research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2-Hy­dr­oxy-3-methyl­benzyl­­idene)-N-methyl­hydrazine-1-carbo­thio­amide: supra­molecular assemblies in two-dimensions mediated by N—H⋯S and C—H⋯π inter­actions

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh, and bSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
*Correspondence e-mail: arafath.usm@gmail.com, farook@usm.my

Edited by M. Nieger, University of Helsinki, Finland (Received 4 March 2019; accepted 1 April 2019; online 5 April 2019)

In the title compound, C10H13N3OS, the azomethine C=N double bond has an E configuration. The phenyl ring and methyl­hydrazine carbo­thio­amide moiety [maximum deviation = 0.008 (2) Å] are twisted slightly with a dihedral angle of 14.88 (10)°. In the crystal, mol­ecules are linked into sheets parallel to the ab plane via N—H⋯S hydrogen bonds and C—H⋯π inter­actions.

1. Chemical context

Schiff base compounds are very important and can be used for multidisciplinary applications. They are widely used in the food and dye industries and exhibit many types of biological activity (Gaur, 2000[Gaur, S. (2000). Asian J. Chem. 43, 250-254.]) such as anti­bacterial, anti­fungal, and anti­malarial (Annapoorani & Krishnan, 2013[Annapoorani, S. & Krishnan, C. (2013). Synthesis, 5, 180-185.]). The azomethine C=N group of Schiff bases plays an important role in the biological activity. Metal complexes of thio­semicarbazones have also received much attention. The metal chelation typically improves the lipophilicity of the ligand and facilitates the penetration of the complexes into bacterial membranes (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]; Rogolino et al., 2017[Rogolino, D., Gatti, A., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F. M., Degola, F., Buschini, A., Montalbano, S., Feretti, D. & Zani, C. (2017). Sci. Rep. 7, 11214.]). Thio­semi­carbazones have multi-donor characteristics because of the presence of nitro­gen and sulfur atoms in their mol­ecular backbone. This results in a variety of coordination modes and many different physiochemical properties (Sharma et al., 2016[Sharma, R., Lobana, T. S., Kaur, M., Thathai, N., Hundal, G., Jasinski, J. P. & Butcher, R. J. (2016). J. Chem. Sci. 128, 1103-1112.]). As part of our ongoing studies on thio­semicarbazone Schiff bases (Arafath et al., 2018a[Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018a). Acta Cryst. E74, 687-690.]), we report herein the synthesis and structural determination of the title compound.

[Scheme 1]

2. Structural commentary

The title compound (I)[link] crystallizes in the non-centrosymmetric ortho­rhom­bic space group Iba2 and exhibits an E configuration with respect to the azomethine C=N double bond (Fig. 1[link]). The C8=N1 and C9=S1 bond lengths of 1.288 (3) and 1.689 (2) Å, respectively, confirm the presence of the double bonds while the C6—C8, N2—C9 and C9—N3 bond lengths of 1.452 (3), 1.354 (3) and 1.321 (3) Å, respectively, confirm their single-bond character. The C6—C8—N1 and N2—C9—N3 angles are 122.5 (2) and 117.8 (2)°, respectively, and are consistent with an sp2-hybridized character for atom C8 and C9 (Arafath et al., 2018b[Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018b). Acta Cryst. E74, 1460-1462.]; Khalaji et al., 2012[Khalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263-266.]). The unique mol­ecular conformation of (I)[link] can be characterized by four torsion angles, viz. τ1 (C5—C6—C8—N1), τ2 (C8—N1—N2—C9), τ3 (N1—N2—C9—N3) and τ4 (N2—C9—N3—C10), respectively (Fig. 2[link]). The torsion angles τ3 and τ4 are 0.4 (3) and 179.9 (2)°, signifying the planarity of the methyl­hydrazine carbo­thio­amide moiety [N1—N2—(C9=S1)—N3—C10; mean deviation σ = 0.002 Å, maximum deviation = 0.008 (2) Å for atom C9]. τ1 and τ2 are slightly twisted [τ1 = −4.2 (3) and τ2 = 170.4 (2)°, respectively], and the C1–C6 phenyl ring and the methyl­hydrazine carbo­thio­amide moiety subtend a dihedral angle of 14.88 (10)°. In the mol­ecule, the hy­droxy group acts as a hydrogen-bond donor for the adjacent hydrazine group, forming a intra­molecular hydrogen bond with an S(6) ring motif (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.84 (4) 1.94 (4) 2.681 (3) 147 (4)
N2—H1N2⋯S1i 0.89 (3) 2.51 (3) 3.387 (2) 173 (3)
C10—H10ACg1ii 0.96 2.70 3.577 (4) 152
Symmetry codes: (i) -x+1, -y+1, z; (ii) [-x, y+2, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The atom labelling scheme and displacement ellipsoids of the mol­ecular structure at the 50% probability level.
[Figure 2]
Figure 2
General chemical diagram showing torsion angles, τ1, τ2, τ3 and τ4 in the title compound.

3. Supra­molecular features

In the crystal, mol­ecules are linked into dimers with an R22(8) ring motif via N2—H1N2⋯S1 hydrogen bonds (Fig. 3[link]a, Table 1[link]). The dimers are connected into sheets parallel to the ab plane through C—H⋯π inter­actions (Fig. 3[link]b, Table 1[link]).

[Figure 3]
Figure 3
(a) A view of a dimer of C10H13N3OS with N2—H1N2⋯S1 hydrogen bonds shown as cyan dotted lines. (b) A view of a dimeric sheet with C10—H10ACg1 inter­actions shown as green dotted lines. Hydrogen atoms not involved in with these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.39, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (E)-2-(2-hy­droxy­benzyl­idene)-N-(λ1-meth­yl)hydrazine-1-carbo­thio­amide as reference moiety found 44 structures containing the 2-(2-hy­droxy­benzyl­idene)hydrazinecarbo­thio­amide moiety with different substituents. The basic structural motif (E)-2-(2-hy­droxy­benzyl­idene)-N-(λ1-meth­yl)hydrazine-1-carbo­thio­amide is shown in Fig. 2[link] and the different substit­uents (R1 and R2) together with the torsion angles of the C—CH=N—NH—C(=S)—NH—C backbone are summarized in Table 2[link]. In these structures, the torsion angle τ1 exists in either the syn-periplanar (range from 0 to 12°) or anti-periplanar (range from 167 to 179°) conformation. As for the torsion angle τ2, all structures adopt an anti-periplanar conformation (169–179°). Similar to the title compound, torsion angles τ3 and τ4 for most of the structures are syn-periplanar (0–16°) and anti-periplanar (171-180°), respectively. However, there are two outliers (YOCJOR and YOCJUX; (Chumakov et al., 2014[Chumakov, Y. M., Petrenko, P. A., Codita, T. B., Tsapkov, V. I., Poirier, D. & Gulea, A. P. (2014). Crystallogr. Rep. 59, 207-212.])) where the 2-(2-hy­droxy­benzyl­idene) hydrazinecarbo­thio­amide is substituted with a pyridine ring. In contrast to most of the structures, torsion angles τ3 and τ4 for YOCJOR and YOCJUX are anti-periplanar (178 and 177°, respectively) and syn-periplanar (1 and 3°, respectively).

Table 2
Torsion angles τ1, τ2, τ3 and τ4 (°)

Compound R1 R2 τ1 τ2 τ3 τ4
(I) 2-hy­droxy-3-methyl­benzyl­iden­yl meth­yl 4 170 0 180
AWAZOP (Hussein & Guan, 2015[Hussein, M. A. & Guan, T. S. (2015). Eur. J. Chem. 6, 451-460.]) 5-bromo-2-hy­droxy­benzyl­iden­yl meth­yl 1 175 12 179
AWEBEL (Hussein & Guan, 2015[Hussein, M. A. & Guan, T. S. (2015). Eur. J. Chem. 6, 451-460.]) 3-eth­oxy-2-hy­droxy­benzyl­iden­yl meth­yl 176 174 4 180
CIVZAK (Hussein et al., 2014b[Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2014b). J. Coord. Chem. 67, 714-727.]) 5-(tert-but­yl)-2-hy­droxy­benzyl­iden­yl eth­yl 2 174 15 180
CIWBAN (Hussein et al., 2014b[Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2014b). J. Coord. Chem. 67, 714-727.]) 5-allyl-3-ethyl-2-hy­droxy­benzyl­iden­yl meth­yl 169 173 5 178
DAGVOZ (Arafath et al., 2017b[Arafath, M. A., Adam, F., Razali, M. R., Ahmed Hassan, L. E., Ahamed, M. B. K. & Majid, A. M. S. A. (2017b). J. Mol. Struct. 1130, 791-798.]) 2-hy­droxy-5-meth­oxy-3-nitro­benzyl­iden­yl meth­yl 177 176 7 179
EFUPAX (Rubčić et al., 2008[Rubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570-o573.]) 2-hy­droxy-4-meth­oxy­benzyl­iden­yl phen­yl 2 173 4 174
EROVIR (Lo & Ng, 2011[Lo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, o1453.]) 5-chloro-2-hy­droxy­benzyl­iden­yl eth­yl 8 172 14 176
GOZQIX (Hussein et al., 2015a[Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2015a). Polyhedron, 85, 93-103.]) 2-hy­droxy-5-meth­oxy­benzyl­iden­yl meth­yl 3 175 14 180
GOZQIX01 (Salam et al., 2016[Salam, M. A., Hussein, M. A., Ramli, I. & Islam, M. S. (2016). J. Organomet. Chem. 813, 71-77.]) 2-hy­droxy-5-meth­oxy­benzyl­iden­yl meth­yl 3 175 15 180
GOZQIX02 (Subhashree et al., 2017[Subhashree, G. R., Haribabu, J., Saranya, S., Yuvaraj, P., Anantha Krishnan, D., Karvembu, R. & Gayathri, D. (2017). J. Mol. Struct. 1145, 160-169.]) 2-hy­droxy-5-meth­oxy­benzyl­iden­yl meth­yl 2 175 13 180
HABDEW (Hussein et al., 2015c[Hussein, M. A., Iqbal, M. A., Asif, M., Haque, R. A., Ahamed, M. B. K., Majid, A. M. S. A. & Guan, T. S. (2015c). Phosphorus Sulfur Silicon, 190, 1498-1508.]) 3-eth­oxy-2-hy­droxy­benzyl­iden­yl eth­yl 177 176 5 180
HABFEY (Hussein et al., 2015c[Hussein, M. A., Iqbal, M. A., Asif, M., Haque, R. A., Ahamed, M. B. K., Majid, A. M. S. A. & Guan, T. S. (2015c). Phosphorus Sulfur Silicon, 190, 1498-1508.]) 5-allyl-2-hy­droxy-3-meth­oxy­benzyl­iden­yl eth­yl 173, 173 176, 179 6, 8 178, 177
HAXROO (Vrdoljak et al., 2005[Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717-1726.]) 2-hy­droxy­benzyl­iden­yl meth­yl 1 176 11 178
HAXROO01 (Liu, 2015[Liu, Z.-X. (2015). J. Struct. Chem. 56, 1420-1425.]) 2-hy­droxy­benzyl­iden­yl meth­yl 2 175 11 178
HAXSAB (Vrdoljak et al., 2005[Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717-1726.]) 2-hy­droxy-3-meth­oxy­benzyl­iden­yl meth­yl 177 174 5 178
IBAZUJ (Haque et al., 2015[Haque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953-2967.]) 2,3-di­hydroxy­benzyl­iden meth­yl 1 170 1 175
IBEDOL (Haque et al., 2015[Haque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953-2967.]) 2-hy­droxy-5-methyl­benzyl­iden­yl meth­yl 3, 2 175, 173 16, 16 175, 175
IFUXEN (Tan et al., 2008b[Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o2123.]) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 2 179 0 176
IFUXEN01 (Hussein et al., 2014b[Hussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2014b). J. Coord. Chem. 67, 714-727.]) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 2 179 0 176
IFUXEN02 (Ramaiyer & Frank, 2015[Ramaiyer, V. & Frank, R. (2015). Private communication (Refcode CCDC 1058555. CCDC, Cambridge, England.]) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 1 175 4 179
IFUXEN03 (Ramaiyer & Frank, 2015[Ramaiyer, V. & Frank, R. (2015). Private communication (Refcode CCDC 1058555. CCDC, Cambridge, England.]) 2,4-di­hydroxy­benzyl­iden­yl eth­yl 5 171 6 178
IGALUY (Tan et al., 2008c[Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008c). Acta Cryst. E64, o2224.]) 2,4-di­hydroxy­benzyl­iden­yl meth­yl 5 174 9 176
IGALUY01 (Salam et al., 2015[Salam, M. A., Hussein, M. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 58-61.]) 2,4-di­hydroxy­benzyl­iden­yl meth­yl 2 177 16 178
IMAFIN (El-Asmy et al., 2016[El-Asmy, A. A., Jeragh, B. & Ali, M. S. (2016). Private communication (Refcode CCDC 1478956. CCDC, Cambridge, England.]) 2-hy­droxy­benzyl­iden­yl eth­yl 1 177 13 177
JAJHUA (Li et al., 2016[Li, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. & Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184-5189.]) 5-bromo-2-hy­droxy­benzyl­iden­yl meth­yl 1 175 12 179
JOFHIW (Tan et al., 2008a[Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1344.]) 2,5-di­hydroxy­benzyl­iden meth­yl 1 175 11 178
KOCLIY (Đilović et al., 2008[Đilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189-5198.]) 4-(di­ethyl­amino)-2-hy­droxy­benzyl­iden­yl phen­yl 2 172 12 174
LAQCIR (Jacob & Kurup, 2012[Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836-o837.]) 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­iden­yl cyclo­hex­yl 172 177 4 179
NUQNAP (Shawish et al., 2010[Shawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o1151.]) 2,3,4-tri­hydroxy­benzyl­iden­yl eth­yl 167 176 8 174
OBOLOJ (Arafath et al., 2017a[Arafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.]) 5-chloro-2-hy­droxy­benzyl­iden­yl cyclo­hex­yl 175 176 6 177
PAXCAU (Jacob et al., 2012[Jacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1871-o1872.]) 5-bromo-2-hy­droxy-3-meth­oxy­benzyl­iden­yl phen­yl 177 180 6 177
RIVFAE (Seena et al., 2008[Seena, E. B., Prathapachandra Kurup, M. R. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93-96.]) 2-hy­droxy­benzyl­iden­yl phen­yl 2, 5, 2 179, 175, 178 12, 9, 2 171, 177, 180
RIVFAE01 (Rubcic et al., 2008[Rubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570-o573.]) 2-hy­droxy­benzyl­iden­yl phen­yl 11, 3 177, 171 2, 2 175, 170
SUKQOG (Hussein et al., 2015d[Hussein, M. A., Iqbal, M. A., Umar, M. I., Haque, R. A. & Guan, T. S. (2015d). Arab. J. Chem. In the Press.]) 5-allyl-2-hy­droxy-3-meth­oxy­benzyl­iden­yl phen­yl 168 172 4 179
WEXDAG (Orysyk et al., 2013[Orysyk, S. I., Bon, V. V., Zholob, O. O., Pekhnyo, V. I., Orysyk, V. V., Zborovskii, Y. L. & Vovk, M. V. (2013). Polyhedron, 51, 211-221.]) 2-hy­droxy­benzyl­iden­yl all­yl 4 170 7 173
XOTPED (Hussein et al., 2015b[Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2015b). Spectrochim. Acta A, 136, 1335-1348.]) 2-hy­droxy-3-methyl­benzyl­iden­yl eth­yl 2 179 7 179
YOCJOR (Chumakov et al., 2014[Chumakov, Y. M., Petrenko, P. A., Codita, T. B., Tsapkov, V. I., Poirier, D. & Gulea, A. P. (2014). Crystallogr. Rep. 59, 207-212.]) 5-bromo-2-hy­droxy­benzyl­iden­yl pyridin-2-yl 0 179 178 1
YOCJUX (Chumakov et al., 2014[Chumakov, Y. M., Petrenko, P. A., Codita, T. B., Tsapkov, V. I., Poirier, D. & Gulea, A. P. (2014). Crystallogr. Rep. 59, 207-212.]) 2-hy­droxy-3-meth­oxy­benzyl­iden­yl pyridin-2-yl 3 178 177 3
YOPHUI (Hussein et al., 2014a[Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2014a). Inorg. Chim. Acta, 421, 270-283.]) 3-(tert-but­yl)-2-hy­droxy­benzyl­iden­yl eth­yl 4, 8 171, 169 4, 18 179, 180
YOPLIA (Hussein et al., 2014a[Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2014a). Inorg. Chim. Acta, 421, 270-283.]) 2-hy­droxy-5-methyl­benzyl­iden­yl eth­yl 4 171 10 180
YUKYOU (Salam & Haque, 2015[Salam, M. A. & Haque, R. A. (2015). Inorg. Chim. Acta, 435, 103-108.]) 3,5-di­chloro-2-hy­droxy­benzyl­iden­yl eth­yl 179 180 2 178
YUXJOS (Arafath et al., 2018a[Arafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018a). Acta Cryst. E74, 687-690.]) 3-(tert-but­yl)-2-hy­droxy­benzyl­iden­yl cyclo­hex­yl 12 170 12 176
ZIJKIO (Li & Sato, 2013[Li, Z. & Sato, O. (2013). Acta Cryst. E69, o762.]) 5-bromo-2-hy­droxy­benzyl­iden­yl eth­yl 6 172 12 176
ZIJKIO02 (Hussein et al., 2015b[Hussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2015b). Spectrochim. Acta A, 136, 1335-1348.]) 5-bromo-2-hy­droxy­benzyl­iden­yl eth­yl 7 173 13 177
Note: there is more than one torsion angle for compounds HABFEY, IBEDOL, RIVFAE, RIVFAE01 and YOPHUI because there are more than one independent mol­ecules in their asymmetric units.

5. Synthesis and crystallization

2-Hy­droxy-3-methyl­benzaldehyde (0.68 g, 5.00 mmol) was dissolved in 20.0 mL of methanol. 0.20 mL of glacial acetic acid was added and the mixture was refluxed for 30 minutes. A solution of 0.52 g (5.00 mmol) of N-methyl hydrazinecarbo­thio­amide in 20.0 mL of methanol was added dropwise with stirring to the aldehyde solution (Fig. 4[link]). The resulting colourless solution was heated under reflux for 4 h with stirring. The crude product was washed with 5.0 mL of n-hexane. The recovered product was dissolved in DMSO for purification and recrystallization. Light-yellow single crystals (m.p. 454–455 K; yield 94%) suitable for X-ray diffraction were obtained by slow evaporation of the solvent.

[Figure 4]
Figure 4
Reaction scheme for the synthesis of C10H13N3OS.

Analysis calculated for C10H13N3OS (FW: 223.29 g mol−1); C, 53.74; H, 5.83; N, 18.81; found: C, 53.71; H, 5.79; N, 18.83%. 1H NMR (500 MHz, DMSO-d6, Me4Si ppm): δ 11.38 (s, N—NH), δ 9.39 (s, OH), δ 8.34 (s, HC=N), δ 8.44 (q, CS–NH), δ 7.42–6.81 (multiplet, aromatic), δ 3.00 (d, J = 4.5 Hz, N—CH3), δ 2.20 (s, Ph—CH3). 13C NMR (DMSO-d6, Me4Si ppm): δ 177.48 (C=S), δ 154.24 (C=N), δ 143.64–119.10 (C-aromatic), δ 31.05 (N—CH3), δ 15.91(Ph—CH3) ppm. IR (KBr pellets υmax/cm−1): 3418 υ(NH), 3133 υ(OH), 2983(NC—H3, sp3), 1618 υ(C=N), 1553 υ(C=C, aromatic), 1270 υ(C=S), 1251 υ(CH, bend., aromatic), 1085 υ(C—O). 1043 υ(C—N).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). All N- and O-bound H atoms were located from a difference-Fourier map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C10H13N3OS
Mr 223.29
Crystal system, space group Orthorhombic, Iba2
Temperature (K) 296
a, b, c (Å) 14.6474 (14), 17.522 (2), 8.9048 (8)
V3) 2285.4 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.46 × 0.26 × 0.16
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.])
Tmin, Tmax 0.853, 0.879
No. of measured, independent and observed [I > 2σ(I)] reflections 14825, 3359, 2949
Rint 0.020
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.094, 1.06
No. of reflections 3359
No. of parameters 150
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.16
Absolute structure Flack parameter determined using 1222 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (3)
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-2-(2-Hydroxy-3-methylbenzylidene)-N-methylhydrazine-1-carbothioamide top
Crystal data top
C10H13N3OSDx = 1.298 Mg m3
Mr = 223.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Iba2Cell parameters from 5563 reflections
a = 14.6474 (14) Åθ = 2.3–29.5°
b = 17.522 (2) ŵ = 0.26 mm1
c = 8.9048 (8) ÅT = 296 K
V = 2285.4 (4) Å3Block, yellow
Z = 80.46 × 0.26 × 0.16 mm
F(000) = 944
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3359 independent reflections
Radiation source: fine-focus sealed tube2949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 30.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 2020
Tmin = 0.853, Tmax = 0.879k = 2324
14825 measured reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3888P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.17 e Å3
3359 reflectionsΔρmin = 0.15 e Å3
150 parametersAbsolute structure: Flack parameter determined using 1222 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35594 (4)0.50006 (3)0.20442 (10)0.05018 (16)
O10.45729 (12)0.77741 (11)0.6162 (3)0.0621 (6)
N10.48391 (12)0.65142 (9)0.4511 (3)0.0414 (4)
N20.46275 (13)0.59332 (10)0.3526 (2)0.0436 (4)
N30.31035 (13)0.60707 (11)0.4029 (2)0.0459 (4)
C10.69785 (15)0.72085 (14)0.6081 (2)0.0443 (5)
H1A0.7355990.6835850.5671820.053*
C20.73506 (15)0.77658 (13)0.6987 (3)0.0493 (5)
H2A0.7971600.7762610.7203930.059*
C30.67936 (16)0.83287 (14)0.7568 (3)0.0492 (5)
H3A0.7049450.8712420.8153980.059*
C40.58596 (16)0.83349 (12)0.7297 (3)0.0479 (5)
C50.54896 (14)0.77591 (12)0.6405 (3)0.0424 (4)
C60.60427 (14)0.71939 (12)0.5768 (2)0.0380 (4)
C70.5255 (2)0.89533 (18)0.7931 (5)0.0783 (10)
H7A0.4919010.9189700.7131730.117*
H7B0.5625650.9329440.8425040.117*
H7C0.4837460.8734200.8641030.117*
C80.56962 (15)0.65960 (11)0.4793 (3)0.0410 (4)
H8A0.6108760.6259250.4356250.049*
C90.37548 (14)0.57095 (11)0.3289 (2)0.0397 (4)
C100.21430 (16)0.58990 (19)0.3892 (4)0.0647 (7)
H10A0.1792530.6297910.4354600.097*
H10B0.2014960.5422850.4382270.097*
H10C0.1982980.5862050.2849400.097*
H1N20.5065 (18)0.5680 (16)0.307 (4)0.056 (8)*
H1N30.3243 (19)0.6428 (16)0.471 (4)0.054 (7)*
H1O10.444 (3)0.7429 (19)0.555 (5)0.076 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0523 (3)0.0455 (3)0.0527 (3)0.0030 (2)0.0095 (3)0.0097 (2)
O10.0328 (8)0.0601 (11)0.0936 (16)0.0015 (7)0.0014 (8)0.0230 (10)
N10.0439 (9)0.0367 (7)0.0436 (8)0.0042 (6)0.0024 (9)0.0006 (9)
N20.0412 (9)0.0404 (9)0.0491 (10)0.0001 (7)0.0030 (8)0.0060 (8)
N30.0409 (9)0.0495 (10)0.0475 (9)0.0000 (8)0.0055 (7)0.0078 (8)
C10.0380 (10)0.0490 (12)0.0460 (11)0.0012 (9)0.0008 (9)0.0009 (9)
C20.0379 (9)0.0576 (12)0.0525 (11)0.0059 (9)0.0058 (10)0.0016 (12)
C30.0478 (12)0.0485 (11)0.0513 (11)0.0119 (10)0.0057 (10)0.0017 (9)
C40.0446 (11)0.0416 (10)0.0575 (15)0.0049 (9)0.0020 (9)0.0064 (9)
C50.0327 (10)0.0401 (10)0.0544 (12)0.0048 (8)0.0031 (8)0.0002 (9)
C60.0357 (9)0.0380 (10)0.0401 (10)0.0037 (8)0.0010 (8)0.0033 (8)
C70.0642 (17)0.0641 (17)0.107 (3)0.0081 (14)0.0021 (18)0.0325 (17)
C80.0413 (10)0.0387 (9)0.0428 (11)0.0008 (8)0.0006 (8)0.0020 (8)
C90.0439 (10)0.0365 (9)0.0387 (9)0.0016 (8)0.0064 (8)0.0033 (8)
C100.0403 (12)0.0802 (18)0.0736 (17)0.0043 (12)0.0015 (12)0.0148 (15)
Geometric parameters (Å, º) top
S1—C91.689 (2)C2—H2A0.9300
O1—C51.360 (3)C3—C41.389 (3)
O1—H1O10.84 (4)C3—H3A0.9300
N1—C81.288 (3)C4—C51.393 (3)
N1—N21.379 (3)C4—C71.509 (4)
N2—C91.354 (3)C5—C61.400 (3)
N2—H1N20.88 (3)C6—C81.452 (3)
N3—C91.321 (3)C7—H7A0.9600
N3—C101.444 (3)C7—H7B0.9600
N3—H1N30.90 (3)C7—H7C0.9600
C1—C21.379 (3)C8—H8A0.9300
C1—C61.399 (3)C10—H10A0.9600
C1—H1A0.9300C10—H10B0.9600
C2—C31.381 (4)C10—H10C0.9600
C5—O1—H1O1108 (3)C4—C5—C6121.21 (19)
C8—N1—N2115.18 (18)C1—C6—C5118.25 (19)
C9—N2—N1121.68 (18)C1—C6—C8118.35 (19)
C9—N2—H1N2118.0 (19)C5—C6—C8123.40 (18)
N1—N2—H1N2120.2 (19)C4—C7—H7A109.5
C9—N3—C10124.2 (2)C4—C7—H7B109.5
C9—N3—H1N3120.5 (18)H7A—C7—H7B109.5
C10—N3—H1N3115.1 (18)C4—C7—H7C109.5
C2—C1—C6121.1 (2)H7A—C7—H7C109.5
C2—C1—H1A119.4H7B—C7—H7C109.5
C6—C1—H1A119.4N1—C8—C6122.5 (2)
C1—C2—C3119.4 (2)N1—C8—H8A118.7
C1—C2—H2A120.3C6—C8—H8A118.7
C3—C2—H2A120.3N3—C9—N2117.8 (2)
C2—C3—C4121.5 (2)N3—C9—S1123.86 (17)
C2—C3—H3A119.3N2—C9—S1118.37 (16)
C4—C3—H3A119.3N3—C10—H10A109.5
C3—C4—C5118.4 (2)N3—C10—H10B109.5
C3—C4—C7121.2 (2)H10A—C10—H10B109.5
C5—C4—C7120.3 (2)N3—C10—H10C109.5
O1—C5—C4117.4 (2)H10A—C10—H10C109.5
O1—C5—C6121.4 (2)H10B—C10—H10C109.5
C8—N1—N2—C9170.4 (2)O1—C5—C6—C1179.2 (2)
C6—C1—C2—C31.4 (4)C4—C5—C6—C11.7 (3)
C1—C2—C3—C41.9 (4)O1—C5—C6—C81.1 (3)
C2—C3—C4—C50.6 (3)C4—C5—C6—C8178.0 (2)
C2—C3—C4—C7179.8 (3)N2—N1—C8—C6178.06 (19)
C3—C4—C5—O1179.6 (2)C1—C6—C8—N1176.1 (2)
C7—C4—C5—O11.1 (4)C5—C6—C8—N14.2 (3)
C3—C4—C5—C61.2 (3)C10—N3—C9—N2179.9 (2)
C7—C4—C5—C6178.0 (3)C10—N3—C9—S11.2 (3)
C2—C1—C6—C50.3 (3)N1—N2—C9—N30.4 (3)
C2—C1—C6—C8179.4 (2)N1—N2—C9—S1179.17 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.84 (4)1.94 (4)2.681 (3)147 (4)
N2—H1N2···S1i0.89 (3)2.51 (3)3.387 (2)173 (3)
C10—H10A···Cg1ii0.962.703.577 (4)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z+1/2.
Torsion angles τ1, τ2, τ3 and τ4 (°) top
CompoundR1R2τ1τ2τ3τ4
(I)2-hydroxy-3-methylbenzylidenylmethyl41700180
AWAZOP (Hussein & Guan, 2015)5-bromo-2-hydroxybenzylidenylmethyl117512179
AWEBEL (Hussein & Guan, 2015)3-ethoxy-2-hydroxybenzylidenylmethyl1761744180
CIVZAK (Hussein et al., 2014b)5-(tert-butyl)-2-hydroxybenzylidenylethyl217415180
CIWBAN (Hussein et al., 2014b)5-allyl-3-ethyl-2-hydroxybenzylidenylmethyl1691735178
DAGVOZ (Arafath et al., 2017b)2-hydroxy-5-methoxy-3-nitrobenzylidenylmethyl1771767179
EFUPAX (Rubcic et al., 2008)2-hydroxy-4-methoxybenzylidenylphenyl21734174
EROVIR (Lo & Ng, 2011)5-chloro-2-hydroxybenzylidenylethyl817214176
GOZQIX (Hussein et al., 2015a)2-hydroxy-5-methoxybenzylidenylmethyl317514180
GOZQIX01 (Salam et al., 2016)2-hydroxy-5-methoxybenzylidenylmethyl317515180
GOZQIX02 (Subhashree et al., 2017)2-hydroxy-5-methoxybenzylidenylmethyl217513180
HABDEW (Hussein et al., 2015c)3-ethoxy-2-hydroxybenzylidenylethyl1771765180
HABFEY (Hussein et al., 2015c)5-allyl-2-hydroxy-3-methoxybenzylidenylethyl173, 173176, 1796, 8178, 177
HAXROO (Vrdoljak et al., 2005)2-hydroxybenzylidenylmethyl117611178
HAXROO01 (Liu, 2015)2-hydroxybenzylidenylmethyl217511178
HAXSAB (Vrdoljak et al., 2005)2-hydroxy-3-methoxybenzylidenylmethyl1771745178
IBAZUJ (Haque et al., 2015)2,3-dihydroxybenzylidenmethyl11701175
IBEDOL (Haque et al., 2015)2-hydroxy-5-methylbenzylidenylmethyl3, 2175, 17316, 16175, 175
IFUXEN (Tan et al., 2008b)2,4-dihydroxybenzylidenylethyl21790176
IFUXEN01 (Hussein et al., 2014b)2,4-dihydroxybenzylidenylethyl21790176
IFUXEN02 (Ramaiyer & Frank, 2015)2,4-dihydroxybenzylidenylethyl11754179
IFUXEN03 (Ramaiyer & Frank, 2015)2,4-dihydroxybenzylidenylethyl51716178
IGALUY (Tan et al., 2008c)2,4-dihydroxybenzylidenylmethyl51749176
IGALUY01 (Salam et al., 2015)2,4-dihydroxybenzylidenylmethyl217716178
IMAFIN (El-Asmy et al., 2016)2-hydroxybenzylidenylethyl117713177
JAJHUA (Li et al., 2016)5-bromo-2-hydroxybenzylidenylmethyl117512179
JOFHIW (Tan et al., 2008a)2,5-dihydroxybenzylidenmethyl117511178
KOCLIY (Đilović et al., 2008)4-(diethylamino)-2-hydroxybenzylidenylphenyl217212174
LAQCIR (Jacob & Kurup, 2012)5-bromo-2-hydroxy-3-methoxybenzylidenylcyclohexyl1721774179
NUQNAP (Shawish et al., 2010)2,3,4-trihydroxybenzylidenylethyl1671768174
OBOLOJ (Arafath et al., 2017a)5-chloro-2-hydroxybenzylidenylcyclohexyl1751766177
PAXCAU (Jacob et al., 2012)5-bromo-2-hydroxy-3-methoxybenzylidenylphenyl1771806177
RIVFAE (Seena et al., 2008)2-hydroxybenzylidenylphenyl2, 5, 2179, 175, 17812, 9, 2171, 177, 180
RIVFAE01 (Rubcic et al., 2008)2-hydroxybenzylidenylphenyl11, 3177, 1712, 2175, 170
SUKQOG (Hussein et al., 2015d)5-allyl-2-hydroxy-3-methoxybenzylidenylphenyl1681724179
WEXDAG (Orysyk et al., 2013)2-hydroxybenzylidenylallyl41707173
XOTPED (Hussein et al., 2015b)2-hydroxy-3-methylbenzylidenylethyl21797179
YOCJOR (Chumakov et al., 2014)5-bromo-2-hydroxybenzylidenylpyridin-2-yl01791781
YOCJUX (Chumakov et al., 2014)2-hydroxy-3-methoxybenzylidenylpyridin-2-yl31781773
YOPHUI (Hussein et al., 2014a)3-(tert-butyl)-2-hydroxybenzylidenylethyl4, 8171, 1694, 18179, 180
YOPLIA (Hussein et al., 2014a)2-hydroxy-5-methylbenzylidenylethyl417110180
YUKYOU (Salam & Haque, 2015)3,5-dichloro-2-hydroxybenzylidenylethyl1791802178
YUXJOS (Arafath et al., 2018a)3-(tert-butyl)-2-hydroxybenzylidenylcyclohexyl1217012176
ZIJKIO (Li & Sato, 2013)5-bromo-2-hydroxybenzylidenylethyl617212176
ZIJKIO02 (Hussein et al., 2015b)5-bromo-2-hydroxybenzylidenylethyl717313177
Note: there is more than one torsion angle for compounds HABFEY, IBEDOL, RIVFAE, RIVFAE01 and YOPHUI because there are more than one independent molecules in their asymmetric units.
 

Funding information

This research was supported financially by the RU grant No. 1001/PKIMIA/811269 from Universiti Sains Malaysia. The authors wish to thank Universiti Sains Malaysia and The World Academy of Science for a USM–TWAS fellowship to MdAA. HCK would like to thank the Malaysian Government for a MyBrain15 scholarship.

References

First citationAnnapoorani, S. & Krishnan, C. (2013). Synthesis, 5, 180–185.  CAS Google Scholar
First citationArafath, M. A., Adam, F. & Razali, M. R. (2017a). IUCrData, 2, x161997.  Google Scholar
First citationArafath, M. A., Adam, F., Razali, M. R., Ahmed Hassan, L. E., Ahamed, M. B. K. & Majid, A. M. S. A. (2017b). J. Mol. Struct. 1130, 791–798.  Web of Science CSD CrossRef CAS Google Scholar
First citationArafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018a). Acta Cryst. E74, 687–690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArafath, M. A., Kwong, H. C., Adam, F. & Razali, M. R. (2018b). Acta Cryst. E74, 1460–1462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2012). Bruker AXS Inc., Madison. Wisconsin, USA.  Google Scholar
First citationChumakov, Y. M., Petrenko, P. A., Codita, T. B., Tsapkov, V. I., Poirier, D. & Gulea, A. P. (2014). Crystallogr. Rep. 59, 207–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationĐilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189–5198.  PubMed Google Scholar
First citationEl-Asmy, A. A., Jeragh, B. & Ali, M. S. (2016). Private communication (Refcode CCDC 1478956. CCDC, Cambridge, England.  Google Scholar
First citationGaur, S. (2000). Asian J. Chem. 43, 250–254.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953–2967.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussein, M. A. & Guan, T. S. (2015). Eur. J. Chem. 6, 451–460.  CSD CrossRef CAS Google Scholar
First citationHussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2015a). Polyhedron, 85, 93–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2014a). Inorg. Chim. Acta, 421, 270–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussein, M. A., Guan, T. S., Haque, R. A., Khadeer Ahamed, M. B. & Abdul Majid, A. M. S. (2015b). Spectrochim. Acta A, 136, 1335–1348.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussein, M. A., Iqbal, M. A., Asif, M., Haque, R. A., Ahamed, M. B. K., Majid, A. M. S. A. & Guan, T. S. (2015c). Phosphorus Sulfur Silicon, 190, 1498–1508.  Web of Science CSD CrossRef CAS Google Scholar
First citationHussein, M. A., Iqbal, M. A., Umar, M. I., Haque, R. A. & Guan, T. S. (2015d). Arab. J. Chem. In the Press.  Google Scholar
First citationHussein, M. A., Guan, T. S., Haque, R. A., Ahamed, M. B. K. & Majid, A. M. S. A. (2014b). J. Coord. Chem. 67, 714–727.  Web of Science CSD CrossRef CAS Google Scholar
First citationJacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationJacob, J. M., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o1871–o1872.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Fejfarova, K. & Dusek, M. (2012). J. Chem. Crystallogr. 42, 263–266.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z. & Sato, O. (2013). Acta Cryst. E69, o762.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-Y., Ohtsu, H., Kojima, T., Dai, J.-W., Yoshida, T., Breedlove, B. K., Zhang, W.-X., Iguchi, H., Sato, O., Kawano, M. & Yamashita, M. (2016). Angew. Chem. Int. Ed. 55, 5184–5189.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z.-X. (2015). J. Struct. Chem. 56, 1420–1425.  Web of Science CSD CrossRef CAS Google Scholar
First citationLo, K. M. & Ng, S. W. (2011). Acta Cryst. E67, o1453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOrysyk, S. I., Bon, V. V., Zholob, O. O., Pekhnyo, V. I., Orysyk, V. V., Zborovskii, Y. L. & Vovk, M. V. (2013). Polyhedron, 51, 211–221.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamaiyer, V. & Frank, R. (2015). Private communication (Refcode CCDC 1058555. CCDC, Cambridge, England.  Google Scholar
First citationRogolino, D., Gatti, A., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F. M., Degola, F., Buschini, A., Montalbano, S., Feretti, D. & Zani, C. (2017). Sci. Rep. 7, 11214.  Web of Science CSD CrossRef PubMed Google Scholar
First citationRubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570–o573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalam, M. A. & Haque, R. A. (2015). Inorg. Chim. Acta, 435, 103–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalam, M. A., Hussein, M. A., Ramli, I. & Islam, M. S. (2016). J. Organomet. Chem. 813, 71–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalam, M. A., Hussein, M. A. & Tiekink, E. R. T. (2015). Acta Cryst. E71, 58–61.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeena, E. B., Prathapachandra Kurup, M. R. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharma, R., Lobana, T. S., Kaur, M., Thathai, N., Hundal, G., Jasinski, J. P. & Butcher, R. J. (2016). J. Chem. Sci. 128, 1103–1112.  Web of Science CSD CrossRef CAS Google Scholar
First citationShawish, H. B., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubhashree, G. R., Haribabu, J., Saranya, S., Yuvaraj, P., Anantha Krishnan, D., Karvembu, R. & Gayathri, D. (2017). J. Mol. Struct. 1145, 160–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008c). Acta Cryst. E64, o2224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). Polyhedron, 24, 1717–1726.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds