research communications
Z)-2-(2,4-dichlorobenzylidene)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one
Hirshfeld surface analysis and DFT study of (2aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
*Correspondence e-mail: brahimhni2018@gmail.com
The title compound, C20H16Cl2N2O3S, is built up from a dihydrobenzothiazine moiety linked by –CH– and –C2H4– units to 2,4-dichlorophenyl and 2-oxo-1,3-oxazolidine substituents, where the oxazole ring and the heterocyclic portion of the dihydrobenzothiazine unit adopt envelope and flattened-boat conformations, respectively. The 2-carbon link to the oxazole ring is nearly perpendicular to the mean plane of the dihydrobenzothiazine unit. In the crystal, the molecules form stacks extending along the normal to (104) with the aromatic rings from neighbouring stacks intercalating to form an overall layer structure. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (28.4%), H⋯Cl/Cl⋯H (19.3%), H⋯O/O⋯H (17.0%), H⋯C/C⋯H (14.5%) and C⋯C (8.2%) interactions. Weak hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap.
Keywords: crystal structure; dihydrobenzothiazine; oxazole; π-stacking; Hirshfeld surface.
CCDC reference: 1906476
1. Chemical context
Compounds containing a 1,4-benzothiazine backbone have been studied extensively both in academic and industrial laboratories. These molecules exhibit a wide range of biological applications indicating that the 1,4-benzothiazine moiety is a template potentially useful in medicinal chemistry research and therapeutic applications such as antipyretic (Warren & Knaus, 1987), anti-microbial (Armenise et al., 2012; Rathore & Kumar, 2006; Sabatini et al., 2008) , anti-viral (Malagu et al., 1998), herbicide (Takemoto et al., 1994), anti-cancer (Gupta & Kumar, 1986) and anti-oxidant (Zia-ur-Rehman et al., 2009) areas. They have also been reported as precursors for the syntheses of new compounds (Vidal et al., 2006) possessing anti-diabetic (Tawada et al., 1990) and anti-corrosion activities (Ellouz et al., 2016a,b). 1,4-Benzothiazine-containing compounds are important because of their potential applications in the treatment of diabetes complications, by inhibiting aldose reductase (Aotsuka et al., 1994). They are also used as analgesics (Wammack et al., 2002) and and antagonists of Ca2+ (Fujimura et al., 1996). As a continuation of our previous work on the syntheses and the biological properties of new 1,4-benzothiazine derivatives (Sebbar et al., 2016a,b; Ellouz et al., 2015a,b, 2017a,b), we report herein on the synthesis and the molecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and the density functional theory (DFT) calculations.
2. Structural commentary
The title compound, (I), is built up from a dihydrobenzothiazine moiety linked by –CH– and C2H2– units to 2,4-dichlorophenyl and 2-oxo-1,3-oxazolidine substituents, respectively (Fig. 1). The benzene ring, A (C1–C6), is oriented at a dihedral angle of 11.27 (6)° with respect to the phenyl ring D (C15–C20), ring. A puckering analysis of the heterocyclic portion (ring B; S1/N1/C1/C6–C8) of the dihydrobenzothiazine unit gave the parameters QT = 0.1206 (14) Å, q2 = 0.1190 (14) Å, q3 = −0.0174 (16) Å, φ = 178.2 (8)° and θ = 98.4 (8)°, indicating a flattened-boat conformation. A similar analysis for the oxazolidine ring C (O2/N2/C11–C13) yielded q2 = 0.1125 (18) Å and φ2 = 45.7 (9)°, indicating an with atom C12 at the flap position and at a distance of 0.175 (2) Å from the best plane of the other four atoms. The C9/C10 chain C is essentially perpendicular to the dihydrobenzothiazine unit, as indicated by the C6—N1—C9—C10 torsion angle of 90.61 (19)°. In the heterocyclic ring B, the C1—S1—C8 [104.29 (8)°], S1—C8—C7 [121.39 (12)°], C8—C7—N1 [120.77 (14)°], C7—N1—C6 [126.86 (14)°], C6—C1—S1 [123.97 (13)°] and N1—C6—C1 [121.60 (15)°] bond angles are enlarged compared with the corresponding values in the closely related compounds (2Z)-2-(4-chlorobenzylidene)-4-[2-(2-oxooxazoliden-3-yl)ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one, (II), (Ellouz et al., 2017a) and (2Z)-2-[(4-fluorobenzylidene]-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-1,4-benzothiazin-3-one, (III), (Hni et al., 2019), and they are nearly the same as those in (2Z)-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]-2(phenylmethylidene)-3,4-dihydro-2H-1,4-benzothiazin-3-one, (IV), (Sebbar et al., 2016a), where the heterocyclic portions of the dihydrobenzothiazine units are planar in (IV) and non-planar in (II) and (III).
