research communications
(E)-2-(2-Hydroxy-3-methylbenzylidene)-N-methylhydrazine-1-carbothioamide: supramolecular assemblies in two-dimensions mediated by N—H⋯S and C—H⋯π interactions
aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, and bSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, farook@usm.my
In the title compound, C10H13N3OS, the azomethine C=N double bond has an E configuration. The phenyl ring and methylhydrazine carbothioamide moiety [maximum deviation = 0.008 (2) Å] are twisted slightly with a dihedral angle of 14.88 (10)°. In the crystal, molecules are linked into sheets parallel to the ab plane via N—H⋯S hydrogen bonds and C—H⋯π interactions.
CCDC reference: 1485713
1. Chemical context
Schiff base compounds are very important and can be used for multidisciplinary applications. They are widely used in the food and dye industries and exhibit many types of biological activity (Gaur, 2000) such as antibacterial, antifungal, and antimalarial (Annapoorani & Krishnan, 2013). The azomethine C=N group of plays an important role in the biological activity. Metal complexes of thiosemicarbazones have also received much attention. The metal typically improves the of the ligand and facilitates the penetration of the complexes into bacterial membranes (Lobana et al., 2009; Rogolino et al., 2017). Thiosemicarbazones have multi-donor characteristics because of the presence of nitrogen and sulfur atoms in their molecular backbone. This results in a variety of coordination modes and many different physiochemical properties (Sharma et al., 2016). As part of our ongoing studies on thiosemicarbazone (Arafath et al., 2018a), we report herein the synthesis and structural determination of the title compound.
2. Structural commentary
The title compound (I) crystallizes in the non-centrosymmetric orthorhombic Iba2 and exhibits an E configuration with respect to the azomethine C=N double bond (Fig. 1). The C8=N1 and C9=S1 bond lengths of 1.288 (3) and 1.689 (2) Å, respectively, confirm the presence of the double bonds while the C6—C8, N2—C9 and C9—N3 bond lengths of 1.452 (3), 1.354 (3) and 1.321 (3) Å, respectively, confirm their single-bond character. The C6—C8—N1 and N2—C9—N3 angles are 122.5 (2) and 117.8 (2)°, respectively, and are consistent with an sp2-hybridized character for atom C8 and C9 (Arafath et al., 2018b; Khalaji et al., 2012). The unique molecular conformation of (I) can be characterized by four torsion angles, viz. τ1 (C5—C6—C8—N1), τ2 (C8—N1—N2—C9), τ3 (N1—N2—C9—N3) and τ4 (N2—C9—N3—C10), respectively (Fig. 2). The torsion angles τ3 and τ4 are 0.4 (3) and 179.9 (2)°, signifying the planarity of the methylhydrazine carbothioamide moiety [N1—N2—(C9=S1)—N3—C10; mean deviation σ = 0.002 Å, maximum deviation = 0.008 (2) Å for atom C9]. τ1 and τ2 are slightly twisted [τ1 = −4.2 (3) and τ2 = 170.4 (2)°, respectively], and the C1–C6 phenyl ring and the methylhydrazine carbothioamide moiety subtend a dihedral angle of 14.88 (10)°. In the molecule, the hydroxy group acts as a hydrogen-bond donor for the adjacent hydrazine group, forming a intramolecular hydrogen bond with an S(6) ring motif (Fig. 1, Table 1).
3. Supramolecular features
In the crystal, molecules are linked into dimers with an R22(8) ring motif via N2—H1N2⋯S1 hydrogen bonds (Fig. 3a, Table 1). The dimers are connected into sheets parallel to the ab plane through C—H⋯π interactions (Fig. 3b, Table 1).
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.39, last update February 2018; Groom et al., 2016) using (E)-2-(2-hydroxybenzylidene)-N-(λ1-methyl)hydrazine-1-carbothioamide as reference moiety found 44 structures containing the 2-(2-hydroxybenzylidene)hydrazinecarbothioamide moiety with different substituents. The basic structural motif (E)-2-(2-hydroxybenzylidene)-N-(λ1-methyl)hydrazine-1-carbothioamide is shown in Fig. 2 and the different substituents (R1 and R2) together with the torsion angles of the C—CH=N—NH—C(=S)—NH—C backbone are summarized in Table 2. In these structures, the torsion angle τ1 exists in either the syn-periplanar (range from 0 to 12°) or anti-periplanar (range from 167 to 179°) conformation. As for the torsion angle τ2, all structures adopt an anti-periplanar conformation (169–179°). Similar to the title compound, torsion angles τ3 and τ4 for most of the structures are syn-periplanar (0–16°) and anti-periplanar (171-180°), respectively. However, there are two outliers (YOCJOR and YOCJUX; (Chumakov et al., 2014)) where the 2-(2-hydroxybenzylidene) hydrazinecarbothioamide is substituted with a pyridine ring. In contrast to most of the structures, torsion angles τ3 and τ4 for YOCJOR and YOCJUX are anti-periplanar (178 and 177°, respectively) and syn-periplanar (1 and 3°, respectively).
5. Synthesis and crystallization
2-Hydroxy-3-methylbenzaldehyde (0.68 g, 5.00 mmol) was dissolved in 20.0 mL of methanol. 0.20 mL of glacial acetic acid was added and the mixture was refluxed for 30 minutes. A solution of 0.52 g (5.00 mmol) of N-methyl hydrazinecarbothioamide in 20.0 mL of methanol was added dropwise with stirring to the aldehyde solution (Fig. 4). The resulting colourless solution was heated under reflux for 4 h with stirring. The crude product was washed with 5.0 mL of n-hexane. The recovered product was dissolved in DMSO for purification and recrystallization. Light-yellow single crystals (m.p. 454–455 K; yield 94%) suitable for X-ray diffraction were obtained by slow evaporation of the solvent.
Analysis calculated for C10H13N3OS (FW: 223.29 g mol−1); C, 53.74; H, 5.83; N, 18.81; found: C, 53.71; H, 5.79; N, 18.83%. 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 11.38 (s, N—NH), δ 9.39 (s, OH), δ 8.34 (s, HC=N), δ 8.44 (q, CS–NH), δ 7.42–6.81 (multiplet, aromatic), δ 3.00 (d, J = 4.5 Hz, N—CH3), δ 2.20 (s, Ph—CH3). 13C NMR (DMSO-d6, Me4Si ppm): δ 177.48 (C=S), δ 154.24 (C=N), δ 143.64–119.10 (C-aromatic), δ 31.05 (N—CH3), δ 15.91(Ph—CH3) ppm. IR (KBr pellets υmax/cm−1): 3418 υ(NH), 3133 υ(OH), 2983(NC—H3, sp3), 1618 υ(C=N), 1553 υ(C=C, aromatic), 1270 υ(C=S), 1251 υ(CH, bend., aromatic), 1085 υ(C—O). 1043 υ(C—N).
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). All N- and O-bound H atoms were located from a difference-Fourier map and freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1485713
https://doi.org/10.1107/S2056989019004444/nr2074sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004444/nr2074Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004444/nr2074Isup3.cml
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).C10H13N3OS | Dx = 1.298 Mg m−3 |
Mr = 223.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Iba2 | Cell parameters from 5563 reflections |
a = 14.6474 (14) Å | θ = 2.3–29.5° |
b = 17.522 (2) Å | µ = 0.26 mm−1 |
c = 8.9048 (8) Å | T = 296 K |
V = 2285.4 (4) Å3 | Block, yellow |
Z = 8 | 0.46 × 0.26 × 0.16 mm |
F(000) = 944 |
Bruker APEXII DUO CCD area-detector diffractometer | 3359 independent reflections |
Radiation source: fine-focus sealed tube | 2949 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
φ and ω scans | θmax = 30.1°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −20→20 |
Tmin = 0.853, Tmax = 0.879 | k = −23→24 |
14825 measured reflections | l = −12→12 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3888P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.17 e Å−3 |
3359 reflections | Δρmin = −0.15 e Å−3 |
150 parameters | Absolute structure: Flack parameter determined using 1222 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.04 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.35594 (4) | 0.50006 (3) | 0.20442 (10) | 0.05018 (16) | |
O1 | 0.45729 (12) | 0.77741 (11) | 0.6162 (3) | 0.0621 (6) | |
N1 | 0.48391 (12) | 0.65142 (9) | 0.4511 (3) | 0.0414 (4) | |
N2 | 0.46275 (13) | 0.59332 (10) | 0.3526 (2) | 0.0436 (4) | |
N3 | 0.31035 (13) | 0.60707 (11) | 0.4029 (2) | 0.0459 (4) | |
C1 | 0.69785 (15) | 0.72085 (14) | 0.6081 (2) | 0.0443 (5) | |
H1A | 0.735599 | 0.683585 | 0.567182 | 0.053* | |
C2 | 0.73506 (15) | 0.77658 (13) | 0.6987 (3) | 0.0493 (5) | |
H2A | 0.797160 | 0.776261 | 0.720393 | 0.059* | |
C3 | 0.67936 (16) | 0.83287 (14) | 0.7568 (3) | 0.0492 (5) | |
H3A | 0.704945 | 0.871242 | 0.815398 | 0.059* | |
C4 | 0.58596 (16) | 0.83349 (12) | 0.7297 (3) | 0.0479 (5) | |
C5 | 0.54896 (14) | 0.77591 (12) | 0.6405 (3) | 0.0424 (4) | |
C6 | 0.60427 (14) | 0.71939 (12) | 0.5768 (2) | 0.0380 (4) | |
C7 | 0.5255 (2) | 0.89533 (18) | 0.7931 (5) | 0.0783 (10) | |
H7A | 0.491901 | 0.918970 | 0.713173 | 0.117* | |
H7B | 0.562565 | 0.932944 | 0.842504 | 0.117* | |
H7C | 0.483746 | 0.873420 | 0.864103 | 0.117* | |
C8 | 0.56962 (15) | 0.65960 (11) | 0.4793 (3) | 0.0410 (4) | |
H8A | 0.610876 | 0.625925 | 0.435625 | 0.049* | |
C9 | 0.37548 (14) | 0.57095 (11) | 0.3289 (2) | 0.0397 (4) | |
C10 | 0.21430 (16) | 0.58990 (19) | 0.3892 (4) | 0.0647 (7) | |
H10A | 0.179253 | 0.629791 | 0.435460 | 0.097* | |
H10B | 0.201496 | 0.542285 | 0.438227 | 0.097* | |
H10C | 0.198298 | 0.586205 | 0.284940 | 0.097* | |
H1N2 | 0.5065 (18) | 0.5680 (16) | 0.307 (4) | 0.056 (8)* | |
H1N3 | 0.3243 (19) | 0.6428 (16) | 0.471 (4) | 0.054 (7)* | |
H1O1 | 0.444 (3) | 0.7429 (19) | 0.555 (5) | 0.076 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0523 (3) | 0.0455 (3) | 0.0527 (3) | −0.0030 (2) | −0.0095 (3) | −0.0097 (2) |
O1 | 0.0328 (8) | 0.0601 (11) | 0.0936 (16) | −0.0015 (7) | −0.0014 (8) | −0.0230 (10) |
N1 | 0.0439 (9) | 0.0367 (7) | 0.0436 (8) | −0.0042 (6) | −0.0024 (9) | 0.0006 (9) |
N2 | 0.0412 (9) | 0.0404 (9) | 0.0491 (10) | 0.0001 (7) | −0.0030 (8) | −0.0060 (8) |
N3 | 0.0409 (9) | 0.0495 (10) | 0.0475 (9) | 0.0000 (8) | −0.0055 (7) | −0.0078 (8) |
C1 | 0.0380 (10) | 0.0490 (12) | 0.0460 (11) | 0.0012 (9) | 0.0008 (9) | 0.0009 (9) |
C2 | 0.0379 (9) | 0.0576 (12) | 0.0525 (11) | −0.0059 (9) | −0.0058 (10) | 0.0016 (12) |
C3 | 0.0478 (12) | 0.0485 (11) | 0.0513 (11) | −0.0119 (10) | −0.0057 (10) | −0.0017 (9) |
C4 | 0.0446 (11) | 0.0416 (10) | 0.0575 (15) | −0.0049 (9) | 0.0020 (9) | −0.0064 (9) |
C5 | 0.0327 (10) | 0.0401 (10) | 0.0544 (12) | −0.0048 (8) | 0.0031 (8) | 0.0002 (9) |
C6 | 0.0357 (9) | 0.0380 (10) | 0.0401 (10) | −0.0037 (8) | 0.0010 (8) | 0.0033 (8) |
C7 | 0.0642 (17) | 0.0641 (17) | 0.107 (3) | 0.0081 (14) | −0.0021 (18) | −0.0325 (17) |
C8 | 0.0413 (10) | 0.0387 (9) | 0.0428 (11) | −0.0008 (8) | −0.0006 (8) | 0.0020 (8) |
C9 | 0.0439 (10) | 0.0365 (9) | 0.0387 (9) | −0.0016 (8) | −0.0064 (8) | 0.0033 (8) |
C10 | 0.0403 (12) | 0.0802 (18) | 0.0736 (17) | −0.0043 (12) | −0.0015 (12) | −0.0148 (15) |
S1—C9 | 1.689 (2) | C2—H2A | 0.9300 |
O1—C5 | 1.360 (3) | C3—C4 | 1.389 (3) |
O1—H1O1 | 0.84 (4) | C3—H3A | 0.9300 |
N1—C8 | 1.288 (3) | C4—C5 | 1.393 (3) |
N1—N2 | 1.379 (3) | C4—C7 | 1.509 (4) |
N2—C9 | 1.354 (3) | C5—C6 | 1.400 (3) |
N2—H1N2 | 0.88 (3) | C6—C8 | 1.452 (3) |
N3—C9 | 1.321 (3) | C7—H7A | 0.9600 |
N3—C10 | 1.444 (3) | C7—H7B | 0.9600 |
N3—H1N3 | 0.90 (3) | C7—H7C | 0.9600 |
C1—C2 | 1.379 (3) | C8—H8A | 0.9300 |
C1—C6 | 1.399 (3) | C10—H10A | 0.9600 |
C1—H1A | 0.9300 | C10—H10B | 0.9600 |
C2—C3 | 1.381 (4) | C10—H10C | 0.9600 |
C5—O1—H1O1 | 108 (3) | C4—C5—C6 | 121.21 (19) |
C8—N1—N2 | 115.18 (18) | C1—C6—C5 | 118.25 (19) |
C9—N2—N1 | 121.68 (18) | C1—C6—C8 | 118.35 (19) |
C9—N2—H1N2 | 118.0 (19) | C5—C6—C8 | 123.40 (18) |
N1—N2—H1N2 | 120.2 (19) | C4—C7—H7A | 109.5 |
C9—N3—C10 | 124.2 (2) | C4—C7—H7B | 109.5 |
C9—N3—H1N3 | 120.5 (18) | H7A—C7—H7B | 109.5 |
C10—N3—H1N3 | 115.1 (18) | C4—C7—H7C | 109.5 |
C2—C1—C6 | 121.1 (2) | H7A—C7—H7C | 109.5 |
C2—C1—H1A | 119.4 | H7B—C7—H7C | 109.5 |
C6—C1—H1A | 119.4 | N1—C8—C6 | 122.5 (2) |
C1—C2—C3 | 119.4 (2) | N1—C8—H8A | 118.7 |
C1—C2—H2A | 120.3 | C6—C8—H8A | 118.7 |
C3—C2—H2A | 120.3 | N3—C9—N2 | 117.8 (2) |
C2—C3—C4 | 121.5 (2) | N3—C9—S1 | 123.86 (17) |
C2—C3—H3A | 119.3 | N2—C9—S1 | 118.37 (16) |
C4—C3—H3A | 119.3 | N3—C10—H10A | 109.5 |
C3—C4—C5 | 118.4 (2) | N3—C10—H10B | 109.5 |
C3—C4—C7 | 121.2 (2) | H10A—C10—H10B | 109.5 |
C5—C4—C7 | 120.3 (2) | N3—C10—H10C | 109.5 |
O1—C5—C4 | 117.4 (2) | H10A—C10—H10C | 109.5 |
O1—C5—C6 | 121.4 (2) | H10B—C10—H10C | 109.5 |
C8—N1—N2—C9 | 170.4 (2) | O1—C5—C6—C1 | −179.2 (2) |
C6—C1—C2—C3 | −1.4 (4) | C4—C5—C6—C1 | 1.7 (3) |
C1—C2—C3—C4 | 1.9 (4) | O1—C5—C6—C8 | 1.1 (3) |
C2—C3—C4—C5 | −0.6 (3) | C4—C5—C6—C8 | −178.0 (2) |
C2—C3—C4—C7 | −179.8 (3) | N2—N1—C8—C6 | 178.06 (19) |
C3—C4—C5—O1 | 179.6 (2) | C1—C6—C8—N1 | 176.1 (2) |
C7—C4—C5—O1 | −1.1 (4) | C5—C6—C8—N1 | −4.2 (3) |
C3—C4—C5—C6 | −1.2 (3) | C10—N3—C9—N2 | 179.9 (2) |
C7—C4—C5—C6 | 178.0 (3) | C10—N3—C9—S1 | 1.2 (3) |
C2—C1—C6—C5 | −0.3 (3) | N1—N2—C9—N3 | 0.4 (3) |
C2—C1—C6—C8 | 179.4 (2) | N1—N2—C9—S1 | 179.17 (16) |
Cg1 is the centroid of the C1–C6 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···N1 | 0.84 (4) | 1.94 (4) | 2.681 (3) | 147 (4) |
N2—H1N2···S1i | 0.89 (3) | 2.51 (3) | 3.387 (2) | 173 (3) |
C10—H10A···Cg1ii | 0.96 | 2.70 | 3.577 (4) | 152 |
Symmetry codes: (i) −x+1, −y+1, z; (ii) −x, y+2, z+1/2. |
Compound | R1 | R2 | τ1 | τ2 | τ3 | τ4 |
(I) | 2-hydroxy-3-methylbenzylidenyl | methyl | 4 | 170 | 0 | 180 |
AWAZOP (Hussein & Guan, 2015) | 5-bromo-2-hydroxybenzylidenyl | methyl | 1 | 175 | 12 | 179 |
AWEBEL (Hussein & Guan, 2015) | 3-ethoxy-2-hydroxybenzylidenyl | methyl | 176 | 174 | 4 | 180 |
CIVZAK (Hussein et al., 2014b) | 5-(tert-butyl)-2-hydroxybenzylidenyl | ethyl | 2 | 174 | 15 | 180 |
CIWBAN (Hussein et al., 2014b) | 5-allyl-3-ethyl-2-hydroxybenzylidenyl | methyl | 169 | 173 | 5 | 178 |
DAGVOZ (Arafath et al., 2017b) | 2-hydroxy-5-methoxy-3-nitrobenzylidenyl | methyl | 177 | 176 | 7 | 179 |
EFUPAX (Rubcic et al., 2008) | 2-hydroxy-4-methoxybenzylidenyl | phenyl | 2 | 173 | 4 | 174 |
EROVIR (Lo & Ng, 2011) | 5-chloro-2-hydroxybenzylidenyl | ethyl | 8 | 172 | 14 | 176 |
GOZQIX (Hussein et al., 2015a) | 2-hydroxy-5-methoxybenzylidenyl | methyl | 3 | 175 | 14 | 180 |
GOZQIX01 (Salam et al., 2016) | 2-hydroxy-5-methoxybenzylidenyl | methyl | 3 | 175 | 15 | 180 |
GOZQIX02 (Subhashree et al., 2017) | 2-hydroxy-5-methoxybenzylidenyl | methyl | 2 | 175 | 13 | 180 |
HABDEW (Hussein et al., 2015c) | 3-ethoxy-2-hydroxybenzylidenyl | ethyl | 177 | 176 | 5 | 180 |
HABFEY (Hussein et al., 2015c) | 5-allyl-2-hydroxy-3-methoxybenzylidenyl | ethyl | 173, 173 | 176, 179 | 6, 8 | 178, 177 |
HAXROO (Vrdoljak et al., 2005) | 2-hydroxybenzylidenyl | methyl | 1 | 176 | 11 | 178 |
HAXROO01 (Liu, 2015) | 2-hydroxybenzylidenyl | methyl | 2 | 175 | 11 | 178 |
HAXSAB (Vrdoljak et al., 2005) | 2-hydroxy-3-methoxybenzylidenyl | methyl | 177 | 174 | 5 | 178 |
IBAZUJ (Haque et al., 2015) | 2,3-dihydroxybenzyliden | methyl | 1 | 170 | 1 | 175 |
IBEDOL (Haque et al., 2015) | 2-hydroxy-5-methylbenzylidenyl | methyl | 3, 2 | 175, 173 | 16, 16 | 175, 175 |
IFUXEN (Tan et al., 2008b) | 2,4-dihydroxybenzylidenyl | ethyl | 2 | 179 | 0 | 176 |
IFUXEN01 (Hussein et al., 2014b) | 2,4-dihydroxybenzylidenyl | ethyl | 2 | 179 | 0 | 176 |
IFUXEN02 (Ramaiyer & Frank, 2015) | 2,4-dihydroxybenzylidenyl | ethyl | 1 | 175 | 4 | 179 |
IFUXEN03 (Ramaiyer & Frank, 2015) | 2,4-dihydroxybenzylidenyl | ethyl | 5 | 171 | 6 | 178 |
IGALUY (Tan et al., 2008c) | 2,4-dihydroxybenzylidenyl | methyl | 5 | 174 | 9 | 176 |
IGALUY01 (Salam et al., 2015) | 2,4-dihydroxybenzylidenyl | methyl | 2 | 177 | 16 | 178 |
IMAFIN (El-Asmy et al., 2016) | 2-hydroxybenzylidenyl | ethyl | 1 | 177 | 13 | 177 |
JAJHUA (Li et al., 2016) | 5-bromo-2-hydroxybenzylidenyl | methyl | 1 | 175 | 12 | 179 |
JOFHIW (Tan et al., 2008a) | 2,5-dihydroxybenzyliden | methyl | 1 | 175 | 11 | 178 |
KOCLIY (Đilović et al., 2008) | 4-(diethylamino)-2-hydroxybenzylidenyl | phenyl | 2 | 172 | 12 | 174 |
LAQCIR (Jacob & Kurup, 2012) | 5-bromo-2-hydroxy-3-methoxybenzylidenyl | cyclohexyl | 172 | 177 | 4 | 179 |
NUQNAP (Shawish et al., 2010) | 2,3,4-trihydroxybenzylidenyl | ethyl | 167 | 176 | 8 | 174 |
OBOLOJ (Arafath et al., 2017a) | 5-chloro-2-hydroxybenzylidenyl | cyclohexyl | 175 | 176 | 6 | 177 |
PAXCAU (Jacob et al., 2012) | 5-bromo-2-hydroxy-3-methoxybenzylidenyl | phenyl | 177 | 180 | 6 | 177 |
RIVFAE (Seena et al., 2008) | 2-hydroxybenzylidenyl | phenyl | 2, 5, 2 | 179, 175, 178 | 12, 9, 2 | 171, 177, 180 |
RIVFAE01 (Rubcic et al., 2008) | 2-hydroxybenzylidenyl | phenyl | 11, 3 | 177, 171 | 2, 2 | 175, 170 |
SUKQOG (Hussein et al., 2015d) | 5-allyl-2-hydroxy-3-methoxybenzylidenyl | phenyl | 168 | 172 | 4 | 179 |
WEXDAG (Orysyk et al., 2013) | 2-hydroxybenzylidenyl | allyl | 4 | 170 | 7 | 173 |
XOTPED (Hussein et al., 2015b) | 2-hydroxy-3-methylbenzylidenyl | ethyl | 2 | 179 | 7 | 179 |
YOCJOR (Chumakov et al., 2014) | 5-bromo-2-hydroxybenzylidenyl | pyridin-2-yl | 0 | 179 | 178 | 1 |
YOCJUX (Chumakov et al., 2014) | 2-hydroxy-3-methoxybenzylidenyl | pyridin-2-yl | 3 | 178 | 177 | 3 |
YOPHUI (Hussein et al., 2014a) | 3-(tert-butyl)-2-hydroxybenzylidenyl | ethyl | 4, 8 | 171, 169 | 4, 18 | 179, 180 |
YOPLIA (Hussein et al., 2014a) | 2-hydroxy-5-methylbenzylidenyl | ethyl | 4 | 171 | 10 | 180 |
YUKYOU (Salam & Haque, 2015) | 3,5-dichloro-2-hydroxybenzylidenyl | ethyl | 179 | 180 | 2 | 178 |
YUXJOS (Arafath et al., 2018a) | 3-(tert-butyl)-2-hydroxybenzylidenyl | cyclohexyl | 12 | 170 | 12 | 176 |
ZIJKIO (Li & Sato, 2013) | 5-bromo-2-hydroxybenzylidenyl | ethyl | 6 | 172 | 12 | 176 |
ZIJKIO02 (Hussein et al., 2015b) | 5-bromo-2-hydroxybenzylidenyl | ethyl | 7 | 173 | 13 | 177 |
Note: there is more than one torsion angle for compounds HABFEY, IBEDOL, RIVFAE, RIVFAE01 and YOPHUI because there are more than one independent molecules in their asymmetric units. |
Funding information
This research was supported financially by the RU grant No. 1001/PKIMIA/811269 from Universiti Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for a USM–TWAS fellowship to MdAA. HCK would like to thank the Malaysian Government for a MyBrain15 scholarship.
References
Annapoorani, S. & Krishnan, C. (2013). Synthesis, 5, 180–185. CAS Google Scholar
Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997. Google Scholar
Arafath, M. A., Adam, F., Razali, M. R., Ahmed Hassan, L. E., Ahamed, M. B. K. & Majid, A. M. S. A. (2017b). J. Mol. Struct. 1130, 791–798. Web of Science CSD CrossRef CAS Google Scholar
Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018a). Acta Cryst. E74, 687–690. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018b). Acta Cryst. E74, 1460–1462. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA. Google Scholar
Chumakov, Y. M., Petrenko, P. A., Codita, T. B., Tsapkov, V. I., Poirier, D. & Gulea, A. P. (2014). Crystallogr. Rep. 59, 207–212. Web of Science CSD CrossRef CAS Google Scholar
Đilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189–5198. PubMed Google Scholar
El-Asmy, A. A., Jeragh, B. & Ali, M. S. (2016). Private communication (Refcode CCDC 1478956. CCDC, Cambridge, England. Google Scholar
Gaur, S. (2000). Asian J. Chem. 43, 250–254. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953–2967. Web of Science CSD CrossRef CAS Google Scholar
Hussein, M. A. & Guan, T. S. (2015). Eur. J. Chem. 6, 451–460. CSD CrossRef CAS Google Scholar
Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2015a). Polyhedron, 85, 93–103. Web of Science CSD CrossRef CAS Google Scholar
Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2014a). Inorg. Chim. Acta, 421, 270–283. Web of Science CSD CrossRef CAS Google Scholar
Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2015b). Spectrochim. Acta A, 136, 1335–1348. Web of Science CSD CrossRef CAS Google Scholar
Hussein, M. A., Iqbal, M. A., Asif, M., Haque, R. A., Ahamed, M. B. K., Majid, A. M. S. A. & Guan, T. S. (2015c). Phosphorus Sulfur Silicon, 190, 1498–1508. Web of Science CSD CrossRef CAS Google Scholar
Hussein, M. A., Iqbal, M. A., Umar, M. I., Haque, R. A. & Guan, T. S. (2015d). Arab. J. Chem. In the Press. Google Scholar
Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2014b). J. Coord. Chem. 67, 714–727. Web of Science CSD CrossRef CAS Google Scholar
Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. CSD CrossRef CAS IUCr Journals Google Scholar
Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1871–o1872. CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266. Web of Science CSD CrossRef CAS Google Scholar
Li, Z. & Sato, O. (2013). Acta Cryst. E69, o762. CSD CrossRef IUCr Journals Google Scholar
Li, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. & Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184–5189. Web of Science CSD CrossRef CAS Google Scholar
Liu, Z.-X. (2015). J. Struct. Chem. 56, 1420–1425. Web of Science CSD CrossRef CAS Google Scholar
Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, o1453. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Orysyk, S. I., Bon, V. V., Zholob, O. O., Pekhnyo, V. I., Orysyk, V. V., Zborovskii, Y. L. & Vovk, M. V. (2013). Polyhedron, 51, 211–221. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ramaiyer, V. & Frank, R. (2015). Private communication (Refcode CCDC 1058555. CCDC, Cambridge, England. Google Scholar
Rogolino, D., Gatti, A., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F. M., Degola, F., Buschini, A., Montalbano, S., Feretti, D. & Zani, C. (2017). Sci. Rep. 7, 11214. Web of Science CSD CrossRef PubMed Google Scholar
Rubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570–o573. Web of Science CSD CrossRef IUCr Journals Google Scholar
Salam, M. A. & Haque, R. A. (2015). Inorg. Chim. Acta, 435, 103–108. Web of Science CSD CrossRef CAS Google Scholar
Salam, M. A., Hussein, M. A., Ramli, I. & Islam, M. S. (2016). J. Organomet. Chem. 813, 71–77. Web of Science CSD CrossRef CAS Google Scholar
Salam, M. A., Hussein, M. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 58–61. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seena, E. B., Prathapachandra Kurup, M. R. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96. Web of Science CSD CrossRef CAS Google Scholar
Sharma, R., Lobana, T. S., Kaur, M., Thathai, N., Hundal, G., Jasinski, J. P. & Butcher, R. J. (2016). J. Chem. Sci. 128, 1103–1112. Web of Science CSD CrossRef CAS Google Scholar
Shawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o1151. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subhashree, G. R., Haribabu, J., Saranya, S., Yuvaraj, P., Anantha Krishnan, D., Karvembu, R. & Gayathri, D. (2017). J. Mol. Struct. 1145, 160–169. Web of Science CSD CrossRef CAS Google Scholar
Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1344. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o2123. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008c). Acta Cryst. E64, o2224. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.