research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ-2-meth­­oxy-6-[(methyl­imino)­meth­yl]phenolato}bis­­({2-meth­­oxy-6-[(methyl­imino)­meth­yl]phenolato}nickel(II)) involving different coordination modes of the same Schiff base ligand

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and bSchool of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
*Correspondence e-mail: vassilyeva@univ.kiev.ua

Edited by A. J. Lough, University of Toronto, Canada (Received 22 March 2019; accepted 8 April 2019; online 12 April 2019)

The structure of the title compound, [Ni2(C9H10NO2)4], is built up by discrete centrosymmetric dimers. Two nitro­gen and three oxygen atoms of two Schiff base ligands singly deprotonated at the phenolate site form a square-pyramidal environment for each metal atom. The ligands are bonded differently to the metal centre: one of the phenolic O atoms is bound to one nickel atom, whereas another bridges the two metal atoms to form the dimer. The Ni—N/O distances fall in the range 1.8965 (13)–1.9926 (15) Å, with the Ni—N bonds being slightly longer; the fifth contact of the metal to the bridging phenolate oxygen atom is substanti­ally elongated [2.533 (1) Å]. A similar coordination geometry was observed in the isomorphous Cu analogue previously reported by us [Sydoruk et al. (2013[Sydoruk, T. V., Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m551-m552.]). Acta Cryst. E69, m551–m552]. In the crystal, the [Ni2L4] mol­ecules form sheets parallel to the ab plane with the polar meth­oxy groups protruding into the inter­sheet space and keeping the sheets apart. Within a sheet, the mol­ecules are stacked relative to each other in such a way that the Ni2O2 planes of neighbouring mol­ecules are orthogonal.

1. Chemical context

The title compound, [Ni2(C9H10NO2)4], 1, has been synthesized as part of our long-term research on Schiff base metal complexes aimed at the preparation of mono- and heterometallic compounds of various compositions and structures, and the investigation of their potential applications. In these studies, we use direct synthesis of coordination compounds based on a spontaneous self-assembly in solution, in which the metal (or one of the metals in the case of heterometallic complexes) is introduced as a fine powder (zerovalent state) and oxidized by aerial di­oxy­gen during the synthesis (Buvaylo et al., 2005[Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976-4978.], 2012[Buvaylo, E. A., Nesterova, O. V., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Boča, R. & Nesterov, D. S. (2012). Cryst. Growth Des. 12, 3200-3208.]; Kokozay et al., 2018[Kokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183-237. Amsterdam: Elsevier.]).

The multidentate ligand 2-meth­oxy-6-[(methyl­imino)­meth­yl]phenol, HL, derived from 2-hy­droxy-3-meth­oxy-benzaldehyde (o-vanillin) and methyl­amine shows various connectivity fashions and can generate mono- and polymetallic complexes. The meth­oxy group plays an essential role in the coordination abilities of the Schiff base (Andruh, 2015[Andruh, M. (2015). Dalton Trans. 44, 16633-16653.]). The singly deprotonated HL ligand has been shown to act as a multidentate linker between seven metal centres affording [M7] assemblies, where M is a divalent Ni, Zn, Co or Mn ion (Meally et al., 2010[Meally, S. T., McDonald, C., Karotsis, G., Papaefstathiou, G. S., Brechin, E. K., Dunne, P. W., McArdle, P., Power, N. P. & Jones, L. F. (2010). Dalton Trans. 39, 4809-4816.], 2012[Meally, S. T., McDonald, C., Kealy, P., Taylor, S. M., Brechin, E. K. & Jones, L. F. (2012). Dalton Trans. 41, 5610-5616.]; Zhang et al., 2010[Zhang, S.-H. & Feng, C. (2010). J. Mol. Struct. 977, 62-66.]). The octa­hedral metal atoms in the hepta­nuclear cores are additionally supported by μ3-bridging OH or MeO groups that link the central metal atom to the six peripheral ones. Of heterometallic examples with HL, only four 1s–3d structures of Na/M (M = Fe, Ni) complexes have been reported (Meally et al., 2013[Meally, S. T., Taylor, S. M., Brechin, E. K., Piligkos, S. & Jones, L. F. (2013). Dalton Trans. 42, 10315-10325.]).