3. Supramolecular features
In the crystal, the molecules form stacks extending along the normal to (104) through π-stacking interactions between C7=O1 and the C ring at −x + 1, −y + 1, −z + 1 [O1⋯centroid = 3.2744 (16) Å, C7⋯centroid = 3.5448 (18) Å and C7=O1⋯centroid = 92.4 (1)°] and between C13=O3 and the C ring at −x + 1, −y + 1, −z [O3⋯centroid = 3.3332 (15) Å, C13⋯centroid = 3.4800 (18) Å and C13=O3⋯centroid = 86.7 (1)°] (Figs. 2 and 3). Intercalation of the aromatic rings between stacks (Fig. 4) leads to an overall layer structure with the layers approximately parallel to (101) (Fig. 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 5), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 6. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no πring–πring interactions. Fig. 7 clearly suggest that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 8a, and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C, H⋯S/S⋯H, C⋯Cl/Cl⋯C, S⋯Cl/Cl⋯S, O⋯Cl/Cl⋯O, O⋯C/C⋯O and O⋯N/N⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 8b–l, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H (Table 1) contributing 28.4% to the overall crystal packing, which is reflected in Fig. 8b as widely scattered points of high density with the tip at de = di = 1.06 Å. The pair of the scattered points of wings in the fingerprint plot delineated into H⋯Cl/Cl⋯H contacts (19.3% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 8c, with thin edges at de + di = 2.88 Å. The fingerprint plot delineated into H⋯O/O⋯H contacts (17.0%), Fig. 8d, has a pair of characteristic wings with a pair of spikes with the tips at de + di = 2.48 Å. In the absence of C—H⋯π interactions, the pair of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (14.5%) have a nearly symmetrical distribution of points, Fig. 8e, with thick edges at de + di ∼2.66 Å. The C⋯C contacts (8.2%), Fig. 8f, have an arrow-shaped distribution of points with the tip at de = di ∼1.68 Å. Finally, the H⋯S/S⋯H (Fig. 8g) and C⋯Cl/Cl⋯C (Fig. 8h) contacts (3.7% and 2.9%, respectively), and are seen as pairs of wide and thin spikes with the tips at de + di = 3.30 and 3.60 Å, respectively.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯C and H⋯S/S⋯H interactions in Fig. 9a–f, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. DFT calculations
The optimized structure of the title compound, (I), in the gas phase was generated theoretically via density functional theory (DFT) using standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results were in good agreement. The highest-occupied molecular orbital (HOMO), acting as an and the lowest-unoccupied molecular orbital (LUMO), acting as an are very important parameters for quantum chemistry. When the energy gap is small, the molecule is highly polarizable and has high chemical reactivity. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 10. The HOMO and LUMO are localized in the plane extending from the whole (2Z)-2-[(2,4-dichlorophenyl)methylidene]-4-[2-(2-oxo-1,3-oxazolidin-3-yl)ethyl]3,4-dihydro-2H-1,4- benzothiazin-3-one ring. The energy band gap [ΔE = ELUMO − EHOMO] of the molecule is about 3.42 eV, and the frontier molecular orbital energies, EHOMO and ELUMO are −5.44 and −2.02 eV, respectively.
6. Database survey
A search of the Cambridge Crystallographic Database (Groom et al., 2016; updated to Nov. 2018) using the fragment II (R1 = Ph, R2 = C; Fig. 11) gave 14 hits with R1 = Ph and R2 = CH2COOH (Sebbar et al., 2016c), n-octadecyl (Sebbar et al., 2017a), CH2C≡CH (Sebbar et al., 2014a), IIa (Sebbar et al., 2016a), CH2COOEt (Zerzouf et al., 2001), IIb (Ellouz et al., 2015a), n-Bu (Sebbar et al., 2014b), IIc (Sebbar et al., 2016d), Me (Ellouz et al., 2015b) and IId (Sebbar et al., 2015). In addition, there are structures with R1 = 4-ClC6H4 and R2 = CH2Ph2 (Ellouz et al., 2016c), n-Bu (Ellouz et al., 2017a), IIa (Ellouz et al., 2017c) and R1 = 2-ClC6H4, R2 = CH2C≡CH (Sebbar et al., 2017b). In the majority of these, the heterocyclic ring is quite non-planar with the dihedral angle between the plane defined by the benzene ring plus the nitrogen and sulfur atoms and that defined by nitrogen and sulfur and the other two carbon atoms separating them ranging from ca 29° in CH2C≡CH (Sebbar et al., 2014a), to 36° in IId (Sebbar et al., 2015), which includes the value of ca 30° for 2H-1,4-benzothiazin-3(4H)-one (WAKLUQ 01; Merola, 2013). The other three (IIa, IIc and R1 = 4-ClC6H4 and R2 = CH2Ph2; Ellouz et al., 2016c) have the benzothiazine unit nearly planar with a corresponding dihedral angle of ca 3–4°. In the case of IIa, the displacement ellipsoid for the sulfur atom shows a considerable elongation perpendicular to the mean plane of the heterocyclic ring, suggesting disorder, and a greater degree of non-planarity, but for the other two, there is no obvious source for the near planarity.
7. Synthesis and crystallization
Tetra-n-butylammonium bromide (0.1 mmol), 2.20 equiv. of bis(2-chloroethyl)amine hydrochloride and 2.00 equiv. of potassium carbonate were added to a solution of (Z)-2-(2,4-dichlorobenzylidene)-2H-1,4-benzothiazin-3(4H)-one (1.5 mmol) in DMF (25 ml). The mixture was stirred at 353 K for 6 h. After removal of salts by filtration, the solution was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The remaining salts were extracted with distilled water. The residue obtained was chromatographed on a silica gel column (eluent: ethyl acetate/hexane: 3/2). The isolated solid was recrystallized from ethanol solution to afford colourless crystals [light yellow in CIF?] (yield: 67%).
8. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in a difference-Fourier map, and freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1906476
https://doi.org/10.1107/S2056989019004250/lh5895sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004250/lh5895Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004250/lh5895Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004250/lh5895Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C20H16Cl2N2O3S | F(000) = 896 |
Mr = 435.31 | Dx = 1.548 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 18.4615 (8) Å | Cell parameters from 9952 reflections |
b = 12.8567 (5) Å | θ = 3.5–72.5° |
c = 7.9251 (4) Å | µ = 4.39 mm−1 |
β = 96.926 (2)° | T = 150 K |
V = 1867.33 (14) Å3 | Column, light yellow |
Z = 4 | 0.21 × 0.12 × 0.05 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3678 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 3252 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.5°, θmin = 2.4° |
ω scans | h = −22→21 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −14→15 |
Tmin = 0.51, Tmax = 0.80 | l = −9→9 |
14033 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.093 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9972P] where P = (Fo2 + 2Fc2)/3 |
3678 reflections | (Δ/σ)max = 0.001 |
317 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.02396 (3) | 0.92135 (4) | 0.75404 (8) | 0.05021 (17) | |
Cl2 | 0.23463 (3) | 0.91630 (3) | 0.51698 (8) | 0.04067 (15) | |
S1 | 0.17782 (2) | 0.48226 (3) | 0.53284 (7) | 0.03232 (14) | |
O1 | 0.35726 (7) | 0.62658 (10) | 0.44041 (18) | 0.0330 (3) | |
O2 | 0.61496 (6) | 0.46053 (10) | 0.16700 (16) | 0.0267 (3) | |
O3 | 0.54282 (7) | 0.59880 (10) | 0.19909 (16) | 0.0299 (3) | |
N1 | 0.33467 (7) | 0.45458 (11) | 0.42952 (18) | 0.0227 (3) | |
N2 | 0.49920 (8) | 0.43048 (11) | 0.19710 (19) | 0.0240 (3) | |
C1 | 0.21852 (9) | 0.36941 (13) | 0.4668 (2) | 0.0237 (3) | |
C2 | 0.17612 (10) | 0.27967 (14) | 0.4671 (3) | 0.0298 (4) | |
H2 | 0.1287 (13) | 0.2873 (18) | 0.496 (3) | 0.036 (6)* | |
C3 | 0.20375 (10) | 0.18467 (15) | 0.4260 (3) | 0.0328 (4) | |
H3 | 0.1739 (14) | 0.125 (2) | 0.424 (3) | 0.043 (6)* | |
C4 | 0.27384 (10) | 0.17928 (14) | 0.3800 (2) | 0.0299 (4) | |
H4 | 0.2935 (12) | 0.1146 (19) | 0.352 (3) | 0.037 (6)* | |
C5 | 0.31603 (10) | 0.26806 (14) | 0.3770 (2) | 0.0255 (4) | |
H5 | 0.3619 (13) | 0.2616 (18) | 0.342 (3) | 0.035 (6)* | |
C6 | 0.28970 (9) | 0.36498 (13) | 0.4241 (2) | 0.0221 (3) | |
C7 | 0.31385 (9) | 0.55557 (13) | 0.4532 (2) | 0.0238 (3) | |
C8 | 0.23937 (9) | 0.57999 (13) | 0.5014 (2) | 0.0233 (3) | |
C9 | 0.41197 (9) | 0.44207 (14) | 0.4043 (2) | 0.0235 (3) | |
H9A | 0.4306 (11) | 0.3741 (17) | 0.457 (3) | 0.029 (5)* | |
H9B | 0.4388 (11) | 0.4975 (17) | 0.468 (3) | 0.028 (5)* | |
C10 | 0.42367 (9) | 0.45187 (15) | 0.2187 (2) | 0.0264 (4) | |
H10A | 0.3897 (12) | 0.4031 (17) | 0.146 (3) | 0.031 (5)* | |
H10B | 0.4108 (12) | 0.5235 (18) | 0.181 (3) | 0.033 (6)* | |
C11 | 0.52850 (10) | 0.32643 (14) | 0.1876 (3) | 0.0285 (4) | |
H11A | 0.4991 (13) | 0.2859 (18) | 0.099 (3) | 0.038 (6)* | |
H11B | 0.5292 (13) | 0.2906 (19) | 0.295 (3) | 0.043 (6)* | |
C12 | 0.60490 (10) | 0.34916 (14) | 0.1433 (2) | 0.0272 (4) | |
H12A | 0.6082 (12) | 0.3331 (18) | 0.024 (3) | 0.037 (6)* | |
H12B | 0.6420 (13) | 0.3167 (19) | 0.219 (3) | 0.039 (6)* | |
C13 | 0.54980 (9) | 0.50543 (13) | 0.1887 (2) | 0.0227 (3) | |
C14 | 0.22602 (9) | 0.68205 (14) | 0.5250 (2) | 0.0246 (4) | |
H14 | 0.2654 (11) | 0.7266 (17) | 0.504 (3) | 0.027 (5)* | |
C15 | 0.16331 (9) | 0.73590 (13) | 0.5785 (2) | 0.0241 (4) | |
C16 | 0.10234 (10) | 0.68752 (15) | 0.6352 (3) | 0.0311 (4) | |
H16 | 0.0973 (13) | 0.612 (2) | 0.640 (3) | 0.044 (7)* | |
C17 | 0.04455 (10) | 0.74288 (16) | 0.6871 (3) | 0.0344 (4) | |
H17 | 0.0037 (15) | 0.710 (2) | 0.725 (3) | 0.050 (7)* | |
C18 | 0.04662 (10) | 0.84994 (16) | 0.6841 (3) | 0.0330 (4) | |
C19 | 0.10510 (10) | 0.90291 (15) | 0.6301 (3) | 0.0325 (4) | |
H19 | 0.1073 (11) | 0.9771 (19) | 0.626 (3) | 0.032 (6)* | |
C20 | 0.16222 (10) | 0.84560 (14) | 0.5794 (2) | 0.0271 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0335 (3) | 0.0432 (3) | 0.0774 (4) | 0.0150 (2) | 0.0207 (3) | −0.0079 (3) |
Cl2 | 0.0354 (3) | 0.0187 (2) | 0.0718 (4) | −0.00040 (17) | 0.0224 (2) | 0.0036 (2) |
S1 | 0.0250 (2) | 0.0169 (2) | 0.0593 (3) | −0.00047 (16) | 0.0225 (2) | −0.00057 (19) |
O1 | 0.0279 (6) | 0.0224 (7) | 0.0522 (8) | −0.0045 (5) | 0.0198 (6) | −0.0021 (6) |
O2 | 0.0227 (6) | 0.0208 (6) | 0.0390 (7) | −0.0020 (5) | 0.0131 (5) | −0.0006 (5) |
O3 | 0.0380 (7) | 0.0183 (6) | 0.0349 (7) | 0.0008 (5) | 0.0106 (5) | 0.0001 (5) |
N1 | 0.0187 (7) | 0.0201 (7) | 0.0308 (7) | 0.0006 (5) | 0.0097 (5) | −0.0007 (6) |
N2 | 0.0224 (7) | 0.0182 (7) | 0.0338 (8) | −0.0002 (5) | 0.0131 (6) | −0.0008 (6) |
C1 | 0.0231 (8) | 0.0175 (8) | 0.0316 (9) | 0.0011 (6) | 0.0080 (7) | 0.0013 (6) |
C2 | 0.0232 (8) | 0.0219 (9) | 0.0454 (11) | −0.0026 (7) | 0.0097 (7) | 0.0003 (8) |
C3 | 0.0306 (9) | 0.0192 (9) | 0.0493 (12) | −0.0039 (7) | 0.0079 (8) | −0.0017 (8) |
C4 | 0.0323 (9) | 0.0187 (9) | 0.0395 (10) | 0.0027 (7) | 0.0070 (8) | −0.0039 (7) |
C5 | 0.0252 (8) | 0.0221 (9) | 0.0304 (9) | 0.0036 (7) | 0.0083 (7) | −0.0007 (7) |
C6 | 0.0220 (8) | 0.0183 (8) | 0.0268 (8) | −0.0015 (6) | 0.0060 (6) | 0.0008 (6) |
C7 | 0.0225 (8) | 0.0186 (8) | 0.0320 (9) | −0.0007 (6) | 0.0105 (7) | 0.0000 (7) |
C8 | 0.0212 (8) | 0.0187 (8) | 0.0319 (9) | −0.0005 (6) | 0.0103 (6) | 0.0012 (6) |
C9 | 0.0167 (7) | 0.0272 (9) | 0.0274 (8) | 0.0014 (7) | 0.0063 (6) | −0.0011 (7) |
C10 | 0.0219 (8) | 0.0298 (10) | 0.0287 (9) | 0.0022 (7) | 0.0079 (7) | 0.0010 (7) |
C11 | 0.0294 (9) | 0.0171 (8) | 0.0412 (10) | −0.0003 (7) | 0.0137 (8) | 0.0007 (7) |
C12 | 0.0280 (9) | 0.0189 (8) | 0.0365 (10) | 0.0015 (7) | 0.0116 (8) | −0.0030 (7) |
C13 | 0.0257 (8) | 0.0212 (8) | 0.0224 (8) | −0.0008 (7) | 0.0085 (6) | 0.0008 (6) |
C14 | 0.0217 (8) | 0.0193 (8) | 0.0346 (9) | −0.0008 (7) | 0.0109 (7) | 0.0007 (7) |
C15 | 0.0229 (8) | 0.0206 (8) | 0.0299 (9) | 0.0021 (6) | 0.0075 (7) | 0.0005 (7) |
C16 | 0.0265 (9) | 0.0236 (9) | 0.0456 (11) | −0.0001 (7) | 0.0143 (8) | −0.0021 (8) |
C17 | 0.0255 (9) | 0.0330 (10) | 0.0475 (12) | 0.0011 (8) | 0.0155 (8) | −0.0029 (8) |
C18 | 0.0255 (9) | 0.0328 (10) | 0.0416 (10) | 0.0085 (8) | 0.0087 (8) | −0.0040 (8) |
C19 | 0.0311 (10) | 0.0226 (9) | 0.0445 (11) | 0.0062 (7) | 0.0070 (8) | −0.0002 (8) |
C20 | 0.0250 (8) | 0.0219 (9) | 0.0353 (9) | 0.0019 (7) | 0.0070 (7) | 0.0010 (7) |
Cl1—C18 | 1.7385 (19) | C7—C8 | 1.504 (2) |
Cl2—C20 | 1.7373 (18) | C8—C14 | 1.352 (2) |
S1—C8 | 1.7321 (17) | C9—C10 | 1.518 (2) |
S1—C1 | 1.7430 (17) | C9—H9A | 1.01 (2) |
O1—C7 | 1.227 (2) | C9—H9B | 0.97 (2) |
O2—C13 | 1.364 (2) | C10—H10A | 1.01 (2) |
O2—C12 | 1.453 (2) | C10—H10B | 0.99 (2) |
O3—C13 | 1.211 (2) | C11—C12 | 1.522 (2) |
N1—C7 | 1.374 (2) | C11—H11A | 0.98 (2) |
N1—C6 | 1.418 (2) | C11—H11B | 0.97 (3) |
N1—C9 | 1.473 (2) | C12—H12A | 0.97 (2) |
N2—C13 | 1.349 (2) | C12—H12B | 0.95 (2) |
N2—C11 | 1.448 (2) | C14—C15 | 1.455 (2) |
N2—C10 | 1.451 (2) | C14—H14 | 0.96 (2) |
C1—C2 | 1.394 (2) | C15—C16 | 1.406 (2) |
C1—C6 | 1.397 (2) | C15—C20 | 1.411 (2) |
C2—C3 | 1.378 (3) | C16—C17 | 1.386 (3) |
C2—H2 | 0.94 (2) | C16—H16 | 0.97 (3) |
C3—C4 | 1.388 (3) | C17—C18 | 1.377 (3) |
C3—H3 | 0.94 (3) | C17—H17 | 0.95 (3) |
C4—C5 | 1.384 (3) | C18—C19 | 1.387 (3) |
C4—H4 | 0.94 (2) | C19—C20 | 1.385 (3) |
C5—C6 | 1.404 (2) | C19—H19 | 0.96 (2) |
C5—H5 | 0.93 (2) | ||
Cl1···S1i | 3.5625 (7) | O3···H10B | 2.61 (2) |
Cl2···C12ii | 3.470 (2) | O3···H5ii | 2.78 (2) |
Cl2···C3iii | 3.557 (2) | O3···H11Bii | 2.80 (2) |
Cl2···O2ii | 3.3371 (13) | O3···H9Av | 2.73 (2) |
Cl1···H3iv | 3.01 (3) | O3···H9Bv | 2.90 (2) |
Cl1···H16i | 2.97 (3) | O3···H11Avi | 2.82 (2) |
Cl2···H14 | 2.51 (2) | N2···O3vi | 3.165 (2) |
Cl2···H4iii | 3.12 (2) | N2···C13vi | 3.190 (2) |
Cl2···H12Aii | 3.15 (2) | N2···H9Bv | 2.91 (2) |
Cl2···H3iii | 2.97 (3) | C5···C10 | 3.422 (3) |
S1···N1 | 3.1231 (14) | C7···C12v | 3.580 (3) |
S1···C16 | 3.136 (2) | C9···C13v | 3.287 (2) |
S1···H16 | 2.45 (2) | C10···C13vi | 3.369 (2) |
O1···C10 | 3.187 (2) | C13···C13vi | 3.320 (2) |
O1···C12ii | 3.038 (2) | C5···H10A | 2.97 (2) |
O1···C12v | 3.304 (3) | C5···H9A | 2.53 (2) |
O2···C10vi | 3.255 (2) | C7···H10B | 2.99 (2) |
O2···C7v | 3.143 (2) | C8···H16 | 2.99 (2) |
O3···N2vi | 3.165 (2) | C9···H5 | 2.52 (2) |
O3···C11vi | 3.328 (3) | C9···H9Bv | 2.92 (2) |
O3···C11ii | 3.375 (2) | C10···H5 | 2.92 (2) |
O3···C9v | 3.196 (2) | C13···H9Bv | 2.70 (2) |
O1···H12Bii | 2.75 (2) | C14···H12Bv | 2.98 (2) |
O1···H9B | 2.23 (2) | H5···H9A | 2.06 (3) |
O1···H10B | 2.73 (2) | H5···H10A | 2.49 (3) |
O1···H12Aii | 2.74 (2) | H9A···H11B | 2.58 (3) |
O1···H12Bv | 2.79 (2) | H9B···H9Bv | 2.26 (3) |
O1···H14 | 2.23 (2) | H10A···H11A | 2.58 (3) |
O2···H10Bvi | 2.75 (2) | H10B···H12Avi | 2.45 (3) |
O2···H4ii | 2.62 (2) | H12A···H10Bvi | 2.45 (3) |
C8—S1—C1 | 104.29 (8) | C9—C10—H10A | 110.3 (12) |
C13—O2—C12 | 109.43 (13) | N2—C10—H10B | 109.8 (13) |
C7—N1—C6 | 126.86 (14) | C9—C10—H10B | 108.4 (13) |
C7—N1—C9 | 114.42 (14) | H10A—C10—H10B | 107.1 (17) |
C6—N1—C9 | 118.72 (14) | N2—C11—C12 | 101.36 (14) |
C13—N2—C11 | 113.07 (14) | N2—C11—H11A | 110.5 (13) |
C13—N2—C10 | 123.45 (15) | C12—C11—H11A | 112.7 (14) |
C11—N2—C10 | 123.45 (14) | N2—C11—H11B | 111.1 (14) |
C2—C1—C6 | 120.75 (16) | C12—C11—H11B | 112.3 (14) |
C2—C1—S1 | 115.20 (13) | H11A—C11—H11B | 108.8 (19) |
C6—C1—S1 | 123.97 (13) | O2—C12—C11 | 105.47 (13) |
C3—C2—C1 | 120.61 (17) | O2—C12—H12A | 108.2 (14) |
C3—C2—H2 | 122.4 (14) | C11—C12—H12A | 110.6 (13) |
C1—C2—H2 | 117.0 (14) | O2—C12—H12B | 106.3 (14) |
C2—C3—C4 | 119.33 (17) | C11—C12—H12B | 112.9 (14) |
C2—C3—H3 | 119.4 (15) | H12A—C12—H12B | 113.0 (19) |
C4—C3—H3 | 121.2 (15) | O3—C13—N2 | 128.64 (16) |
C5—C4—C3 | 120.53 (17) | O3—C13—O2 | 122.07 (15) |
C5—C4—H4 | 119.3 (14) | N2—C13—O2 | 109.30 (14) |
C3—C4—H4 | 120.1 (14) | C8—C14—C15 | 131.80 (16) |
C4—C5—C6 | 120.93 (16) | C8—C14—H14 | 113.7 (13) |
C4—C5—H5 | 117.9 (14) | C15—C14—H14 | 114.5 (13) |
C6—C5—H5 | 121.2 (14) | C16—C15—C20 | 115.34 (16) |
C1—C6—C5 | 117.79 (15) | C16—C15—C14 | 125.33 (16) |
C1—C6—N1 | 121.60 (15) | C20—C15—C14 | 119.31 (16) |
C5—C6—N1 | 120.60 (15) | C17—C16—C15 | 122.84 (18) |
O1—C7—N1 | 119.71 (15) | C17—C16—H16 | 114.8 (15) |
O1—C7—C8 | 119.48 (15) | C15—C16—H16 | 122.4 (15) |
N1—C7—C8 | 120.77 (14) | C18—C17—C16 | 118.95 (18) |
C14—C8—C7 | 115.16 (15) | C18—C17—H17 | 118.7 (16) |
C14—C8—S1 | 123.40 (13) | C16—C17—H17 | 122.4 (16) |
C7—C8—S1 | 121.39 (12) | C17—C18—C19 | 121.36 (17) |
N1—C9—C10 | 112.06 (14) | C17—C18—Cl1 | 119.91 (15) |
N1—C9—H9A | 109.0 (12) | C19—C18—Cl1 | 118.70 (15) |
C10—C9—H9A | 113.1 (12) | C20—C19—C18 | 118.45 (18) |
N1—C9—H9B | 106.8 (12) | C20—C19—H19 | 118.9 (13) |
C10—C9—H9B | 108.7 (12) | C18—C19—H19 | 122.7 (13) |
H9A—C9—H9B | 106.9 (16) | C19—C20—C15 | 123.05 (17) |
N2—C10—C9 | 110.45 (14) | C19—C20—Cl2 | 116.31 (14) |
N2—C10—H10A | 110.7 (12) | C15—C20—Cl2 | 120.64 (13) |
C8—S1—C1—C2 | −175.06 (14) | C11—N2—C10—C9 | 81.1 (2) |
C8—S1—C1—C6 | 8.14 (18) | N1—C9—C10—N2 | −175.21 (14) |
C6—C1—C2—C3 | 0.3 (3) | C13—N2—C11—C12 | −8.6 (2) |
S1—C1—C2—C3 | −176.63 (16) | C10—N2—C11—C12 | 173.17 (16) |
C1—C2—C3—C4 | −1.5 (3) | C13—O2—C12—C11 | −10.95 (19) |
C2—C3—C4—C5 | 0.6 (3) | N2—C11—C12—O2 | 11.27 (19) |
C3—C4—C5—C6 | 1.5 (3) | C11—N2—C13—O3 | −177.18 (18) |
C2—C1—C6—C5 | 1.8 (3) | C10—N2—C13—O3 | 1.1 (3) |
S1—C1—C6—C5 | 178.44 (13) | C11—N2—C13—O2 | 2.2 (2) |
C2—C1—C6—N1 | −177.45 (16) | C10—N2—C13—O2 | −179.56 (15) |
S1—C1—C6—N1 | −0.8 (2) | C12—O2—C13—O3 | −174.76 (16) |
C4—C5—C6—C1 | −2.7 (3) | C12—O2—C13—N2 | 5.81 (18) |
C4—C5—C6—N1 | 176.56 (16) | C7—C8—C14—C15 | −176.93 (18) |
C7—N1—C6—C1 | −9.1 (3) | S1—C8—C14—C15 | 0.3 (3) |
C9—N1—C6—C1 | 172.24 (16) | C8—C14—C15—C16 | 6.6 (3) |
C7—N1—C6—C5 | 171.68 (17) | C8—C14—C15—C20 | −175.08 (19) |
C9—N1—C6—C5 | −7.0 (2) | C20—C15—C16—C17 | 0.6 (3) |
C6—N1—C7—O1 | −173.69 (16) | C14—C15—C16—C17 | 179.02 (19) |
C9—N1—C7—O1 | 5.0 (2) | C15—C16—C17—C18 | −0.3 (3) |
C6—N1—C7—C8 | 8.7 (3) | C16—C17—C18—C19 | 0.1 (3) |
C9—N1—C7—C8 | −172.58 (15) | C16—C17—C18—Cl1 | −178.22 (16) |
O1—C7—C8—C14 | 0.9 (3) | C17—C18—C19—C20 | −0.3 (3) |
N1—C7—C8—C14 | 178.52 (16) | Cl1—C18—C19—C20 | 178.04 (15) |
O1—C7—C8—S1 | −176.37 (14) | C18—C19—C20—C15 | 0.7 (3) |
N1—C7—C8—S1 | 1.2 (2) | C18—C19—C20—Cl2 | −178.85 (15) |
C1—S1—C8—C14 | 174.78 (16) | C16—C15—C20—C19 | −0.8 (3) |
C1—S1—C8—C7 | −8.17 (17) | C14—C15—C20—C19 | −179.34 (18) |
C7—N1—C9—C10 | −88.22 (19) | C16—C15—C20—Cl2 | 178.68 (14) |
C6—N1—C9—C10 | 90.61 (19) | C14—C15—C20—Cl2 | 0.2 (2) |
C13—N2—C10—C9 | −97.0 (2) |
Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Aotsuka, T., Hosono, H., Kurihara, T., Nakamura, Y., Matsui, T. & Kobayashi, F. (1994). Chem. Pharm. Bull. 42, 1264–1271. CrossRef CAS PubMed Google Scholar
Armenise, D., Muraglia, M., Florio, M. A., Laurentis, N. D., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Mol. Pharmacol. 50, 1178–1188. Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Ellouz, M., Elmsellem, H., Sebbar, N. K., Steli, H., Al Mamari, K., Nadeem, A., Ouzidan, Y., Essassi, E. M., Abdel-Rahaman, I. & Hristov, P. (2016b). J. Mater. Environ. Sci. 7, 2482–2497. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Boulhaoua, M., Essassi, E. M. & Mague, J. T. (2017a). IUCr Data 2, x170646. Google Scholar
Ellouz, M., Sebbar, N. K., Elmsellem, H., Steli, H., Fichtali, I., Mohamed, A. M. M., Mamari, K. A., Essassi, E. M. & Abdel-Rahaman, I. (2016a). J. Mater. Environ. Sci. 7, 2806–2819. CAS Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015a). Acta Cryst. E71, o1022–o1023. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y., Mague, J. T. & Zouihri, H. (2016c). IUCrData, 1, x160764. Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Saadi, M. & El Ammari, L. (2015b). Acta Cryst. E71, o862–o863. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170097. Google Scholar
Ellouz, M., Sebbar, N. K., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017c). IUCrData, 2, x170870. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Fujimura, K., Ota, A. & Kawashima, Y. (1996). Chem. Pharm. Bull. 44, 542–546. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, R. R. & Kumar, R. (1986). J. Fluor. Chem. 31, 19–24. CrossRef CAS Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Hni, B., Sebbar, N. K., Hökelek, T., Ouzidan, Y., Moussaif, A., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 372–377. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malagu, K., Boustie, J., David, M., Sauleau, J., Amoros, M., Girre, R. L. & Sauleau, A. (1998). Pharm. Pharmacol. Commun. 4, 57–60. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. Google Scholar
Merola, J. S. (2013). Private Communication (refcode 977080). CCDC, Cambridge, England. Google Scholar
Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678–5682. Web of Science CrossRef PubMed CAS Google Scholar
Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330. Web of Science CrossRef PubMed CAS Google Scholar
Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o686. CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Boulhaoua, M., Ouzidan, Y., Essassi, E. M. & Mague, J. T. (2016d). IUCrData, 1, x161823. Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016b). IUCrData, 1, x161012. Google Scholar
Sebbar, N. K., Ellouz, M., Lahmidi, S., Hlimi, F., Essassi, E. & Mague, J. T. (2017a). IUCrData, 2, x170695. Google Scholar
Sebbar, N. K., Ellouz, M., Mague, J. T., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016c). IUCrData, 1, x160863. Google Scholar
Sebbar, N. K., Ellouz, M., Ouzidan, Y., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2017b). IUCr Data 2, x170889. Google Scholar
Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016a). Res. Chem. Intermed. 42, 6845–6862. Web of Science CSD CrossRef CAS Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o614. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). Cryst. Eng. Comm, 10, 377–388. CAS Google Scholar
Takemoto, I., Yamasaki, K. & Kaminaka, H. (1994). Biosci. Biotechnol. Biochem. 58, 788–789. CrossRef CAS Web of Science Google Scholar
Tawada, H., Sugiyama, Y., Ikeda, H., Yamamoto, Y. & Meguro, K. (1990). Chem. Pharm. Bull. 38, 1238–1245. CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CSD CrossRef CAS Google Scholar
Vidal, A., Madelmont, J. C. & Mounetou, E. A. (2006). Synthesis, pp. 591–593. Web of Science CrossRef Google Scholar
Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601. Web of Science CrossRef PubMed CAS Google Scholar
Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415. CrossRef CAS Web of Science Google Scholar
Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316. Web of Science PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.