, A. A. C. (2017). J. Mol. Struct. 1141, 142–156. CSD CrossRef CAS Google Scholar
Asiri, M., Sobahi, T. R., Osman, O. I. & Khan, S. A. (2017). J. Mol. Struct. 1128, 636–644. CrossRef CAS Google Scholar
Balasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500–1503. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bayar, I., Khedhiri, L., Soudani, S., Lefebvre, F., Pereira da Silva, P. S. & Ben Nasr, C. (2018). J. Mol. Struct. 1161, 185–193. CSD CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bureš, F. (2014). RSC Adv. 4, 58826–58851. Google Scholar
Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004–o1005. CSD CrossRef CAS IUCr Journals Google Scholar
Chkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669–1673. Web of Science CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A1. Gaussian, Inc., Wallingford CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 780–785. Web of Science CrossRef Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Li, H., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2387. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mei-Rong, Y., Yu, S. & Yong-Jin, X. (2014). SpringerPlus, 3, 701–714. PubMed Google Scholar
Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718–o3720. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slov. 63, 129–137. CAS PubMed Google Scholar
Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 174–181. CAS Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth. Google Scholar
Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Arshad, S., Khalib, N. C. & Razak, I. A. (2017). Mol. Cryst. Liq. Cryst. 650, 87–101. CrossRef CAS Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 1427–1432. CSD CrossRef IUCr Journals Google Scholar
Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 1491–1496. CSD CrossRef IUCr Journals Google Scholar
Zingales, S. K., Moore, M. E., Goetz, A. D. & Padgett, C. W. (2016). Acta Cryst. E72, 955–958. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.