[Scheme 1]

Our research efforts in the field have yielded novel heterometallic dinuclear CoIII/Cd and CoIII/Zn complexes bearing HL along with the `parent' mononuclear complex CoL3·DMF (DMF = N,N-di­methyl­formamide; Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. A Gen. 560, 171-184.], 2019[Nesterova, O. V., Kasyanova, K. V., Buvaylo, E. A., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. (2019). Catalysts, 9, 209.]; Vassilyeva et al., 2018[Vassilyeva, O. Y., Kasyanova, K. V., Kokozay, V. N. & Skelton, B. W. (2018). Acta Cryst. E74, 1532-1535.]). Their catalytic activity in stereospecific alkanes oxidation with m-chloro­perbenzoic acid as an oxidant has been studied in detail. A comparison of the catalytic behaviours of the hetero- and monometallic analogues provided further insight into the origin of stereoselectivity of the oxidation of C—H bonds. In the syntheses, the condensation reaction between o-vanillin and CH3NH2·HCl was utilized without isolation of the resulting Schiff base. In the present work, the title compound was isolated in an attempt to prepare a heterometallic Ni/Sn complex with HL in the reaction of nickel powder and SnCl2·2H2O, with the Schiff base formed in situ in a methanol/DMF mixture in a 1:1:2 molar ratio. Similarly to the synthesis of CoL3·DMF (Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. A Gen. 560, 171-184.]), HL does not enable the formation of a heterometallic Sn-containing species, in contrast to its compartmental analogues 3-R-salicyl­aldehyde-ethyl­enedi­amine (R = meth­oxy-, eth­oxy-), HL′, that afford heterometallic, diphenoxido-bridged, dinuclear CuIISnII cations [CuL′SnCl]+ (Hazra et al., 2016[Hazra, S., Chakraborty, P. & Mohanta, S. (2016). Cryst. Growth Des. 16, 3777-3790.]).

2. Structural commentary

The mol­ecular structure of 1 exists as a centrosymmetric dimer [Ni2L4] (Fig. 1[link]). The nickel atom is five-coordinate with two nitro­gen and three oxygen atoms of two, singly deprotonated at the phenolate site Schiff base ligands. The ligands are bonded differently to the metal atoms: the phenolic oxygen atom O21 is bound to one nickel atom, whereas O11 bridges the two metal centres and forms the dimer.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme for the asymmetric unit. Non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.

The Ni—N bonds are somewhat longer than the shortest Ni—O distances (Table 1[link]) while the fifth contact of the metal to the bridging oxygen atom is substanti­ally elongated. The cis angles at the nickel atom are in the range 87.57 (6)–91.09 (6)°, with the two trans angles being 170.92 (6) and 175.66 (6)° (Table 1[link]). The angular structural index parameter, τ = (βα)/60, evaluated from the two largest angles (α < β) in the five-coordinate geometry is 0.08 compared with ideal values of 1 for an equilateral bipyramid and 0 for a square pyramid. Hence, the nickel coordination polyhedron in 1 is a square pyramid with minimal distortion. The apical position of the coordination sphere is occupied by the bridging phenolate oxygen O11(1 − x, 1 − y, 1 − z) with a bridging angle of 101.44 (2)°.

Table 1
Selected geometric parameters (Å, °)

Ni1—O21 1.8965 (13) Ni1—N17 1.9926 (15)
Ni1—O11 1.9135 (14) Ni1—O11i 2.5326 (14)
Ni1—N27 1.9783 (15)    
       
O21—Ni1—O11 175.66 (6) O11—Ni1—N17 90.70 (6)
O21—Ni1—N27 91.09 (6) N27—Ni1—N17 170.92 (6)
O11—Ni1—N27 90.00 (6) Ni1—O11—Ni1i 101.44 (2)
O21—Ni1—N17 87.57 (6)    
Symmetry code: (i) -x+1, -y+1, -z+1.

We reported a similar coordination geometry for the isomorphous Cu analogue [Cu2L4; Sydoruk et al., 2013[Sydoruk, T. V., Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m551-m552.]]. The main difference between the two structures is the proximity of the metal centres in the dimers, which are further apart in the Ni complex compared to the Cu compound. The Ni⋯Ni distance is 3.4638 (4) compared to the Cu⋯Cu separation of 3.3737 (2) Å. In addition, the Cu—O11(1 − x, 1 − y, 1 − z) contact in [Cu2L4] is shorter [2.4329 (7) Å].

3. Supra­molecular features

There are no significant inter­molecular inter­actions between the dimers in the crystal lattice. Classical hydrogen-bonding inter­actions are absent in 1. The mol­ecules form sheets parallel to the ab plane with the non-coordinating polar meth­oxy groups protruding into the inter­sheet space and keeping the sheets apart (Fig. 2[link]). Within a sheet, the mol­ecules pack relative to each other in such a way that neighbouring Ni2O2 planes are orthogonal (Fig. 3[link]). The minimum Ni⋯Ni separations inside a sheet and between adjacent sheets are about 7.099 and 11.374 Å, respectively. The C—H⋯O inter­action between C28—H28A and O22(x + [{1\over 2}], −y + [{3\over 2}], −z + 1) [C28—H28A = 0.98 Å, H28A⋯O22 = 2.57 Å, C28⋯O22 = 3.449 (2) Å and C28—H28A⋯O22 = 150°] is very weak.

[Figure 2]
Figure 2
Crystal packing of 1 showing sheets of [Ni2L4] mol­ecules parallel to the ab plane. H atoms are not shown.
[Figure 3]
Figure 3
Fragment of the sheet of [Ni2L4] mol­ecules viewed down the c axis showing the orthogonal packing of neighboring dimers. H atoms are not shown.

4. Database survey

A search in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for HL and its complexes via the WebCSD inter­face in March 2019 reveals that 39 original crystal structures, including the structure of the ligand itself, have been reported. Polynuclear complexes constitute the majority of the structures with 17 examples of [MII7] (M = Mn, Co, Ni, Zn) assemblies featuring planar hexa­gonal disc-like cores and three examples of dimeric (Cu2) and tetra­meric complexes with the cubane- (Mn4) or open-cubane type cores (Co4). The singly deprotonated HL ligand evidently encourages the formation of polynuclear metal complexes only with assistance from other bridging ligands. The integrity of the hepta- [MII7L6] and tetra­nuclear [Mn4L3], [Co4L2] polymetallics is secured by μ3-bridging OH/MeO groups and other ligands, respectively. A higher metal-to-ligand ratio (1:2 and 1:3) in the absence of bridging ligands stimulates the formation of mononuclear complexes, as evidenced by the 10 structures with mol­ecular (Mn, Co and Pt) or polymeric (Mn) arrangements in the crystal lattice. The four heterometallic examples with HL published by others are limited to Na/M (M = Fe, Ni) complexes whose formation was induced by the use of sodium salts and/or NaOH in the synthesis. The 3d–3d/4d heterometallics recently reported by our group are based on the neutral CoIIIL3 species with the metal centre in a mer configuration that acts as a metalloligand to Zn2+/Cd2+ ions, generating [CoML3Cl2]·Solv (Solv = H2O, CH3OH) complexes.

5. Synthesis and crystallization

o-Vanillin (0.3 g, 2.0 mmol) in 10 mL of methanol was stirred with CH3NH2·HCl (0.14 g, 2.0 mmol) in the presence of di­methyl­amino­ethanol (0.1 mL) in a 50 mL conical flask at 333 K for half an hour. SnCl2·2H2O (0.23 g, 1.0 mmol) dissolved in 10 mL of DMF and Ni powder (0.06 g, 1.0 mmol) were added to the resulting yellow solution of the preformed Schiff base. The mixture gradually turned brown while it was magnetically stirred at 333 K to achieve dissolution of the nickel (2 h; adhesion of a small fraction of the metal particles to the stirring bar precluded complete dissolution of the metal powder). The resultant brown solution was filtered and left to stand at room temperature. Dark-brown, almost black, prisms of 1 formed in two weeks. They were filtered off, washed with dry PriOH and dried in air. Yield (based on Ni): 31%. Analysis calculated for C36H40N4Ni2O8 (774.14): C 55.86, H 5.21, N 7.24%. Found: C 55.62, H 5.33, N 7.11%.

A broad band centered at about 3440 cm−1 in the IR spectrum of 1 may be due to adsorbed water mol­ecules (Fig. 4[link]). Several bands arising above and below 3000 cm−1 are assigned to aromatic =CH and alkyl –CH stretching, respectively. The characteristic ν(C=N) absorption of the Schiff base which appears at 1634 cm−1 as a strong intense band in the IR spectrum of HL (Nesterova et al., 2018[Nesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. A Gen. 560, 171-184.]) is detected at 1630 cm−1 in the spectrum of 1. A number of sharp and intense bands are observed in the aromatic ring stretching (1600–1400 cm−1) and C—H out-of-plane bending regions (800–700 cm−1).

[Figure 4]
Figure 4
IR spectrum of 1 in a KBr pellet.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were placed at idealized positions and refined using a riding model: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for CH, 0.98 Å and 1.5Ueq(C) for CH3.

Table 2
Experimental details

Crystal data
Chemical formula [Ni2(C9H10NO2)4]
Mr 774.14
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 10.2301 (2), 15.2456 (3), 21.5426 (5)
V3) 3359.87 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.18
Crystal size (mm) 0.37 × 0.27 × 0.23
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.816, 0.87
No. of measured, independent and observed [I > 2σ(I)] reflections 20556, 5548, 4332
Rint 0.041
(sin θ/λ)max−1) 0.747
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.088, 1.03
No. of reflections 5548
No. of parameters 230
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.61
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis{µ-2-methoxy-6-[(methylimino)methyl]phenolato}bis({2-methoxy-6-[(methylimino)methyl]phenolato}nickel(II)) top
Crystal data top
[Ni2(C9H10NO2)4]F(000) = 1616
Mr = 774.14Dx = 1.53 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6602 reflections
a = 10.2301 (2) Åθ = 2.6–31.7°
b = 15.2456 (3) ŵ = 1.18 mm1
c = 21.5426 (5) ÅT = 100 K
V = 3359.87 (12) Å3Prism, black
Z = 40.37 × 0.27 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
5548 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4332 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.0009 pixels mm-1θmax = 32.1°, θmin = 2.6°
ω scansh = 1512
Absorption correction: analytical
(CrysAlis PRO; Rigaku OD, 2015)
k = 2222
Tmin = 0.816, Tmax = 0.87l = 2932
20556 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0253P)2 + 2.4148P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
5548 reflectionsΔρmax = 0.89 e Å3
230 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Three low theta reflections, considered to be partly hidden by the beam stop were omitted from the refnement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.40070 (2)0.58979 (2)0.51420 (2)0.01932 (7)
C110.32402 (17)0.46376 (12)0.42138 (9)0.0242 (4)
O110.41820 (12)0.50907 (10)0.44669 (6)0.0315 (3)
C120.33944 (18)0.43535 (12)0.35897 (9)0.0250 (4)
O120.45143 (13)0.46517 (10)0.33106 (6)0.0330 (3)
C1210.4805 (2)0.43159 (15)0.27123 (9)0.0363 (5)
H12A0.48930.36770.27350.054*
H12B0.56260.45720.25630.054*
H12C0.40970.44670.24250.054*
C130.2460 (2)0.38443 (12)0.33055 (9)0.0292 (4)
H130.25780.36610.28880.035*
C140.1331 (2)0.35947 (13)0.36323 (10)0.0331 (4)
H140.06910.32380.34360.04*
C150.11502 (19)0.38630 (13)0.42312 (10)0.0295 (4)
H150.03840.36920.44490.035*
C160.20898 (17)0.43913 (12)0.45289 (9)0.0243 (4)
C170.18436 (17)0.46528 (12)0.51630 (9)0.0253 (4)
H170.11240.43840.53660.03*
N170.25052 (14)0.52145 (10)0.54782 (7)0.0252 (3)
C180.21030 (18)0.53585 (14)0.61258 (9)0.0292 (4)
H18A0.13550.49810.62230.044*
H18B0.18540.59740.61820.044*
H18C0.28320.52160.64040.044*
C210.44702 (17)0.73584 (11)0.59655 (9)0.0231 (3)
O210.37097 (12)0.67232 (8)0.57853 (6)0.0262 (3)
C220.41501 (17)0.78091 (12)0.65278 (9)0.0247 (4)
O220.30458 (13)0.75045 (9)0.68192 (6)0.0277 (3)
C2210.2536 (2)0.80316 (14)0.73071 (10)0.0360 (5)
H22A0.31580.80410.76530.054*
H22B0.17030.77860.74490.054*
H22C0.23980.86310.71560.054*
C230.49076 (19)0.84910 (12)0.67430 (9)0.0296 (4)
H230.46770.8780.71180.036*
C240.6015 (2)0.87618 (14)0.64127 (10)0.0337 (4)
H240.65370.92310.65640.04*
C250.63413 (19)0.83488 (13)0.58706 (10)0.0311 (4)
H250.70940.85340.56480.037*
C260.55760 (17)0.76490 (12)0.56357 (9)0.0246 (4)
C270.58830 (17)0.73171 (12)0.50282 (9)0.0257 (4)
H270.65940.75850.48170.031*
N270.52852 (14)0.66906 (10)0.47419 (7)0.0249 (3)
C280.5641 (2)0.65577 (14)0.40857 (9)0.0334 (4)
H28A0.63690.69460.39770.05*
H28B0.48870.66920.38220.05*
H28C0.59030.59460.40220.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01748 (10)0.02415 (12)0.01631 (11)0.00316 (8)0.00124 (8)0.00016 (9)
C110.0218 (8)0.0283 (9)0.0225 (9)0.0008 (7)0.0043 (7)0.0013 (7)
O110.0250 (6)0.0462 (8)0.0233 (7)0.0070 (6)0.0005 (5)0.0058 (6)
C120.0260 (8)0.0253 (8)0.0235 (9)0.0055 (7)0.0028 (7)0.0005 (7)
O120.0292 (7)0.0466 (9)0.0232 (7)0.0010 (6)0.0023 (6)0.0065 (6)
C1210.0437 (12)0.0427 (12)0.0225 (9)0.0090 (9)0.0033 (9)0.0015 (9)
C130.0371 (10)0.0243 (9)0.0263 (10)0.0040 (7)0.0050 (8)0.0022 (8)
C140.0391 (11)0.0263 (9)0.0340 (11)0.0055 (8)0.0094 (9)0.0005 (8)
C150.0298 (9)0.0275 (9)0.0311 (10)0.0062 (7)0.0043 (8)0.0032 (8)
C160.0254 (8)0.0239 (8)0.0235 (9)0.0002 (7)0.0036 (7)0.0021 (7)
C170.0222 (8)0.0292 (9)0.0246 (9)0.0029 (7)0.0016 (7)0.0057 (8)
N170.0221 (7)0.0320 (8)0.0215 (7)0.0002 (6)0.0008 (6)0.0027 (7)
C180.0282 (9)0.0369 (10)0.0226 (9)0.0044 (8)0.0052 (8)0.0008 (8)
C210.0227 (8)0.0196 (8)0.0270 (9)0.0020 (6)0.0019 (7)0.0053 (7)
O210.0263 (6)0.0241 (6)0.0283 (7)0.0038 (5)0.0065 (5)0.0033 (6)
C220.0272 (9)0.0218 (8)0.0252 (9)0.0022 (7)0.0024 (7)0.0041 (7)
O220.0313 (7)0.0264 (6)0.0254 (7)0.0015 (5)0.0054 (6)0.0020 (6)
C2210.0481 (12)0.0317 (10)0.0282 (10)0.0063 (9)0.0075 (10)0.0017 (9)
C230.0392 (10)0.0225 (9)0.0272 (10)0.0011 (8)0.0074 (8)0.0022 (8)
C240.0386 (11)0.0272 (9)0.0353 (11)0.0077 (8)0.0101 (9)0.0045 (9)
C250.0279 (9)0.0288 (9)0.0367 (11)0.0065 (7)0.0041 (8)0.0099 (9)
C260.0236 (8)0.0211 (8)0.0293 (9)0.0004 (6)0.0025 (7)0.0065 (7)
C270.0209 (8)0.0231 (8)0.0331 (10)0.0026 (6)0.0033 (7)0.0060 (8)
N270.0245 (7)0.0233 (7)0.0270 (8)0.0044 (6)0.0039 (6)0.0055 (6)
C280.0402 (11)0.0292 (10)0.0307 (10)0.0035 (8)0.0129 (9)0.0047 (8)
Geometric parameters (Å, º) top
Ni1—O211.8965 (13)C18—H18B0.98
Ni1—O111.9135 (14)C18—H18C0.98
Ni1—N271.9783 (15)C21—O211.302 (2)
Ni1—N171.9926 (15)C21—C261.407 (2)
Ni1—O11i2.5326 (14)C21—C221.431 (3)
C11—O111.305 (2)C22—O221.373 (2)
C11—C161.410 (3)C22—C231.377 (3)
C11—C121.421 (3)O22—C2211.422 (2)
C12—O121.371 (2)C221—H22A0.98
C12—C131.375 (3)C221—H22B0.98
O12—C1211.418 (2)C221—H22C0.98
C121—H12A0.98C23—C241.400 (3)
C121—H12B0.98C23—H230.95
C121—H12C0.98C24—C251.368 (3)
C13—C141.405 (3)C24—H240.95
C13—H130.95C25—C261.417 (3)
C14—C151.366 (3)C25—H250.95
C14—H140.95C26—C271.438 (3)
C15—C161.409 (3)C27—N271.291 (2)
C15—H150.95C27—H270.95
C16—C171.445 (3)N27—C281.474 (2)
C17—N171.286 (2)C28—H28A0.98
C17—H170.95C28—H28B0.98
N17—C181.471 (2)C28—H28C0.98
C18—H18A0.98
O21—Ni1—O11175.66 (6)N17—C18—H18C109.5
O21—Ni1—N2791.09 (6)H18A—C18—H18C109.5
O11—Ni1—N2790.00 (6)H18B—C18—H18C109.5
O21—Ni1—N1787.57 (6)O21—C21—C26124.35 (17)
O11—Ni1—N1790.70 (6)O21—C21—C22118.23 (16)
N27—Ni1—N17170.92 (6)C26—C21—C22117.40 (17)
Ni1—O11—Ni1i101.44 (2)C21—O21—Ni1128.01 (12)
O11—C11—C16123.79 (17)O22—C22—C23124.36 (18)
O11—C11—C12118.34 (16)O22—C22—C21114.39 (16)
C16—C11—C12117.84 (17)C23—C22—C21121.25 (17)
C11—O11—Ni1126.08 (12)C22—O22—C221116.62 (15)
O12—C12—C13124.95 (18)O22—C221—H22A109.5
O12—C12—C11113.97 (16)O22—C221—H22B109.5
C13—C12—C11121.06 (18)H22A—C221—H22B109.5
C12—O12—C121116.98 (16)O22—C221—H22C109.5
O12—C121—H12A109.5H22A—C221—H22C109.5
O12—C121—H12B109.5H22B—C221—H22C109.5
H12A—C121—H12B109.5C22—C23—C24120.45 (19)
O12—C121—H12C109.5C22—C23—H23119.8
H12A—C121—H12C109.5C24—C23—H23119.8
H12B—C121—H12C109.5C25—C24—C23119.73 (19)
C12—C13—C14120.08 (18)C25—C24—H24120.1
C12—C13—H13120C23—C24—H24120.1
C14—C13—H13120C24—C25—C26121.09 (19)
C15—C14—C13120.23 (18)C24—C25—H25119.5
C15—C14—H14119.9C26—C25—H25119.5
C13—C14—H14119.9C21—C26—C25120.06 (18)
C14—C15—C16120.59 (19)C21—C26—C27121.62 (17)
C14—C15—H15119.7C25—C26—C27118.00 (17)
C16—C15—H15119.7N27—C27—C26126.29 (17)
C15—C16—C11120.18 (18)N27—C27—H27116.9
C15—C16—C17117.99 (17)C26—C27—H27116.9
C11—C16—C17121.82 (16)C27—N27—C28116.31 (16)
N17—C17—C16126.25 (17)C27—N27—Ni1123.84 (13)
N17—C17—H17116.9C28—N27—Ni1119.81 (13)
C16—C17—H17116.9N27—C28—H28A109.5
C17—N17—C18116.94 (16)N27—C28—H28B109.5
C17—N17—Ni1124.21 (13)H28A—C28—H28B109.5
C18—N17—Ni1118.85 (12)N27—C28—H28C109.5
N17—C18—H18A109.5H28A—C28—H28C109.5
N17—C18—H18B109.5H28B—C28—H28C109.5
H18A—C18—H18B109.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···O22ii0.982.573.449 (2)150
C28—H28A···O22ii0.982.573.449 (2)150
C28—H28C···N17i0.982.633.432 (3)139
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (project No. 19BF037-05).

References

First citationAndruh, M. (2015). Dalton Trans. 44, 16633–16653.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Jezierska, J., Brunel, L. C. & Ozarowski, A. (2005). Chem. Commun. pp. 4976–4978.  CSD CrossRef Google Scholar
First citationBuvaylo, E. A., Nesterova, O. V., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Boča, R. & Nesterov, D. S. (2012). Cryst. Growth Des. 12, 3200–3208.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHazra, S., Chakraborty, P. & Mohanta, S. (2016). Cryst. Growth Des. 16, 3777–3790.  CSD CrossRef CAS Google Scholar
First citationKokozay, V. N., Vassilyeva, O. Y. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. Kharisov, pp. 183–237. Amsterdam: Elsevier.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeally, S. T., McDonald, C., Karotsis, G., Papaefstathiou, G. S., Brechin, E. K., Dunne, P. W., McArdle, P., Power, N. P. & Jones, L. F. (2010). Dalton Trans. 39, 4809–4816.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeally, S. T., McDonald, C., Kealy, P., Taylor, S. M., Brechin, E. K. & Jones, L. F. (2012). Dalton Trans. 41, 5610–5616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMeally, S. T., Taylor, S. M., Brechin, E. K., Piligkos, S. & Jones, L. F. (2013). Dalton Trans. 42, 10315–10325.  CSD CrossRef CAS PubMed Google Scholar
First citationNesterova, O. V., Kasyanova, K. V., Buvaylo, E. A., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. (2019). Catalysts, 9, 209.  CrossRef Google Scholar
First citationNesterova, O. V., Kasyanova, K. V., Makhankova, V. G., Kokozay, V. N., Vassilyeva, O. Y., Skelton, B. W., Nesterov, D. S. & Pombeiro, A. J. L. (2018). Appl. Catal. A Gen. 560, 171–184.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSydoruk, T. V., Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2013). Acta Cryst. E69, m551–m552.  CSD CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Y., Kasyanova, K. V., Kokozay, V. N. & Skelton, B. W. (2018). Acta Cryst. E74, 1532–1535.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S.-H. & Feng, C. (2010). J. Mol. Struct. 977, 62–66.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds