research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-([2,2′-bi­thio­phen]-5-yl)prop-2-en-1-one: crystal structure, UV–Vis analysis and theoretical studies of a new π-conjugated chalcone

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by J. Jasinsk, Keene State College, USA (Received 18 March 2019; accepted 10 April 2019; online 16 April 2019)

In the title compound, C18H12O3S2, synthesized by the Claisen–Schmidt condensation method, the essentially planar chalcone unit adopts an s-cis configuration with respect to the carbonyl group within the ethyl­enic bridge. In the crystal, weak C—H⋯π inter­actions connect the mol­ecules into zigzag chains along the b-axis direction. The mol­ecular structure was optimized geometrically using Density Functional Theory (DFT) calculations at the B3LYP/6–311 G++(d,p) basis set level and compared with the experimental values. Mol­ecular orbital calculations providing electron-density plots of HOMO and LUMO mol­ecular orbitals and mol­ecular electrostatic potentials (MEP) were also computed both with the DFT/B3LYP/6–311 G++(d,p) basis set. The experimental energy gap is 3.18 eV, whereas the theoretical HOMO–LUMO energy gap value is 2.73 eV. Hirshfeld surface analysis was used to further investigate the weak inter­actions present.

1. Chemical context

Chalcones are organic compounds composed of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α,β-unsaturated carbonyl system (Zingales et al., 2016[Zingales, S. K., Moore, M. E., Goetz, A. D. & Padgett, C. W. (2016). Acta Cryst. E72, 955-958.]). Compounds with the chalcone backbone are becoming important in the design of new materials, employing donor–π–acceptor (DπA) bridge systems to further enhance their future development for optoelectronic applications. In principle, the inter­molecular charge-transfer (ICT), HOMO–LUMO gap and optical properties can be tailored by attaching electron donors and acceptors of various electronic nature, assuring efficient DA inter­actions and planarization of the entire mol­ecule (Bureš, 2014[Bureš, F. (2014). RSC Adv. 4, 58826-58851.]). The presence of long π-conjugated systems in chalcones have been shown to turn them into chromophores whereby certain colours can be displayed as a result of absorbing light in the visible region (Asiri et al., 2017[Asiri, M., Sobahi, T. R., Osman, O. I. & Khan, S. A. (2017). J. Mol. Struct. 1128, 636-644.]). Electron-donating and accepting groups containing these chromophores have been examined for their applications in the field of material science. Additionally, the substitution of a phenyl group into a polythio­phene compound stabilizes the conjugated π-bond system and forms a smaller band-gap material for supercapacitor applications (Mei-Rong et al., 2014[Mei-Rong, Y., Yu, S. & Yong-Jin, X. (2014). SpringerPlus, 3, 701-714.]). As part of our ongoing studies utilizing thio­phene-ring substituents with chalcone derivatives (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C. & Razak, I. A. (2017). Mol. Cryst. Liq. Cryst. 650, 87-101.]), we hereby report the synthesis, structural, UV–Vis, Hirshfeld surface and DFT analyses of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The experimental and optimized structures of (I)[link] are shown in Fig. 1[link]a and 1b, respectively. The mol­ecular structure consists of a 1,3-benzodioxole ring system (A; O1/O2/C1–C7) and two thio­phene rings, B (S1/C11–C14) and C (S2/C15–C18), these substituent rings representing a donor–linker–acceptor conjugated system. Ring A [maximum deviation of 0.011 (4) Å at C3] forms dihedral angles of 1.88 (15) and 5.37 (16)°, respectively, with rings B [maximum deviations of 0.002 (3) and −0.002 (4) Å for C11 and C12, respectively] and C [maximum deviations of −0.009 (3) and 0.009 (3) Å for C15 and C16 respectively], respectively. The enone moiety [O3/C8–C10, maximum deviation of 0.014 (3) Å at C8] forms dihedral angles of 3.3 (2), 4.3 (2) and 7.4 (2)° with rings A, B and C, respectively. This planar conformation for the mol­ecule indicates that the 1,3-benzodioxole group and the thio­phene rings have stabilized the conjugated π-bond system.

[Figure 1]
Figure 1
(a) Mol­ecular structure of the title compound showing 50% probability displacement ellipsoids; (b) geometry-optimized mol­ecular structure and (c) a representation of the mol­ecule showing the planarity of all atoms.

The mol­ecule adopts an s-cis configuration with respect to the C8=O3 [experimental = 1.229 (4) Å and DFT = 1.227 Å] bond length within the enone moiety (O3/C8–C10). The mol­ecule is observed to be essentially planar (Fig. 1[link]c) about the C9—C10 bond with a C8—C9—C10—C11 torsion angle of 178.5 (3)°, whereas the corresponding DFT value is 179.6°. The slight difference is the result of the optimization being carried out in an isolated gaseous state whereas the experimental mol­ecular structure could easily be affected by its normal environment (Zaini et al., 2018[Zaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589-1594.]).

For the theoretical geometry optimization calculation, the starting geometries of the compound were taken from the single-crystal X-ray refinement data. The optimization of the mol­ecular geometries leading to energy minima was achieved using DFT [Becke's non-local three parameter exchange and Lee-Yang-Parr's correlation functional (B3LYP)] with the 6-311++G(d,p) basis set as implemented in the Gaussian09W software package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A1. Gaussian, Inc., Wallingford CT, USA.]). Selected bond lengths and angles for the experimental and theoretical (DFT) studies are compared in the supporting information; all values are within normal ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked in a head-to-tail manner via C3—H3ACg(−x + 1, y − [1 \over 2], −z + [1 \over 2]) inter­actions involving ring C (Table 1[link], Fig. 2[link]), forming zigzag chains along the b-axis direction. In the absence of any classical hydrogen bonds, this inter­action stabilizes the crystal structure. The chains stack along the c-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S2/C15–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACgi 0.97 2.74 3.472 (5) 132
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing showing the C—H⋯π inter­actions (dashed lines).

4. Hirshfeld surface analysis

Hirshfeld surface analysis was undertaken using Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth.]) to investigate the mol­ecular packing. H⋯H inter­actions are the most important, contributing 31.1% to the overall crystal packing. In the fingerprint plot (Fig. 3[link]) they are seen as widely scattered points of high density due to the large hydrogen-atom content of the mol­ecule, with de + di = 2.50 Å (di and de are the distances to the nearest atom inside and outside the surface; Shit et al., 2016[Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slov. 63, 129-137.]). C⋯H/H⋯C contacts (16.7%) are indicated by a pair of peaks at de + di = 2.75 Å, while the H⋯O/O⋯H contacts (19.4%) are represented by a pair of short spikes at de + di = 2.60 Å. The significant contributions by H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that weak hydrogen bonding and van der Waals inter­actions do play relevant roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]). The surface mapped over shape-index reveals small changes in the surface shape, indicating the C—H⋯π (Fig. 4[link]) inter­action. The bright concave red spots in the region marked by arrows indicate atoms of the π-stacked mol­ecule, whereas the convex blue spots indicate ring atoms of the mol­ecule inside the surface (Chkirate et al., 2018[Chkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669-1673.]).

[Figure 3]
Figure 3
Two-dimensional fingerprint plots with a de view showing the percentage contributions of all inter­actions and the C⋯H/H⋯C, H⋯H and H⋯O/O⋯H inter­actions to the total Hirshfeld surface.
[Figure 4]
Figure 4
Hirshfeld surface mapped over shape-index.

5. UV–Vis and frontier mol­ecular orbital analyses

The experimental UV–Vis absorption spectrum consists of one major band that lies in the visible region at 400 nm (Fig. 5[link]a), while the simulated value is observed at 422 nm (Fig. 5[link]b). The absorption maximum is assigned to the ππ* transitions that arise from the carbonyl group (C=O) of the compound. The slight difference in wavelength is due to the fact that the experimental study is conducted in solution whereas the theoretical study is performed for a gaseous environment (Zainuri et al., 2018a[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 1427-1432.]). The strong cut-off wavelength for the experimental study is 455 nm (Fig. 5[link]a) with an energy band gap of 2.73 eV.

[Figure 5]
Figure 5
The (a) experimental and (b) calculated UV–Vis absorption spectra.

The highest occupied mol­ecular orbital (HOMO) acts as an electron donor and represents the ability to donate electrons while the lowest unoccupied mol­ecular orbital (LUMO) acts as the electron acceptor, representing the ability to accept electrons (Balasubramani et al., 2018[Balasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500-1503.]). The HOMO and LUMO electron-density plots were computed using the DFT/B3LYP/6-311 G++(d,p) basis set. The EHOMOELUMO gap is calculated to be 3.18 eV. Generally, the value of the energy gap characterizes the chemical stability of the mol­ecule (Zainuri et al., 2018b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 1491-1496.]). As shown in Fig. 6[link], the charge densities are accumulated over the entire mol­ecule for the HOMO and LUMO states. A large HOMO–LUMO energy gap defines it as a `hard' mol­ecule while a small one defines a `soft' mol­ecule (Bayar et al., 2018[Bayar, I., Khedhiri, L., Soudani, S., Lefebvre, F., Pereira da Silva, P. S. & Ben Nasr, C. (2018). J. Mol. Struct. 1161, 185-193.]). Hard mol­ecules are less polarizable than the soft ones as there is a need of higher energy for excitation (Balasubramani et al., 2018[Balasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500-1503.]). The energy gap value in the title compound indicates good stability and a high chemical hardness.

[Figure 6]
Figure 6
HOMO–LUMO mol­ecular orbitals showing the ground to excited state electronic transitions.

6. Mol­ecular electrostatic potentials

Mol­ecular electrostatic potentials (MEP) are useful in investigating the relationship between the mol­ecular structure and its physicochemical properties, visualizing the mol­ecular size and shape, along with the charge distributions in mol­ecules in terms of colour grading (Zainuri et al., 2018b[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 1491-1496.]). The MEP map (Fig. 7[link]) was calculated at the B3LYP/6-311G++ (d,p) level of theory. The red- and blue-coloured regions indicate nucleophiles that are electron rich, and electrophile regions that are electron poor, respectively. The remaining white regions indicate neutral atoms. Information about inter­molecular inter­actions within the compound can be obtained from these regions (Gunasekaran et al., 2008[Gunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 780-785.]). In the title mol­ecule, the reactive site, localized in the carbonyl group, is shown in red. It possesses the most negative potential and is thus the strongest repulsion site (electrophilic attack). The blue spots indicate the strongest attraction regions, which are occupied mostly by hydrogen atoms (Zaini et al., 2019[Zaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58-63.]).

[Figure 7]
Figure 7
Theoretical mol­ecular electrostatic potential surface calculated at the DFT/B3LYP/6–311G++ (d,p) basis set level.

7. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed four thio­phene-substituted compounds with a different ketone on the chalcone: (E)-1-(2-amino­phen­yl)-3-(thio­phen-2-yl)prop-2-en-1-one (Chantrapromma et al., 2013[Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004-o1005.]), (2E)-3-(5-bromo-2-thien­yl)-1-(4-hy­droxy­phen­yl)prop-2-en-1-one (Narayana et al., 2007[Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4552.]), 1-(4-bromo­phen­yl)-3-(2-thien­yl)prop-2-en-1-one (Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718-o3720.]) and (2E)-1-(4-bromo­phen­yl)-3-(thio­phen-2-yl)prop-2-en-1-one (Arshad et al., 2017[Arshad, M. N., Al-Dies, A. M., Asiri, A. M., Khalid, M., Birinji, A. S., Al-Amry, K. A. & Braga, A. A. C. (2017). J. Mol. Struct. 1141, 142-156.]). Other related compounds that have a similar benzo[d]dioxol substituent on the chalcone are (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (Sreevidya et al., 2010[Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 174-181.]) and (E)-1-(1,3-benzodioxol-5-yl)-3-(3-bromo­phen­yl)prop-2-en-1-one (Li et al., 2008[Li, H., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2387.]).

In terms of inter­molecular inter­actions, (E)-1-(2-amino­phen­yl)-3-(thio­phen-2-yl)prop-2-en-1-one (Chantrapromma et al., 2013[Chantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004-o1005.]) exhibits a strong inter­molecular C—H⋯O inter­action by which two adjacent mol­ecules are linked in an anti-parallel face-to-face manner into chains along the c-axis direction. Meanwhile, a weak inter­molecular O—H⋯O inter­action is observed in (2E)-3-(5-bromo-2-thien­yl)-1-(4-hy­droxy­phen­yl)prop-2-en-1-one (Narayana et al., 2007[Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4552.]). Similar to the situation in (I)[link], weak inter­molecular C—H⋯π inter­actions link the mol­ecules of 1-(4-bromo­phen­yl)-3-(2-thien­yl)prop-2-en-1-one (Patil et al., 2006[Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718-o3720.]) into chains along the b-axis direction. Lastly, an inter­molecular C—H⋯Cl inter­action, involving the terminal chloro-substituted phenyl ring, is also found in (2E)-1-(1,3-benzodioxol-5-yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (Sreevidya et al., 2010[Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 174-181.]).

8. Synthesis and crystallization

A mixture of 3′,4′-(methyl­enedi­oxy)aceto­phenone (0.5 mmol) and 2,2′-bi­thio­phene-5-carboxaldehyde (0.5 mmol) was dissolved in methanol. A catalytic amount of NaOH was added dropwise with vigorous stirring. The reaction mixture was stirred for about 5 h at room temperature and then poured into ice-cold water. The resulting crude solid was collected by filtration. Single crystals were grown from an acetone solution by slow evaporation.

9. Refinement

Crystal data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C). One outlier (104) was omitted from the final refinement.

Table 2
Experimental details

Crystal data
Chemical formula C18H12O3S2
Mr 340.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.030 (1), 24.875 (5), 11.239 (2)
β (°) 114.249 (2)
V3) 1537.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.19 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.875, 0.924
No. of measured, independent and observed [I > 2σ(I)] reflections 30820, 3024, 2096
Rint 0.078
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.164, 1.04
No. of reflections 3024
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-1-(Benzo[d][1,3]dioxol-5-yl)-3-([2,2'-bithiophen]-5-yl)prop-2-en-1-one top
Crystal data top
C18H12O3S2F(000) = 704
Mr = 340.40Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.030 (1) ÅCell parameters from 3229 reflections
b = 24.875 (5) Åθ = 2.6–19.6°
c = 11.239 (2) ŵ = 0.36 mm1
β = 114.249 (2)°T = 296 K
V = 1537.1 (5) Å3Plate, yellow
Z = 40.19 × 0.15 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2096 reflections with I > 2σ(I)
φ and ω scansRint = 0.078
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.0°, θmin = 2.2°
Tmin = 0.875, Tmax = 0.924h = 77
30820 measured reflectionsk = 3030
3024 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.074P)2 + 1.2156P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3024 reflectionsΔρmax = 0.41 e Å3
208 parametersΔρmin = 0.47 e Å3
Special details top

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71075 11.261 24.951 12.083 90.028 114.196 90.000

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28791 (16)0.61675 (4)0.12250 (9)0.0500 (3)
S20.7476 (2)0.71610 (5)0.24635 (12)0.0759 (4)
O10.3608 (5)0.35799 (12)0.5854 (3)0.0715 (8)
O20.7813 (5)0.35937 (12)0.6897 (3)0.0693 (8)
O30.1080 (4)0.48699 (11)0.1984 (3)0.0628 (8)
C10.3315 (6)0.42199 (14)0.4126 (3)0.0458 (8)
H1A0.16260.42110.37110.055*
C20.4540 (6)0.39239 (14)0.5213 (3)0.0468 (8)
C30.5656 (8)0.33666 (17)0.6914 (4)0.0681 (11)
H3A0.56900.29790.68370.082*
H3B0.55510.34520.77310.082*
C40.7034 (7)0.39318 (14)0.5843 (3)0.0495 (9)
C50.8413 (6)0.42354 (15)0.5408 (4)0.0549 (9)
H5A1.01000.42390.58380.066*
C60.7201 (6)0.45425 (14)0.4288 (3)0.0478 (8)
H6A0.81020.47540.39650.057*
C70.4692 (6)0.45409 (13)0.3647 (3)0.0388 (7)
C80.3316 (6)0.48707 (13)0.2464 (3)0.0439 (8)
C90.4651 (6)0.52000 (14)0.1886 (3)0.0472 (8)
H9A0.63410.52100.22900.057*
C100.3511 (6)0.54804 (13)0.0810 (3)0.0443 (8)
H10A0.18240.54550.04180.053*
C110.4651 (6)0.58250 (13)0.0185 (3)0.0420 (8)
C120.7044 (6)0.59448 (15)0.0536 (3)0.0502 (9)
H12A0.82960.58000.12660.060*
C130.7433 (6)0.63090 (15)0.0313 (4)0.0514 (9)
H13A0.89710.64290.01950.062*
C140.5365 (6)0.64701 (13)0.1323 (3)0.0406 (8)
C150.5055 (6)0.68374 (13)0.2391 (3)0.0440 (8)
C160.2850 (6)0.69828 (13)0.3490 (3)0.0414 (8)
H16A0.12990.68610.36410.050*
C170.3416 (9)0.73361 (17)0.4296 (4)0.0707 (12)
H17A0.22370.74700.50690.085*
C180.5754 (9)0.74663 (17)0.3879 (4)0.0745 (13)
H18A0.63650.76990.43190.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0423 (5)0.0579 (6)0.0427 (5)0.0005 (4)0.0104 (4)0.0114 (4)
S20.0742 (8)0.0772 (8)0.0827 (9)0.0029 (6)0.0389 (7)0.0186 (6)
O10.0704 (18)0.0748 (19)0.0736 (19)0.0013 (15)0.0338 (16)0.0314 (16)
O20.0705 (18)0.0690 (19)0.0551 (17)0.0058 (15)0.0124 (14)0.0231 (14)
O30.0410 (14)0.0757 (19)0.0598 (17)0.0031 (12)0.0086 (12)0.0221 (14)
C10.0394 (18)0.050 (2)0.046 (2)0.0012 (15)0.0160 (15)0.0002 (16)
C20.053 (2)0.043 (2)0.048 (2)0.0008 (16)0.0243 (17)0.0030 (16)
C30.094 (3)0.057 (3)0.054 (2)0.003 (2)0.031 (2)0.011 (2)
C40.058 (2)0.044 (2)0.0394 (19)0.0029 (17)0.0126 (17)0.0026 (15)
C50.0418 (19)0.058 (2)0.053 (2)0.0009 (17)0.0081 (17)0.0032 (19)
C60.0446 (19)0.049 (2)0.046 (2)0.0024 (15)0.0139 (16)0.0039 (16)
C70.0427 (17)0.0354 (17)0.0361 (17)0.0030 (14)0.0139 (14)0.0039 (14)
C80.0471 (19)0.0412 (19)0.0389 (18)0.0015 (15)0.0131 (15)0.0026 (15)
C90.0430 (18)0.049 (2)0.046 (2)0.0044 (15)0.0148 (16)0.0025 (17)
C100.0440 (18)0.0462 (19)0.0408 (19)0.0014 (15)0.0155 (15)0.0005 (16)
C110.0443 (18)0.0437 (19)0.0364 (18)0.0052 (14)0.0152 (15)0.0000 (15)
C120.0418 (19)0.061 (2)0.042 (2)0.0075 (16)0.0112 (15)0.0116 (17)
C130.0394 (18)0.059 (2)0.055 (2)0.0030 (16)0.0191 (17)0.0067 (18)
C140.0456 (18)0.0368 (18)0.0411 (18)0.0019 (14)0.0196 (15)0.0016 (14)
C150.056 (2)0.0369 (18)0.0430 (19)0.0032 (15)0.0236 (16)0.0011 (15)
C160.0505 (19)0.0413 (19)0.0311 (17)0.0042 (15)0.0155 (15)0.0005 (14)
C170.091 (3)0.067 (3)0.048 (2)0.024 (2)0.021 (2)0.006 (2)
C180.115 (4)0.059 (3)0.066 (3)0.004 (3)0.055 (3)0.014 (2)
Geometric parameters (Å, º) top
S1—C141.720 (3)C6—H6A0.9300
S1—C111.728 (3)C7—C81.491 (4)
S2—C181.682 (4)C8—C91.473 (5)
S2—C151.698 (3)C9—C101.318 (5)
O1—C21.378 (4)C9—H9A0.9300
O1—C31.420 (5)C10—C111.448 (4)
O2—C41.369 (4)C10—H10A0.9300
O2—C31.425 (5)C11—C121.364 (5)
O3—C81.229 (4)C12—C131.404 (5)
C1—C21.356 (5)C12—H12A0.9300
C1—C71.409 (5)C13—C141.357 (5)
C1—H1A0.9300C13—H13A0.9300
C2—C41.375 (5)C14—C151.458 (5)
C3—H3A0.9700C15—C161.441 (5)
C3—H3B0.9700C16—C171.401 (5)
C4—C51.355 (5)C16—H16A0.9300
C5—C61.395 (5)C17—C181.330 (6)
C5—H5A0.9300C17—H17A0.9300
C6—C71.383 (4)C18—H18A0.9300
C14—S1—C1192.72 (16)C10—C9—C8121.6 (3)
C18—S2—C1592.9 (2)C10—C9—H9A119.2
C2—O1—C3105.6 (3)C8—C9—H9A119.2
C4—O2—C3105.3 (3)C9—C10—C11125.8 (3)
C2—C1—C7117.6 (3)C9—C10—H10A117.1
C2—C1—H1A121.2C11—C10—H10A117.1
C7—C1—H1A121.2C12—C11—C10130.2 (3)
C1—C2—C4122.1 (3)C12—C11—S1109.9 (3)
C1—C2—O1128.3 (3)C10—C11—S1119.9 (2)
C4—C2—O1109.6 (3)C11—C12—C13113.4 (3)
O1—C3—O2109.0 (3)C11—C12—H12A123.3
O1—C3—H3A109.9C13—C12—H12A123.3
O2—C3—H3A109.9C14—C13—C12113.9 (3)
O1—C3—H3B109.9C14—C13—H13A123.0
O2—C3—H3B109.9C12—C13—H13A123.0
H3A—C3—H3B108.3C13—C14—C15129.5 (3)
C5—C4—O2127.7 (3)C13—C14—S1110.1 (3)
C5—C4—C2121.7 (3)C15—C14—S1120.4 (3)
O2—C4—C2110.5 (3)C16—C15—C14128.6 (3)
C4—C5—C6117.3 (3)C16—C15—S2110.4 (2)
C4—C5—H5A121.3C14—C15—S2121.0 (3)
C6—C5—H5A121.3C17—C16—C15109.2 (3)
C7—C6—C5121.6 (3)C17—C16—H16A125.4
C7—C6—H6A119.2C15—C16—H16A125.4
C5—C6—H6A119.2C18—C17—C16115.4 (4)
C6—C7—C1119.6 (3)C18—C17—H17A122.3
C6—C7—C8123.5 (3)C16—C17—H17A122.3
C1—C7—C8116.9 (3)C17—C18—S2112.1 (3)
O3—C8—C9120.5 (3)C17—C18—H18A123.9
O3—C8—C7119.9 (3)S2—C18—H18A123.9
C9—C8—C7119.6 (3)
C7—C1—C2—C40.2 (5)C7—C8—C9—C10177.2 (3)
C7—C1—C2—O1179.5 (3)C8—C9—C10—C11178.5 (3)
C3—O1—C2—C1179.0 (4)C9—C10—C11—C120.8 (6)
C3—O1—C2—C40.6 (4)C9—C10—C11—S1179.8 (3)
C2—O1—C3—O20.5 (4)C14—S1—C11—C120.3 (3)
C4—O2—C3—O10.2 (4)C14—S1—C11—C10178.8 (3)
C3—O2—C4—C5179.0 (4)C10—C11—C12—C13178.6 (3)
C3—O2—C4—C20.2 (4)S1—C11—C12—C130.4 (4)
C1—C2—C4—C50.2 (6)C11—C12—C13—C140.3 (5)
O1—C2—C4—C5179.5 (3)C12—C13—C14—C15179.5 (3)
C1—C2—C4—O2179.2 (3)C12—C13—C14—S10.1 (4)
O1—C2—C4—O20.5 (4)C11—S1—C14—C130.1 (3)
O2—C4—C5—C6178.7 (3)C11—S1—C14—C15179.8 (3)
C2—C4—C5—C60.0 (6)C13—C14—C15—C16176.6 (3)
C4—C5—C6—C70.3 (6)S1—C14—C15—C163.0 (5)
C5—C6—C7—C10.4 (5)C13—C14—C15—S23.2 (5)
C5—C6—C7—C8178.7 (3)S1—C14—C15—S2177.20 (19)
C2—C1—C7—C60.1 (5)C18—S2—C15—C161.2 (3)
C2—C1—C7—C8179.0 (3)C18—S2—C15—C14178.6 (3)
C6—C7—C8—O3176.3 (3)C14—C15—C16—C17178.2 (3)
C1—C7—C8—O32.9 (5)S2—C15—C16—C171.6 (4)
C6—C7—C8—C93.1 (5)C15—C16—C17—C181.4 (5)
C1—C7—C8—C9177.8 (3)C16—C17—C18—S20.5 (5)
O3—C8—C9—C103.5 (5)C15—S2—C18—C170.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S2/C15–C18 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cgi0.972.743.472 (5)132
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Funding information

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing facilities and funding to conduct this work under the Fundamental Research Grant Scheme (FGRS) No. 203.PFIZIK.6711606.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationArshad, M. N., Al-Dies, A. M., Asiri, A. M., Khalid, M., Birinji, A. S., Al-Amry, K. A. & Braga, A. A. C. (2017). J. Mol. Struct. 1141, 142–156.  CSD CrossRef CAS Google Scholar
First citationAsiri, M., Sobahi, T. R., Osman, O. I. & Khan, S. A. (2017). J. Mol. Struct. 1128, 636–644.  CrossRef CAS Google Scholar
First citationBalasubramani, K., Premkumar, G., Sivajeyanthi, P., Jeevaraj, M., Edison, B. & Swu, T. (2018). Acta Cryst. E74, 1500–1503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBayar, I., Khedhiri, L., Soudani, S., Lefebvre, F., Pereira da Silva, P. S. & Ben Nasr, C. (2018). J. Mol. Struct. 1161, 185–193.  CSD CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBureš, F. (2014). RSC Adv. 4, 58826–58851.  Google Scholar
First citationChantrapromma, S., Ruanwas, P., Boonnak, N. & Fun, H.-K. (2013). Acta Cryst. E69, o1004–o1005.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669–1673.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09, Revision A1. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 780–785.  Web of Science CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationLi, H., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMei-Rong, Y., Yu, S. & Yong-Jin, X. (2014). SpringerPlus, 3, 701–714.  PubMed Google Scholar
First citationNarayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3718–o3720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slov. 63, 129–137.  CAS PubMed Google Scholar
First citationSreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 174–181.  CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth.  Google Scholar
First citationZaini, M. F., Razak, I. A., Khairul, W. M. & Arshad, S. (2018). Acta Cryst. E74, 1589–1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZaini, M. F., Razak, I. A., Anis, M. Z. & Arshad, S. (2019). Acta Cryst. E75, 58–63.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C. & Razak, I. A. (2017). Mol. Cryst. Liq. Cryst. 650, 87–101.  CrossRef CAS Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 1427–1432.  CSD CrossRef IUCr Journals Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 1491–1496.  CSD CrossRef IUCr Journals Google Scholar
First citationZingales, S. K., Moore, M. E., Goetz, A. D. & Padgett, C. W. (2016). Acta Cryst. E72, 955–958.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds