research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of (2Z)-2-(2,4-di­chloro­benzyl­­idene)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
*Correspondence e-mail: brahimhni2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 11 March 2019; accepted 28 March 2019; online 9 April 2019)

The title compound, C20H16Cl2N2O3S, is built up from a di­hydro­benzo­thia­zine moiety linked by –CH– and –C2H4– units to 2,4-di­chloro­phenyl and 2-oxo-1,3-oxazolidine substituents, where the oxazole ring and the heterocyclic portion of the di­hydro­benzo­thia­zine unit adopt envelope and flattened-boat conformations, respectively. The 2-carbon link to the oxazole ring is nearly perpendicular to the mean plane of the di­hydro­benzo­thia­zine unit. In the crystal, the mol­ecules form stacks extending along the normal to (104) with the aromatic rings from neighbouring stacks inter­calating to form an overall layer structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (28.4%), H⋯Cl/Cl⋯H (19.3%), H⋯O/O⋯H (17.0%), H⋯C/C⋯H (14.5%) and C⋯C (8.2%) inter­actions. Weak hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

Compounds containing a 1,4-benzo­thia­zine backbone have been studied extensively both in academic and industrial laboratories. These mol­ecules exhibit a wide range of biological applications indicating that the 1,4-benzo­thia­zine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications such as anti­pyretic (Warren & Knaus, 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]), anti-microbial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178-1188.]; Rathore & Kumar, 2006[Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.]; Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]) , anti-viral (Malagu et al., 1998[Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57-60.]), herbicide (Takemoto et al., 1994[Takemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788-789.]), anti-cancer (Gupta & Kumar, 1986[Gupta, R. R. & Kumar, R. (1986). J. Fluor. Chem. 31, 19-24.]) and anti-oxidant (Zia-ur-Rehman et al., 2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]) areas. They have also been reported as precursors for the syntheses of new compounds (Vidal et al., 2006[Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591-593.]) possessing anti-diabetic (Tawada et al., 1990[Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238-1245.]) and anti-corrosion activities (Ellouz et al., 2016a[Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806-2819.],b[Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482-2497.]). 1,4-Benzo­thia­zine-containing compounds are important because of their potential applications in the treatment of diabetes complications, by inhibiting aldose reductase (Aotsuka et al., 1994[Aotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264-1271.]). They are also used as analgesics (Wammack et al., 2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-601.]) and and antagonists of Ca2+ (Fujimura et al., 1996[Fujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542-546.]). As a continuation of our previous work on the syntheses and the biological properties of new 1,4-benzo­thia­zine derivatives (Sebbar et al., 2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.],b[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.]; Ellouz et al., 2015a[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o1022-o1023.],b[Ellouz, M., Sebbar, N. K., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o862-o863.], 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.],b[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.]), we report herein on the synthesis and the mol­ecular and crystal structures of the title compound, (I)[link], along with the Hirshfeld surface analysis and the density functional theory (DFT) calculations.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], is built up from a di­hydro­benzo­thia­zine moiety linked by –CH– and C2H2– units to 2,4-di­chloro­phenyl and 2-oxo-1,3-oxazolidine substituents, respectively (Fig. 1[link]). The benzene ring, A (C1–C6), is oriented at a dihedral angle of 11.27 (6)° with respect to the phenyl ring D (C15–C20), ring. A puckering analysis of the heterocyclic portion (ring B; S1/N1/C1/C6–C8) of the di­hydro­benzo­thia­zine unit gave the parameters QT = 0.1206 (14) Å, q2 = 0.1190 (14) Å, q3 = −0.0174 (16) Å, φ = 178.2 (8)° and θ = 98.4 (8)°, indicating a flattened-boat conformation. A similar analysis for the oxazolidine ring C (O2/N2/C11–C13) yielded q2 = 0.1125 (18) Å and φ2 = 45.7 (9)°, indicating an envelope conformation with atom C12 at the flap position and at a distance of 0.175 (2) Å from the best plane of the other four atoms. The C9/C10 chain C is essentially perpendicular to the di­hydro­benzo­thia­zine unit, as indicated by the C6—N1—C9—C10 torsion angle of 90.61 (19)°. In the heterocyclic ring B, the C1—S1—C8 [104.29 (8)°], S1—C8—C7 [121.39 (12)°], C8—C7—N1 [120.77 (14)°], C7—N1—C6 [126.86 (14)°], C6—C1—S1 [123.97 (13)°] and N1—C6—C1 [121.60 (15)°] bond angles are enlarged compared with the corresponding values in the closely related compounds (2Z)-2-(4-chloro­benzyl­idene)-4-[2-(2-oxooxazoliden-3-yl)eth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (II), (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.]) and (2Z)-2-[(4-fluoro­benzyl­idene]-4-(prop-2-yn-1-yl)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (III), (Hni et al., 2019[Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 372-377.]), and they are nearly the same as those in (2Z)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)eth­yl]-2(phenyl­methyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one, (IV), (Sebbar et al., 2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.]), where the heterocyclic portions of the di­hydro­benzo­thia­zine units are planar in (IV) and non-planar in (II) and (III).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules form stacks extending along the normal to (104) through π-stacking inter­actions between C7=O1 and the C ring at −x + 1, −y + 1, −z + 1 [O1⋯centroid = 3.2744 (16) Å, C7⋯centroid = 3.5448 (18) Å and C7=O1⋯centroid = 92.4 (1)°] and between C13=O3 and the C ring at −x + 1, −y + 1, −z [O3⋯centroid = 3.3332 (15) Å, C13⋯centroid = 3.4800 (18) Å and C13=O3⋯centroid = 86.7 (1)°] (Figs. 2[link] and 3[link]). Inter­calation of the aromatic rings between stacks (Fig. 4[link]) leads to an overall layer structure with the layers approximately parallel to (101) (Fig. 3[link]).

[Figure 2]
Figure 2
A partial packing diagram viewed along the a-axis direction with the π-stacking inter­actions shown by dashed lines.
[Figure 3]
Figure 3
A partial packing diagram viewed along the b-axis direction with the π-stacking inter­actions shown by dashed lines.
[Figure 4]
Figure 4
A partial packing diagram viewed along the c-axis direction with the π-stacking inter­actions shown by dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corres­ponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]), as shown in Fig. 6[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no πringπring inter­actions. Fig. 7[link] clearly suggest that there are no ππ inter­actions in (I)[link].

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1152 to 1.5656 a.u.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 7]
Figure 7
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 8[link]a, and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯S/S⋯H, C⋯Cl/Cl⋯C, S⋯Cl/Cl⋯S, O⋯Cl/Cl⋯O, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]) are illustrated in Fig. 8[link]bl, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H (Table 1[link]) contributing 28.4% to the overall crystal packing, which is reflected in Fig. 8[link]b as widely scattered points of high density with the tip at de = di = 1.06 Å. The pair of the scattered points of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (19.3% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 8[link]c, with thin edges at de + di = 2.88 Å. The fingerprint plot delineated into H⋯O/O⋯H contacts (17.0%), Fig. 8[link]d, has a pair of characteristic wings with a pair of spikes with the tips at de + di = 2.48 Å. In the absence of C—H⋯π inter­actions, the pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.5%) have a nearly symmetrical distribution of points, Fig. 8[link]e, with thick edges at de + di ∼2.66 Å. The C⋯C contacts (8.2%), Fig. 8[link]f, have an arrow-shaped distribution of points with the tip at de = di ∼1.68 Å. Finally, the H⋯S/S⋯H (Fig. 8[link]g) and C⋯Cl/Cl⋯C (Fig. 8[link]h) contacts (3.7% and 2.9%, respectively), and are seen as pairs of wide and thin spikes with the tips at de + di = 3.30 and 3.60 Å, respectively.

Table 1
Selected interatomic distances (Å)

Cl1⋯S1i 3.5625 (7) O3⋯H10B 2.61 (2)
Cl2⋯C12ii 3.470 (2) O3⋯H5ii 2.78 (2)
Cl2⋯C3iii 3.557 (2) O3⋯H11Bii 2.80 (2)
Cl2⋯O2ii 3.3371 (13) O3⋯H9Av 2.73 (2)
Cl1⋯H3iv 3.01 (3) O3⋯H9Bv 2.90 (2)
Cl1⋯H16i 2.97 (3) O3⋯H11Avi 2.82 (2)
Cl2⋯H14 2.51 (2) N2⋯O3vi 3.165 (2)
Cl2⋯H4iii 3.12 (2) N2⋯C13vi 3.190 (2)
Cl2⋯H12Aii 3.15 (2) N2⋯H9Bv 2.91 (2)
Cl2⋯H3iii 2.97 (3) C5⋯C10 3.422 (3)
S1⋯N1 3.1231 (14) C7⋯C12v 3.580 (3)
S1⋯C16 3.136 (2) C9⋯C13v 3.287 (2)
S1⋯H16 2.45 (2) C10⋯C13vi 3.369 (2)
O1⋯C10 3.187 (2) C13⋯C13vi 3.320 (2)
O1⋯C12ii 3.038 (2) C5⋯H10A 2.97 (2)
O1⋯C12v 3.304 (3) C5⋯H9A 2.53 (2)
O2⋯C10vi 3.255 (2) C7⋯H10B 2.99 (2)
O2⋯C7v 3.143 (2) C8⋯H16 2.99 (2)
O3⋯N2vi 3.165 (2) C9⋯H5 2.52 (2)
O3⋯C11vi 3.328 (3) C9⋯H9Bv 2.92 (2)
O3⋯C11ii 3.375 (2) C10⋯H5 2.92 (2)
O3⋯C9v 3.196 (2) C13⋯H9Bv 2.70 (2)
O1⋯H12Bii 2.75 (2) C14⋯H12Bv 2.98 (2)
O1⋯H9B 2.23 (2) H5⋯H9A 2.06 (3)
O1⋯H10B 2.73 (2) H5⋯H10A 2.49 (3)
O1⋯H12Aii 2.74 (2) H9A⋯H11B 2.58 (3)
O1⋯H12Bv 2.79 (2) H9B⋯H9Bv 2.26 (3)
O1⋯H14 2.23 (2) H10A⋯H11A 2.58 (3)
O2⋯H10Bvi 2.75 (2) H10B⋯H12Avi 2.45 (3)
O2⋯H4ii 2.62 (2) H12A⋯H10Bvi 2.45 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z.
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯O/O⋯H, (e) H⋯C/C⋯H, (f) C⋯C, (g) H⋯S/S⋯H, (h) C⋯Cl/Cl⋯C, (i) S⋯Cl/Cl⋯S, (j) O⋯Cl/Cl⋯O, (k) O⋯C/C⋯O and (l) O⋯N/N⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C and H⋯S/S⋯H inter­actions in Fig. 9[link]af, respectively.

[Figure 9]
Figure 9
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯Cl/Cl⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C and (f) H⋯S/S⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. DFT calculations

The optimized structure of the title compound, (I)[link], in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). The theoretical and experimental results were in good agreement. The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 10[link]. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-di­chloro­phen­yl)methyl­idene]-4-[2-(2-oxo-1,3-oxa­zolidin-3-yl)eth­yl]3,4-di­hydro-2H-1,4- benzo­thia­zin-3-one ring. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is about 3.42 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO are −5.44 and −2.02 eV, respectively.

[Figure 10]
Figure 10
The energy-band gap of the title compound.

6. Database survey

A search of the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; updated to Nov. 2018) using the fragment II (R1 = Ph, R2 = C; Fig. 11[link]) gave 14 hits with R1 = Ph and R2 = CH2COOH (Sebbar et al., 2016c[Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.]), n-octa­decyl (Sebbar et al., 2017a[Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017a). IUCrData, 2, x170695.]), CH2C≡CH (Sebbar et al., 2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.]), IIa (Sebbar et al., 2016a[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845-6862.]), CH2COOEt (Zerzouf et al., 2001[Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498-o499.]), IIb (Ellouz et al., 2015a[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o1022-o1023.]), n-Bu (Sebbar et al., 2014b[Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686.]), IIc (Sebbar et al., 2016d[Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.]), Me (Ellouz et al., 2015b[Ellouz, M., Sebbar, N. K., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o862-o863.]) and IId (Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423-o424.]). In addition, there are structures with R1 = 4-ClC6H4 and R2 = CH2Ph2 (Ellouz et al., 2016c[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.]), n-Bu (Ellouz et al., 2017a[Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.]), IIa (Ellouz et al., 2017c[Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170870.]) and R1 = 2-ClC6H4, R2 = CH2C≡CH (Sebbar et al., 2017b[Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCr Data 2, x170889.]). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitro­gen and sulfur atoms and that defined by nitro­gen and sulfur and the other two carbon atoms separating them ranging from ca 29° in CH2C≡CH (Sebbar et al., 2014a[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.]), to 36° in IId (Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423-o424.]), which includes the value of ca 30° for 2H-1,4-benzo­thia­zin-3(4H)-one (WAKLUQ 01; Merola, 2013[Merola, J. S. (2013). Private Communication (refcode 977080). CCDC, Cambridge, England.]). The other three (IIa, IIc and R1 = 4-ClC6H4 and R2 = CH2Ph2; Ellouz et al., 2016c[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.]) have the benzo­thia­zine unit nearly planar with a corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity, but for the other two, there is no obvious source for the near planarity.

[Figure 11]
Figure 11
Related structures.

7. Synthesis and crystallization

Tetra-n-butyl­ammonium bromide (0.1 mmol), 2.20 equiv. of bis­(2-chloro­eth­yl)amine hydro­chloride and 2.00 equiv. of potassium carbonate were added to a solution of (Z)-2-(2,4-di­chloro­benzyl­idene)-2H-1,4-benzo­thia­zin-3(4H)-one (1.5 mmol) in DMF (25 ml). The mixture was stirred at 353 K for 6 h. After removal of salts by filtration, the solution was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water. The residue obtained was chromatographed on a silica gel column (eluent: ethyl acetate/hexa­ne: 3/2). The isolated solid was recrystallized from ethanol solution to afford colourless crystals [light yellow in CIF?] (yield: 67%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in a difference-Fourier map, and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C20H16Cl2N2O3S
Mr 435.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 18.4615 (8), 12.8567 (5), 7.9251 (4)
β (°) 96.926 (2)
V3) 1867.33 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.40
Crystal size (mm) 0.21 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.51, 0.80
No. of measured, independent and observed [I > 2σ(I)] reflections 14033, 3678, 3252
Rint 0.032
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.05
No. of reflections 3678
No. of parameters 317
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.38
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(2Z)-2-(2,4-Dichlorobenzylidene)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C20H16Cl2N2O3SF(000) = 896
Mr = 435.31Dx = 1.548 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 18.4615 (8) ÅCell parameters from 9952 reflections
b = 12.8567 (5) Åθ = 3.5–72.5°
c = 7.9251 (4) ŵ = 4.39 mm1
β = 96.926 (2)°T = 150 K
V = 1867.33 (14) Å3Column, light yellow
Z = 40.21 × 0.12 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3678 independent reflections
Radiation source: INCOATEC IµS micro–focus source3252 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 2.4°
ω scansh = 2221
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1415
Tmin = 0.51, Tmax = 0.80l = 99
14033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.093All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9972P]
where P = (Fo2 + 2Fc2)/3
3678 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02396 (3)0.92135 (4)0.75404 (8)0.05021 (17)
Cl20.23463 (3)0.91630 (3)0.51698 (8)0.04067 (15)
S10.17782 (2)0.48226 (3)0.53284 (7)0.03232 (14)
O10.35726 (7)0.62658 (10)0.44041 (18)0.0330 (3)
O20.61496 (6)0.46053 (10)0.16700 (16)0.0267 (3)
O30.54282 (7)0.59880 (10)0.19909 (16)0.0299 (3)
N10.33467 (7)0.45458 (11)0.42952 (18)0.0227 (3)
N20.49920 (8)0.43048 (11)0.19710 (19)0.0240 (3)
C10.21852 (9)0.36941 (13)0.4668 (2)0.0237 (3)
C20.17612 (10)0.27967 (14)0.4671 (3)0.0298 (4)
H20.1287 (13)0.2873 (18)0.496 (3)0.036 (6)*
C30.20375 (10)0.18467 (15)0.4260 (3)0.0328 (4)
H30.1739 (14)0.125 (2)0.424 (3)0.043 (6)*
C40.27384 (10)0.17928 (14)0.3800 (2)0.0299 (4)
H40.2935 (12)0.1146 (19)0.352 (3)0.037 (6)*
C50.31603 (10)0.26806 (14)0.3770 (2)0.0255 (4)
H50.3619 (13)0.2616 (18)0.342 (3)0.035 (6)*
C60.28970 (9)0.36498 (13)0.4241 (2)0.0221 (3)
C70.31385 (9)0.55557 (13)0.4532 (2)0.0238 (3)
C80.23937 (9)0.57999 (13)0.5014 (2)0.0233 (3)
C90.41197 (9)0.44207 (14)0.4043 (2)0.0235 (3)
H9A0.4306 (11)0.3741 (17)0.457 (3)0.029 (5)*
H9B0.4388 (11)0.4975 (17)0.468 (3)0.028 (5)*
C100.42367 (9)0.45187 (15)0.2187 (2)0.0264 (4)
H10A0.3897 (12)0.4031 (17)0.146 (3)0.031 (5)*
H10B0.4108 (12)0.5235 (18)0.181 (3)0.033 (6)*
C110.52850 (10)0.32643 (14)0.1876 (3)0.0285 (4)
H11A0.4991 (13)0.2859 (18)0.099 (3)0.038 (6)*
H11B0.5292 (13)0.2906 (19)0.295 (3)0.043 (6)*
C120.60490 (10)0.34916 (14)0.1433 (2)0.0272 (4)
H12A0.6082 (12)0.3331 (18)0.024 (3)0.037 (6)*
H12B0.6420 (13)0.3167 (19)0.219 (3)0.039 (6)*
C130.54980 (9)0.50543 (13)0.1887 (2)0.0227 (3)
C140.22602 (9)0.68205 (14)0.5250 (2)0.0246 (4)
H140.2654 (11)0.7266 (17)0.504 (3)0.027 (5)*
C150.16331 (9)0.73590 (13)0.5785 (2)0.0241 (4)
C160.10234 (10)0.68752 (15)0.6352 (3)0.0311 (4)
H160.0973 (13)0.612 (2)0.640 (3)0.044 (7)*
C170.04455 (10)0.74288 (16)0.6871 (3)0.0344 (4)
H170.0037 (15)0.710 (2)0.725 (3)0.050 (7)*
C180.04662 (10)0.84994 (16)0.6841 (3)0.0330 (4)
C190.10510 (10)0.90291 (15)0.6301 (3)0.0325 (4)
H190.1073 (11)0.9771 (19)0.626 (3)0.032 (6)*
C200.16222 (10)0.84560 (14)0.5794 (2)0.0271 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0335 (3)0.0432 (3)0.0774 (4)0.0150 (2)0.0207 (3)0.0079 (3)
Cl20.0354 (3)0.0187 (2)0.0718 (4)0.00040 (17)0.0224 (2)0.0036 (2)
S10.0250 (2)0.0169 (2)0.0593 (3)0.00047 (16)0.0225 (2)0.00057 (19)
O10.0279 (6)0.0224 (7)0.0522 (8)0.0045 (5)0.0198 (6)0.0021 (6)
O20.0227 (6)0.0208 (6)0.0390 (7)0.0020 (5)0.0131 (5)0.0006 (5)
O30.0380 (7)0.0183 (6)0.0349 (7)0.0008 (5)0.0106 (5)0.0001 (5)
N10.0187 (7)0.0201 (7)0.0308 (7)0.0006 (5)0.0097 (5)0.0007 (6)
N20.0224 (7)0.0182 (7)0.0338 (8)0.0002 (5)0.0131 (6)0.0008 (6)
C10.0231 (8)0.0175 (8)0.0316 (9)0.0011 (6)0.0080 (7)0.0013 (6)
C20.0232 (8)0.0219 (9)0.0454 (11)0.0026 (7)0.0097 (7)0.0003 (8)
C30.0306 (9)0.0192 (9)0.0493 (12)0.0039 (7)0.0079 (8)0.0017 (8)
C40.0323 (9)0.0187 (9)0.0395 (10)0.0027 (7)0.0070 (8)0.0039 (7)
C50.0252 (8)0.0221 (9)0.0304 (9)0.0036 (7)0.0083 (7)0.0007 (7)
C60.0220 (8)0.0183 (8)0.0268 (8)0.0015 (6)0.0060 (6)0.0008 (6)
C70.0225 (8)0.0186 (8)0.0320 (9)0.0007 (6)0.0105 (7)0.0000 (7)
C80.0212 (8)0.0187 (8)0.0319 (9)0.0005 (6)0.0103 (6)0.0012 (6)
C90.0167 (7)0.0272 (9)0.0274 (8)0.0014 (7)0.0063 (6)0.0011 (7)
C100.0219 (8)0.0298 (10)0.0287 (9)0.0022 (7)0.0079 (7)0.0010 (7)
C110.0294 (9)0.0171 (8)0.0412 (10)0.0003 (7)0.0137 (8)0.0007 (7)
C120.0280 (9)0.0189 (8)0.0365 (10)0.0015 (7)0.0116 (8)0.0030 (7)
C130.0257 (8)0.0212 (8)0.0224 (8)0.0008 (7)0.0085 (6)0.0008 (6)
C140.0217 (8)0.0193 (8)0.0346 (9)0.0008 (7)0.0109 (7)0.0007 (7)
C150.0229 (8)0.0206 (8)0.0299 (9)0.0021 (6)0.0075 (7)0.0005 (7)
C160.0265 (9)0.0236 (9)0.0456 (11)0.0001 (7)0.0143 (8)0.0021 (8)
C170.0255 (9)0.0330 (10)0.0475 (12)0.0011 (8)0.0155 (8)0.0029 (8)
C180.0255 (9)0.0328 (10)0.0416 (10)0.0085 (8)0.0087 (8)0.0040 (8)
C190.0311 (10)0.0226 (9)0.0445 (11)0.0062 (7)0.0070 (8)0.0002 (8)
C200.0250 (8)0.0219 (9)0.0353 (9)0.0019 (7)0.0070 (7)0.0010 (7)
Geometric parameters (Å, º) top
Cl1—C181.7385 (19)C7—C81.504 (2)
Cl2—C201.7373 (18)C8—C141.352 (2)
S1—C81.7321 (17)C9—C101.518 (2)
S1—C11.7430 (17)C9—H9A1.01 (2)
O1—C71.227 (2)C9—H9B0.97 (2)
O2—C131.364 (2)C10—H10A1.01 (2)
O2—C121.453 (2)C10—H10B0.99 (2)
O3—C131.211 (2)C11—C121.522 (2)
N1—C71.374 (2)C11—H11A0.98 (2)
N1—C61.418 (2)C11—H11B0.97 (3)
N1—C91.473 (2)C12—H12A0.97 (2)
N2—C131.349 (2)C12—H12B0.95 (2)
N2—C111.448 (2)C14—C151.455 (2)
N2—C101.451 (2)C14—H140.96 (2)
C1—C21.394 (2)C15—C161.406 (2)
C1—C61.397 (2)C15—C201.411 (2)
C2—C31.378 (3)C16—C171.386 (3)
C2—H20.94 (2)C16—H160.97 (3)
C3—C41.388 (3)C17—C181.377 (3)
C3—H30.94 (3)C17—H170.95 (3)
C4—C51.384 (3)C18—C191.387 (3)
C4—H40.94 (2)C19—C201.385 (3)
C5—C61.404 (2)C19—H190.96 (2)
C5—H50.93 (2)
Cl1···S1i3.5625 (7)O3···H10B2.61 (2)
Cl2···C12ii3.470 (2)O3···H5ii2.78 (2)
Cl2···C3iii3.557 (2)O3···H11Bii2.80 (2)
Cl2···O2ii3.3371 (13)O3···H9Av2.73 (2)
Cl1···H3iv3.01 (3)O3···H9Bv2.90 (2)
Cl1···H16i2.97 (3)O3···H11Avi2.82 (2)
Cl2···H142.51 (2)N2···O3vi3.165 (2)
Cl2···H4iii3.12 (2)N2···C13vi3.190 (2)
Cl2···H12Aii3.15 (2)N2···H9Bv2.91 (2)
Cl2···H3iii2.97 (3)C5···C103.422 (3)
S1···N13.1231 (14)C7···C12v3.580 (3)
S1···C163.136 (2)C9···C13v3.287 (2)
S1···H162.45 (2)C10···C13vi3.369 (2)
O1···C103.187 (2)C13···C13vi3.320 (2)
O1···C12ii3.038 (2)C5···H10A2.97 (2)
O1···C12v3.304 (3)C5···H9A2.53 (2)
O2···C10vi3.255 (2)C7···H10B2.99 (2)
O2···C7v3.143 (2)C8···H162.99 (2)
O3···N2vi3.165 (2)C9···H52.52 (2)
O3···C11vi3.328 (3)C9···H9Bv2.92 (2)
O3···C11ii3.375 (2)C10···H52.92 (2)
O3···C9v3.196 (2)C13···H9Bv2.70 (2)
O1···H12Bii2.75 (2)C14···H12Bv2.98 (2)
O1···H9B2.23 (2)H5···H9A2.06 (3)
O1···H10B2.73 (2)H5···H10A2.49 (3)
O1···H12Aii2.74 (2)H9A···H11B2.58 (3)
O1···H12Bv2.79 (2)H9B···H9Bv2.26 (3)
O1···H142.23 (2)H10A···H11A2.58 (3)
O2···H10Bvi2.75 (2)H10B···H12Avi2.45 (3)
O2···H4ii2.62 (2)H12A···H10Bvi2.45 (3)
C8—S1—C1104.29 (8)C9—C10—H10A110.3 (12)
C13—O2—C12109.43 (13)N2—C10—H10B109.8 (13)
C7—N1—C6126.86 (14)C9—C10—H10B108.4 (13)
C7—N1—C9114.42 (14)H10A—C10—H10B107.1 (17)
C6—N1—C9118.72 (14)N2—C11—C12101.36 (14)
C13—N2—C11113.07 (14)N2—C11—H11A110.5 (13)
C13—N2—C10123.45 (15)C12—C11—H11A112.7 (14)
C11—N2—C10123.45 (14)N2—C11—H11B111.1 (14)
C2—C1—C6120.75 (16)C12—C11—H11B112.3 (14)
C2—C1—S1115.20 (13)H11A—C11—H11B108.8 (19)
C6—C1—S1123.97 (13)O2—C12—C11105.47 (13)
C3—C2—C1120.61 (17)O2—C12—H12A108.2 (14)
C3—C2—H2122.4 (14)C11—C12—H12A110.6 (13)
C1—C2—H2117.0 (14)O2—C12—H12B106.3 (14)
C2—C3—C4119.33 (17)C11—C12—H12B112.9 (14)
C2—C3—H3119.4 (15)H12A—C12—H12B113.0 (19)
C4—C3—H3121.2 (15)O3—C13—N2128.64 (16)
C5—C4—C3120.53 (17)O3—C13—O2122.07 (15)
C5—C4—H4119.3 (14)N2—C13—O2109.30 (14)
C3—C4—H4120.1 (14)C8—C14—C15131.80 (16)
C4—C5—C6120.93 (16)C8—C14—H14113.7 (13)
C4—C5—H5117.9 (14)C15—C14—H14114.5 (13)
C6—C5—H5121.2 (14)C16—C15—C20115.34 (16)
C1—C6—C5117.79 (15)C16—C15—C14125.33 (16)
C1—C6—N1121.60 (15)C20—C15—C14119.31 (16)
C5—C6—N1120.60 (15)C17—C16—C15122.84 (18)
O1—C7—N1119.71 (15)C17—C16—H16114.8 (15)
O1—C7—C8119.48 (15)C15—C16—H16122.4 (15)
N1—C7—C8120.77 (14)C18—C17—C16118.95 (18)
C14—C8—C7115.16 (15)C18—C17—H17118.7 (16)
C14—C8—S1123.40 (13)C16—C17—H17122.4 (16)
C7—C8—S1121.39 (12)C17—C18—C19121.36 (17)
N1—C9—C10112.06 (14)C17—C18—Cl1119.91 (15)
N1—C9—H9A109.0 (12)C19—C18—Cl1118.70 (15)
C10—C9—H9A113.1 (12)C20—C19—C18118.45 (18)
N1—C9—H9B106.8 (12)C20—C19—H19118.9 (13)
C10—C9—H9B108.7 (12)C18—C19—H19122.7 (13)
H9A—C9—H9B106.9 (16)C19—C20—C15123.05 (17)
N2—C10—C9110.45 (14)C19—C20—Cl2116.31 (14)
N2—C10—H10A110.7 (12)C15—C20—Cl2120.64 (13)
C8—S1—C1—C2175.06 (14)C11—N2—C10—C981.1 (2)
C8—S1—C1—C68.14 (18)N1—C9—C10—N2175.21 (14)
C6—C1—C2—C30.3 (3)C13—N2—C11—C128.6 (2)
S1—C1—C2—C3176.63 (16)C10—N2—C11—C12173.17 (16)
C1—C2—C3—C41.5 (3)C13—O2—C12—C1110.95 (19)
C2—C3—C4—C50.6 (3)N2—C11—C12—O211.27 (19)
C3—C4—C5—C61.5 (3)C11—N2—C13—O3177.18 (18)
C2—C1—C6—C51.8 (3)C10—N2—C13—O31.1 (3)
S1—C1—C6—C5178.44 (13)C11—N2—C13—O22.2 (2)
C2—C1—C6—N1177.45 (16)C10—N2—C13—O2179.56 (15)
S1—C1—C6—N10.8 (2)C12—O2—C13—O3174.76 (16)
C4—C5—C6—C12.7 (3)C12—O2—C13—N25.81 (18)
C4—C5—C6—N1176.56 (16)C7—C8—C14—C15176.93 (18)
C7—N1—C6—C19.1 (3)S1—C8—C14—C150.3 (3)
C9—N1—C6—C1172.24 (16)C8—C14—C15—C166.6 (3)
C7—N1—C6—C5171.68 (17)C8—C14—C15—C20175.08 (19)
C9—N1—C6—C57.0 (2)C20—C15—C16—C170.6 (3)
C6—N1—C7—O1173.69 (16)C14—C15—C16—C17179.02 (19)
C9—N1—C7—O15.0 (2)C15—C16—C17—C180.3 (3)
C6—N1—C7—C88.7 (3)C16—C17—C18—C190.1 (3)
C9—N1—C7—C8172.58 (15)C16—C17—C18—Cl1178.22 (16)
O1—C7—C8—C140.9 (3)C17—C18—C19—C200.3 (3)
N1—C7—C8—C14178.52 (16)Cl1—C18—C19—C20178.04 (15)
O1—C7—C8—S1176.37 (14)C18—C19—C20—C150.7 (3)
N1—C7—C8—S11.2 (2)C18—C19—C20—Cl2178.85 (15)
C1—S1—C8—C14174.78 (16)C16—C15—C20—C190.8 (3)
C1—S1—C8—C78.17 (17)C14—C15—C20—C19179.34 (18)
C7—N1—C9—C1088.22 (19)C16—C15—C20—Cl2178.68 (14)
C6—N1—C9—C1090.61 (19)C14—C15—C20—Cl20.2 (2)
C13—N2—C10—C997.0 (2)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y+1, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264–1271.  CrossRef CAS PubMed Google Scholar
First citationArmenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188.  Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEllouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819.  CAS Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o862–o863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097.  Google Scholar
First citationEllouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170870.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationFujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542–546.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, R. R. & Kumar, R. (1986). J. Fluor. Chem. 31, 19–24.  CrossRef CAS Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 372–377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMerola, J. S. (2013). Private Communication (refcode 977080). CCDC, Cambridge, England.  Google Scholar
First citationRathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686.  CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017a). IUCrData, 2, x170695.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863.  Google Scholar
First citationSebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCr Data 2, x170889.  Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388.  CAS Google Scholar
First citationTakemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788–789.  CrossRef CAS Web of Science Google Scholar
First citationTawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CSD CrossRef CAS Google Scholar
First citationVidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593.  Web of Science CrossRef Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar
First citationZerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds