research communications
tert-butyl-2-chloro-1,3,2-diazaphosphorinane − a saturated six-membered phosphorus nitrogen heterocycle with a partially flattened chair conformation and a long PIII—Cl bond
of 1,3-di-aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de
Colourless blocks of 1,3-di-tert-butyl-2-chloro-1,3,2-diazaphosphorinane, C11H24ClN2P (1), were obtained by in vacuo slightly above room temperature. The of the monoclinic of the six-membered N-heterocyclic compound is defined by one molecule in a general position. The six-membered ring of the molecule adopts a cyclohexane-like chair conformation; the chair at one side is to some extent flattened as a result of the approximately trigonal–planar coordination of both nitrogen atoms. In detail, this modified chair conformation is characterized by an angle of 53.07 (15)° between the plane defined by the three carbon atoms and the best plane of the two nitrogen atoms and the two carbon atoms bound to them, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitrogen and phosphorus atoms. The tert-butyl groups are oriented equatorially and the chloro substituent is oriented axially. The P—Cl bond length of 2.2869 (6) Å is substantially longer than the P—Cl single-bond length in PCl3 [2.034 Å; Galy & Enjalbert (1982). J. Solid State Chem. 44, 1–23]. Inspection of the intermolecular distances gives no evidence for interactions stronger than The closest contact is between the Cl atom and a methylene group of a neighbouring molecule with a Cl⋯C distance of 3.7134 (18) Å, excluding a significant influence on the P—Cl bonding.
Keywords: crystal structure; phosphorus nitrogen compound; six-membered heterocycle; N-heterocyclic phosphorus compound; diazaphosphorinane; chlorophosphane; conformation.
CCDC reference: 1906304
1. Chemical context
Over the past two decades, P-chlorofunctionalized N-heterocyclic (NHPCls) received considerable attention, mainly as precursors of N-heterocyclic phosphenium ions (NHPs) that are valence isoelectronic compounds of the well-known N-heterocyclic (NHCs) (Papke et al., 2017), but also as educts of tetrakis(amino)diphosphanes (e.g. Bezombes et al., 2004; Blum et al., 2016; Edge et al., 2009; Frank et al., 1996), some of which reversibly dissociate to stable phosphinyl radicals (`jack-in-the-box dipnictines'; Hinchley et al., 2001), and as starting materials in the synthesis of mixed-valent tetrakis(amino)tetraphosphetes (Breuers et al., 2015; Frank et al., 1996). Furthermore, NHPCls and NHPs have been used as ligands in transition metal complexes (Thomas et al., 2018), some of which have a potential application in catalysis (Gatien et al., 2018). In the context of NHP chemistry, the majority of compounds are five-membered cycles, and especially P-chlorofunctionalized 1,3,2-diazaphospholenes (Denk et al., 1996; Carmalt & Lomeli, 1997) have gained a widespread use as precursors for 1,3,2-diazaphospholenium cations (the most prominent class of NHPs) that are weak σ-donors and strong π-acceptors (Caputo et al., 2008; Tuononen et al., 2007). A limited number of structurally characterized examples is known for the class of P-chlorofunctionalized four-membered NHPCls Cl—P<(NR)2>E and the related NHPs. The fourth ring member >E, joining the class-defining Cl—P<(NR)2 fragment, is an >SiR2 group in most cases (e.g. Breuers & Frank, 2016; Gün et al., 2017; Mo et al., 2018; Mo & Frank, 2019; Veith et al., 1988) but some compounds containing >C=N—R (Brazeau et al., 2012), >B—Ph (Konu et al., 2008) and >As—Cl (Hinz et al., 2015) have also been synthesized and structurally characterized. In contrast to the aforementioned compounds with four- and five-membered rings, six-membered NHPs and NHPCls are less present in recent publications, although 2-chloro-1,3,2-diazaphophorinanes H2C<(CH2NR)2>P–Cl, for instance, have been known since the early 1970s (Maryanoff & Hutchins, 1972; Nifant'ev et al., 1977). Temperature-dependent dynamical NMR investigations showed that in solution these substances are not subject to a fast conformation change, like the ring-inversion process of cyclohexane, and that in the predominant conformation the chloro substituent is expected to be in the axial position and the residues on the nitrogen atoms are oriented `diequatorial'. This gives rise to a quite complex 1H-NMR spectrum with an AA′KK′QTX pattern (X = P, AA′KK′ = C4 and C6 protons, Q and T = C5 protons; Hutchins et al., 1972). Furthermore, the number and position of the signals in the 1H-NMR spectrum are dependent on concentration, which was attributed to intermolecular chlorine-exchange mechanisms. Even though this parent class of six-membered NHPCls has been known for quite some time, no analysis has thus far been reported. Herein, we present the of the title compound that allows for a structural comparison with the most closely related four- or five-membered NHPCls known, on one hand, and with phospha- and 1,3,2-dioxaphosphacyclohexane derivatives, on the other hand.
2. Structural commentary
The molecular structure of 1 in the crystal is shown in Fig. 1. The molecule does not suffer from which is often recognized in the solids of saturated N-heterocyclic compounds. The main characteristics of the molecule are: (i) the partially flattened chair conformation of the central six-membered heterocycle (displayed in more detail in Fig. 2) with an angle of 53.07 (15)° between the plane defined by the carbon atoms and the best plane of C1, C3, N1 and N2, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitrogen and phosphorus atoms; (ii) the equatorial orientation of both tert-butyl groups, enforced by the approximate trigonal–planar coordination of the nitrogen atoms [sums of angles 356.2 (N1) and 355.8 (N2)], in combination with the axial orientation of the chloro substituent (Fig. 2) [out of plane angle: 106.83 (5)°]; (iii) the length of the P1—Cl1 bond, 2.2869 (6) Å, is substantially longer than the standard single bond (2.02 Å; Brown, 2016) and the longest bond found in a six-membered NHPCl so far. The P—N bond lengths [P1—N1 = 1.6584 (14) and P1—N2 = 1.6519 (14) Å] are significantly smaller than the standard single-bond length [P—N = 1.704 (4) Å; Brown & Altermatt, 1985] and are close to the lower limit of the range found for NHPCls. The P—Cl bond is substantially longer than the P—Cl single-bond length in PCl3 (2.034 Å; Galy & Enjalbert, 1982). The closest related five-membered NHPCl, 2-chloro-1,3-di-tert-butyl-2,1,3-phosphadiazolidine (CH2NtBu)2>P–Cl shows almost identical bonding at the phosphorus atom [P—N = 1.652 (2) and P—Cl = 2.3136 (7) Å; Denk et al., 1999]. Unfortunately, a similar close relationship cannot be found among the known crystal structures of four-membered NHPCls and the closest related compound seems to be the P-chloro-substituted diazaphosphasiletidine Cl—P<(NtBu)2>SiMe2 [P—N = 1.6815 (14) and P—Cl = 2.2498 (6) Å; Gün et al., 2017].
A more general comparison with other P-chloro-functionalized six-membered heterocyclic phosphorus compounds illustrates the P—Cl bond-length variation depending on the bonding situation in the heterocycle. Di-(3-methylindol-2-yl)chlorophosphine-4-bromophenylmethane (Mallov et al., 2012), exhibits a planar coordination at the two carbon atoms next to the nitrogen atoms due to exoalkylene group bonding, with a P—Cl bond length of only 2.108 (2) Å. In 2-chloro-1,3,5,7-tetramethyl-4,6,8-trioxa-2-phosphaadamantane (Downing et al., 2008), which can be considered as a chlorophosphorinane [(–CR)2>P—Cl] with an enforced chair conformation, P—Cl = 2.0754 (11) Å and in the 2-chloro-1,3,2-dioxaphophorinane derivative [(–O)2 >P—Cl] described by Pavan Kumar & Kumara Swamy (2007), P—Cl = 2.1227 (9) Å. Some examples of six-membered heterocycles with enforced ring flattening as a result of sterically demanding substituents (Brazeau et al., 2012; Burford et al., 2004; Holthausen et al., 2016; Schranz et al., 2000) and with flattening due to π-system involvement of the carbon atoms, such as 2-chloro-1,2,3,4-tetrahydro-1,3,2-diazaphosphinium salts (Lesikar et al., 2007; Vidovic et al., 2006), 2-chloro-5,6-benzo-1,3,2-diazaphosphorin-4-one (Sonnenburg et al., 1997) and 2-chloro-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaphosphinines (Kozma et al., 2015; Spinney et al., 2007) all show significantly shorter P—Cl bonds compared to 1, ranging from 2.072 (4) to 2.244 (3) Å. Further geometric details of 1 are given in the supporting information. C—C and C—N bond lengths, as well as endocyclic and exocyclic bond angles, are as expected taking into account the main structural characteristics given above. Finally it should be noted that the determination described here confirms the suggestions of Hutchins et al. (1972) concerning the structure of 2-chloro-1,3,2-diazaphophorinanes, derived by NMR spectroscopy.
3. Supramolecular features
Inspection of the intermolecular distances gives no evidence for interactions stronger than 1. The closest contact is given between Cl1 and the methylene group of the neighbouring molecule containing C1 at a Cl⋯C distance of 3.7134 (18) Å, symmetry related by the c glide plane (symmetry code: x, − y, + z). Fig. 3 shows the packing of the molecules in the crystal. Space group-symmetry gives rise to an appealing wave-like pattern.
in the crystal of4. Database survey
A search of the Cambridge Structural Database (Version 5.40, November 2018 update; Groom et al., 2016) for the heterocycle of 2-chloro-1,3,2-diazaphosphorinanes (i.e. exclusively single bonds in the six-membered ring) yielded only one structure (DEHZOH; Mallov et al., 2012). However, two of the ring carbon atoms are bonded to exoalkylene groups and are in planar coordination. A more general search allowing for alternative PIII-functionalization gave eight hits including N1,N11:N4,N8-bis(μ2-methylphosphino)-1,4,8,11-tetraazacyclotetradecane (COLZUY; Hope et al., 1984), 1,3-di-tert-butyl-2-triphenylsilyl-1,3,2-diazaphosphorinane (DODDUV; Nifant'ev et al., 1985), the 1,3-di-tert-butyl-1,3,2-diazaphosphorinanyloxy)calix(4)arenes FEMLOZ and FEMLUF (Maslennikova et al., 2004), (η5-cyclopentadienyl)dichloro(1,3-dimethyl-1,3,2-diazaphospholyl)titanium (LARTED; Nifant'ev et al., 1991), the phosphatris(pyrrolyl)- and -(indolyl)methanes NEQBUG (Barnard & Mason, 2001a) and YETDIK (Barnard & Mason, 2001b) and finally 3-(tert-butyl)trimethylsilylamino-2,4-di-tert-butyl-1-[2-(1,3-di-tert-butyl-1,3,2-diazaphosphoridinyl)]imino-3-thio-1,2,4,3-thiadiazaphosphetidine (YOVYEN; Wrackmeyer et al., 1994). A search for P-chloro-functionalized six-membered ring compounds with any other three ring atoms joining the Cl—P<(NR)2 fragment and allowing for any kind of bonding in the ring gave 16 hits including eight with three carbon atoms. In addition to DEHZOH mentioned before, these include 2-chloro-1-(2′-chloroethyl)-3-methyl-5,6-benzo-1,3,2-diazaphosphorin-4-one (MAMBUX; Sonnenburg et al., 1997), the 2-chloro-1,3-diorganyl-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaphosphinines OGOXAL (Kozma et al., 2015), REQKEE and TIPVIY (Spinney et al., 2007) and the 1,3-bis(2,6-di-isopropylphenyl)-2-chloro-1,2,3,4-tetrahydro-1,3,2-diazaphosphinium salts NIJXUA (Lesikar et al., 2007) and PENNUS (Vidovic et al., 2006).
5. Synthesis and crystallization
The title compound was prepared under an argon atmosphere in oven-dried glassware using standard Schlenk techniques, modifying a published procedure (Nifant'ev et al., 1977) by including a lithiation step. 3.75 g (20.1 mmol) of N,N′-di-tert-butyl-1,3-propanediamine were dissolved in a mixture of diethyl ether and n-hexane (35 ml/55 ml). 16 ml of an n-butyllithium solution (c = 2.5 mol l−1 in n-hexane, 40 mmol) were slowly added at 263 K. Half an hour later, the reaction mixture was allowed to reach room temperature and the resulting pale-yellow suspension was stirred for 16 h. 2.92 g of PCl3 (21.3 mmol) were added dropwise over a period of 15 minutes at 195 K. To complete the reaction, the yellow reaction mixture was stirred for another hour with cooling and finally for two h at room temperature. Subsequently, the LiCl precipitate was filtered off and, after removal of the solvent under reduced pressure, the crude product was obtained as a yellow solid. Colourless block-shaped crystals suitable for X-ray were obtained by in a vacuum (3·10−2 mbar) at 313 K (30% yield; m.p. 327 K), by NMR analysis proved to be pure substance. 1H-NMR (300 MHz, CDCl3, 298 K) δ 3.16–3.07 (m, 4 H), 1.90–1.80 (m, 2 H), 1.34 [d, 4J(H,P) = 3.5 Hz, 18H].
6. Refinement
Crystal data, data collection and structure . Positions of all hydrogen atoms were identified via subsequent ΔF syntheses. In the a riding model was applied using idealized C—H bond lengths (0.98–0.99 Å) as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighbouring C—C bonds. The Uiso values were set to 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene).
details are summarized in Table 1Supporting information
CCDC reference: 1906304
https://doi.org/10.1107/S2056989019004195/pk2615sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004195/pk2615Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004195/pk2615Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a4); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).C11H24ClN2P | F(000) = 544 |
Mr = 250.74 | Dx = 1.137 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.5954 (5) Å | Cell parameters from 20870 reflections |
b = 9.1549 (3) Å | θ = 4.5–59.2° |
c = 12.9614 (6) Å | µ = 0.35 mm−1 |
β = 101.547 (3)° | T = 173 K |
V = 1464.33 (10) Å3 | Block, colourless |
Z = 4 | 0.48 × 0.28 × 0.25 mm |
Stoe IPDS II diffractometer | 3547 reflections with I > 2σ(I) |
ω–scans | Rint = 0.050 |
Absorption correction: multi-scan (XPREP; Bruker, 2008) | θmax = 29.2°, θmin = 2.7° |
Tmin = 0.761, Tmax = 0.929 | h = −17→17 |
16291 measured reflections | k = −12→12 |
3943 independent reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0327P)2 + 0.8644P] where P = (Fo2 + 2Fc2)/3 |
3943 reflections | (Δ/σ)max = 0.001 |
142 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.85529 (4) | 0.26976 (5) | 0.83702 (4) | 0.05736 (15) | |
P1 | 0.72874 (3) | 0.09412 (5) | 0.77742 (3) | 0.03774 (11) | |
N1 | 0.67636 (11) | 0.15879 (16) | 0.65862 (11) | 0.0411 (3) | |
N2 | 0.80820 (11) | −0.03915 (15) | 0.75215 (11) | 0.0390 (3) | |
C1 | 0.73831 (16) | 0.1599 (2) | 0.57350 (14) | 0.0511 (4) | |
H11 | 0.7950 | 0.2362 | 0.5881 | 0.061* | |
H12 | 0.6892 | 0.1842 | 0.5060 | 0.061* | |
C2 | 0.79040 (18) | 0.0142 (3) | 0.56389 (15) | 0.0579 (5) | |
H21 | 0.7332 | −0.0608 | 0.5451 | 0.070* | |
H22 | 0.8314 | 0.0187 | 0.5063 | 0.070* | |
C3 | 0.86546 (15) | −0.0296 (2) | 0.66384 (14) | 0.0485 (4) | |
H31 | 0.8981 | −0.1256 | 0.6538 | 0.058* | |
H32 | 0.9248 | 0.0428 | 0.6809 | 0.058* | |
C4 | 0.58516 (16) | 0.2663 (2) | 0.64533 (15) | 0.0507 (4) | |
C5 | 0.6238 (2) | 0.4171 (3) | 0.6188 (2) | 0.0810 (7) | |
H51 | 0.6437 | 0.4141 | 0.5495 | 0.122* | |
H52 | 0.6870 | 0.4457 | 0.6722 | 0.122* | |
H53 | 0.5654 | 0.4883 | 0.6176 | 0.122* | |
C6 | 0.49516 (19) | 0.2120 (3) | 0.5566 (2) | 0.0804 (8) | |
H61 | 0.5245 | 0.1962 | 0.4930 | 0.121* | |
H62 | 0.4372 | 0.2850 | 0.5423 | 0.121* | |
H63 | 0.4660 | 0.1199 | 0.5777 | 0.121* | |
C7 | 0.5396 (2) | 0.2788 (3) | 0.7459 (2) | 0.0756 (7) | |
H71 | 0.5958 | 0.3169 | 0.8030 | 0.113* | |
H72 | 0.5165 | 0.1822 | 0.7653 | 0.113* | |
H73 | 0.4774 | 0.3454 | 0.7337 | 0.113* | |
C8 | 0.85809 (15) | −0.1413 (2) | 0.83911 (15) | 0.0489 (4) | |
C9 | 0.97954 (16) | −0.1119 (3) | 0.87176 (17) | 0.0655 (6) | |
H91 | 1.0154 | −0.1390 | 0.8141 | 0.098* | |
H92 | 1.0096 | −0.1700 | 0.9343 | 0.098* | |
H93 | 0.9915 | −0.0079 | 0.8879 | 0.098* | |
C10 | 0.8368 (3) | −0.2973 (2) | 0.7984 (2) | 0.0860 (8) | |
H101 | 0.7585 | −0.3146 | 0.7800 | 0.129* | |
H102 | 0.8699 | −0.3664 | 0.8533 | 0.129* | |
H103 | 0.8684 | −0.3110 | 0.7359 | 0.129* | |
C11 | 0.80696 (18) | −0.1203 (3) | 0.93605 (17) | 0.0631 (6) | |
H111 | 0.7286 | −0.1367 | 0.9164 | 0.095* | |
H112 | 0.8208 | −0.0205 | 0.9629 | 0.095* | |
H113 | 0.8388 | −0.1902 | 0.9908 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0692 (3) | 0.0498 (3) | 0.0529 (3) | −0.0125 (2) | 0.0117 (2) | −0.0122 (2) |
P1 | 0.0374 (2) | 0.0386 (2) | 0.0394 (2) | 0.00313 (16) | 0.01304 (15) | 0.00418 (16) |
N1 | 0.0410 (7) | 0.0420 (7) | 0.0407 (7) | 0.0073 (6) | 0.0093 (5) | 0.0033 (6) |
N2 | 0.0388 (7) | 0.0362 (6) | 0.0423 (7) | 0.0030 (5) | 0.0093 (5) | 0.0012 (5) |
C1 | 0.0553 (10) | 0.0609 (11) | 0.0386 (8) | 0.0111 (9) | 0.0133 (7) | 0.0070 (8) |
C2 | 0.0666 (12) | 0.0672 (13) | 0.0426 (9) | 0.0142 (10) | 0.0169 (9) | −0.0053 (9) |
C3 | 0.0493 (9) | 0.0537 (10) | 0.0451 (9) | 0.0109 (8) | 0.0158 (7) | −0.0028 (8) |
C4 | 0.0511 (10) | 0.0481 (10) | 0.0529 (10) | 0.0149 (8) | 0.0106 (8) | 0.0062 (8) |
C5 | 0.101 (2) | 0.0493 (12) | 0.0943 (18) | 0.0181 (13) | 0.0239 (15) | 0.0167 (12) |
C6 | 0.0526 (12) | 0.098 (2) | 0.0830 (16) | 0.0202 (13) | −0.0058 (11) | −0.0045 (15) |
C7 | 0.0733 (15) | 0.0876 (17) | 0.0719 (14) | 0.0409 (14) | 0.0291 (12) | 0.0144 (13) |
C8 | 0.0512 (10) | 0.0434 (9) | 0.0522 (10) | 0.0103 (8) | 0.0110 (8) | 0.0108 (8) |
C9 | 0.0477 (10) | 0.0957 (17) | 0.0521 (11) | 0.0230 (11) | 0.0076 (8) | 0.0079 (11) |
C10 | 0.115 (2) | 0.0402 (11) | 0.102 (2) | 0.0101 (13) | 0.0214 (17) | 0.0085 (12) |
C11 | 0.0636 (12) | 0.0692 (13) | 0.0612 (12) | 0.0141 (10) | 0.0234 (10) | 0.0278 (10) |
Cl1—P1 | 2.2869 (6) | C5—H53 | 0.9800 |
P1—N2 | 1.6519 (14) | C6—H61 | 0.9800 |
P1—N1 | 1.6584 (14) | C6—H62 | 0.9800 |
N1—C1 | 1.473 (2) | C6—H63 | 0.9800 |
N1—C4 | 1.496 (2) | C7—H71 | 0.9800 |
N2—C3 | 1.472 (2) | C7—H72 | 0.9800 |
N2—C8 | 1.502 (2) | C7—H73 | 0.9800 |
C1—C2 | 1.502 (3) | C8—C10 | 1.527 (3) |
C1—H11 | 0.9900 | C8—C9 | 1.527 (3) |
C1—H12 | 0.9900 | C8—C11 | 1.534 (3) |
C2—C3 | 1.498 (3) | C9—H91 | 0.9800 |
C2—H21 | 0.9900 | C9—H92 | 0.9800 |
C2—H22 | 0.9900 | C9—H93 | 0.9800 |
C3—H31 | 0.9900 | C10—H101 | 0.9800 |
C3—H32 | 0.9900 | C10—H102 | 0.9800 |
C4—C5 | 1.526 (3) | C10—H103 | 0.9800 |
C4—C6 | 1.527 (3) | C11—H111 | 0.9800 |
C4—C7 | 1.529 (3) | C11—H112 | 0.9800 |
C5—H51 | 0.9800 | C11—H113 | 0.9800 |
C5—H52 | 0.9800 | ||
N2—P1—N1 | 102.93 (7) | H52—C5—H53 | 109.5 |
N2—P1—Cl1 | 100.22 (5) | C4—C6—H61 | 109.5 |
N1—P1—Cl1 | 100.57 (6) | C4—C6—H62 | 109.5 |
C1—N1—C4 | 114.76 (14) | H61—C6—H62 | 109.5 |
C1—N1—P1 | 121.73 (11) | C4—C6—H63 | 109.5 |
C4—N1—P1 | 119.69 (12) | H61—C6—H63 | 109.5 |
C3—N2—C8 | 115.07 (13) | H62—C6—H63 | 109.5 |
C3—N2—P1 | 121.39 (12) | C4—C7—H71 | 109.5 |
C8—N2—P1 | 119.34 (11) | C4—C7—H72 | 109.5 |
N1—C1—C2 | 111.20 (16) | H71—C7—H72 | 109.5 |
N1—C1—H11 | 109.4 | C4—C7—H73 | 109.5 |
C2—C1—H11 | 109.4 | H71—C7—H73 | 109.5 |
N1—C1—H12 | 109.4 | H72—C7—H73 | 109.5 |
C2—C1—H12 | 109.4 | N2—C8—C10 | 107.76 (17) |
H11—C1—H12 | 108.0 | N2—C8—C9 | 110.10 (16) |
C3—C2—C1 | 112.13 (16) | C10—C8—C9 | 110.9 (2) |
C3—C2—H21 | 109.2 | N2—C8—C11 | 110.81 (15) |
C1—C2—H21 | 109.2 | C10—C8—C11 | 109.06 (19) |
C3—C2—H22 | 109.2 | C9—C8—C11 | 108.19 (17) |
C1—C2—H22 | 109.2 | C8—C9—H91 | 109.5 |
H21—C2—H22 | 107.9 | C8—C9—H92 | 109.5 |
N2—C3—C2 | 111.45 (15) | H91—C9—H92 | 109.5 |
N2—C3—H31 | 109.3 | C8—C9—H93 | 109.5 |
C2—C3—H31 | 109.3 | H91—C9—H93 | 109.5 |
N2—C3—H32 | 109.3 | H92—C9—H93 | 109.5 |
C2—C3—H32 | 109.3 | C8—C10—H101 | 109.5 |
H31—C3—H32 | 108.0 | C8—C10—H102 | 109.5 |
N1—C4—C5 | 110.44 (17) | H101—C10—H102 | 109.5 |
N1—C4—C6 | 108.04 (17) | C8—C10—H103 | 109.5 |
C5—C4—C6 | 110.3 (2) | H101—C10—H103 | 109.5 |
N1—C4—C7 | 111.19 (15) | H102—C10—H103 | 109.5 |
C5—C4—C7 | 108.4 (2) | C8—C11—H111 | 109.5 |
C6—C4—C7 | 108.5 (2) | C8—C11—H112 | 109.5 |
C4—C5—H51 | 109.5 | H111—C11—H112 | 109.5 |
C4—C5—H52 | 109.5 | C8—C11—H113 | 109.5 |
H51—C5—H52 | 109.5 | H111—C11—H113 | 109.5 |
C4—C5—H53 | 109.5 | H112—C11—H113 | 109.5 |
H51—C5—H53 | 109.5 | ||
N2—P1—N1—C1 | −33.19 (16) | C1—C2—C3—N2 | 59.3 (2) |
Cl1—P1—N1—C1 | 69.98 (15) | C1—N1—C4—C5 | −48.7 (2) |
N2—P1—N1—C4 | 170.01 (13) | P1—N1—C4—C5 | 109.66 (18) |
Cl1—P1—N1—C4 | −86.82 (14) | C1—N1—C4—C6 | 72.0 (2) |
N1—P1—N2—C3 | 33.52 (15) | P1—N1—C4—C6 | −129.63 (17) |
Cl1—P1—N2—C3 | −69.94 (13) | C1—N1—C4—C7 | −169.02 (19) |
N1—P1—N2—C8 | −170.64 (13) | P1—N1—C4—C7 | −10.7 (2) |
Cl1—P1—N2—C8 | 85.90 (13) | C3—N2—C8—C10 | −72.3 (2) |
C4—N1—C1—C2 | −153.99 (17) | P1—N2—C8—C10 | 130.43 (17) |
P1—N1—C1—C2 | 48.1 (2) | C3—N2—C8—C9 | 48.8 (2) |
N1—C1—C2—C3 | −58.7 (2) | P1—N2—C8—C9 | −108.48 (16) |
C8—N2—C3—C2 | 154.03 (17) | C3—N2—C8—C11 | 168.49 (17) |
P1—N2—C3—C2 | −49.2 (2) | P1—N2—C8—C11 | 11.2 (2) |
Acknowledgements
We thank E. Hammes for technical support.
References
Barnard, T. S. & Mason, M. R. (2001a). Inorg. Chem. 40, 5001–5009. Web of Science CSD CrossRef PubMed CAS Google Scholar
Barnard, T. S. & Mason, M. R. (2001b). Organometallics, 20, 206–214. Web of Science CSD CrossRef CAS Google Scholar
Bezombes, J. P., Borisenko, K. B., Hitchcock, P. B., Lappert, M. F., Nycz, J. E., Rankin, D. W. H. & Robertson, H. E. (2004). Dalton Trans. pp. 1980–1988. Web of Science CSD CrossRef Google Scholar
Blum, M., Puntigam, O., Plebst, S., Ehret, F., Bender, J., Nieger, M. & Gudat, D. (2016). Dalton Trans. 45, 1987–1997. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414. Web of Science CSD CrossRef CAS PubMed Google Scholar
Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529–532. CAS Google Scholar
Breuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596–4606. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brown, I. D. (2016). Accumulated Table Of Bond Valence Parameters. Private communication. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burford, N., Conroy, K. D., Landry, J. C., Ragogna, P. J., Ferguson, M. J. & McDonald, R. (2004). Inorg. Chem. 43, 8245–8251. Web of Science CSD CrossRef PubMed CAS Google Scholar
Caputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461–3469. Web of Science CSD CrossRef Google Scholar
Carmalt, C. J. & Lomeli, V. (1997). Chem. Commun. pp. 2095–2096. CSD CrossRef Web of Science Google Scholar
Denk, M. K., Gupta, S. & Lough, A. J. (1999). Eur. J. Inorg. Chem. 1999, 41–49. CrossRef Google Scholar
Denk, M. K., Gupta, S. & Ramachandran, R. (1996). Tetrahedron Lett. 37, 9025–9028. CrossRef CAS Web of Science Google Scholar
Downing, J. H., Floure, J., Heslop, K., Haddow, M. F., Hopewell, J., Lusi, M., Phetmung, H., Orpen, A. G., Pringle, P. G., Pugh, R. I. & Zambrano-Williams, D. (2008). Organometallics, 27, 3216–3224. Web of Science CSD CrossRef CAS Google Scholar
Edge, R., Less, R. J., McInnes, E. J. L., Müther, K., Naseri, V., Rawson, J. M. & Wright, D. S. (2009). Chem. Commun. pp. 1691–1693. Web of Science CSD CrossRef Google Scholar
Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512–1514. CSD CrossRef CAS Web of Science Google Scholar
Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1–23. CrossRef CAS Web of Science Google Scholar
Gatien, A. V., Lavoie, C. M., Bennett, R. N., Ferguson, M. J., McDonald, R., Johnson, E. R., Speed, A. W. H. & Stradiotto, M. (2018). ACS Catal. 8, 5328–5339. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873–882. Google Scholar
Hinchley, S. L., Morrison, C. A., Rankin, D. W. H., Macdonald, C. L. B., Wiacek, R. J., Voigt, A., Cowley, A. H., Lappert, M. F., Gundersen, G., Clyburne, J. A. C. & Power, P. P. (2001). J. Am. Chem. Soc. 123, 9045–9053. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hinz, A., Schulz, A. & Villinger, A. (2015). Angew. Chem. Int. Ed. 54, 668–672. Web of Science CSD CrossRef CAS Google Scholar
Holthausen, M. H., Sala, C. & Weigand, J. J. (2016). Eur. J. Inorg. Chem. 2016, 667–677. Web of Science CSD CrossRef CAS Google Scholar
Hope, H., Viggiano, M., Moezzi, B. & Power, P. P. (1984). Inorg. Chem. 23, 2550–2552. CSD CrossRef CAS Web of Science Google Scholar
Hutchins, R. O., Maryanoff, B. E., Albrand, J. P., Cogne, A., Gagnaire, D. & Robert, J. B. (1972). J. Am. Chem. Soc. 94, 9151–9158. CrossRef CAS Web of Science Google Scholar
Kahn, R., Fourme, R., André, D. & Renaud, M. (1973). Acta Cryst. B29, 131–138. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Konu, J., Tuononen, H. M., Chivers, T., Corrente, A. M., Boeré, R. T. & Roemmele, T. L. (2008). Inorg. Chem. 47, 3823–3831. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kozma, A., Rust, J. & Alcarazo, M. (2015). Chem. Eur. J. 21, 10829–10834. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lesikar, L. A., Woodul, W. D. & Richards, A. F. (2007). Polyhedron, 26, 3242–3246. Web of Science CSD CrossRef CAS Google Scholar
Mallov, I., Spinney, H., Jurca, T., Gorelsky, S., Burchell, T. & Richeson, D. (2012). Inorg. Chim. Acta, 392, 5–9. Web of Science CSD CrossRef CAS Google Scholar
Maryanoff, B. E. & Hutchins, R. O. (1972). J. Org. Chem. 37, 3475–3480. CrossRef CAS Web of Science Google Scholar
Maslennikova, V., Serkova, O., Gruner, M., Goutal, S., Bauer, I., Habicher, W., Lyssenko, K., Antipin, M. & Nifantyev, E. E. (2004). Eur. J. Org. Chem. pp. 4884–4893. Web of Science CSD CrossRef Google Scholar
Mo, D. & Frank, W. (2019). Acta Cryst. E75, 405–409. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139–142. Web of Science CSD CrossRef CAS Google Scholar
Nifant'ev, E. E., Sorokina, S. F., Vorob'eva, L. A., Borisenko, A. A. & Nevskii, N. N. (1985). Zh. Obshch. Khim. 55, 738–748. CAS Google Scholar
Nifant'ev, E. E., Zavalishina, A. I., Sorokina, S. F., Borisenko, A. A., Smirnova, E. I. & Gustova, I. V. (1977). Russ. J. Gen. Chem. 47, 1793–1802. Google Scholar
Nifant'ev, I. E., Manzhukova, L. F., Antipin, M. Y., Struchkov, Y. T. & Nifant'ev, E. E. (1991). Metalloorg. Khim. 4, 475–478. CAS Google Scholar
Papke, M., Dettling, L., Sklorz, J. A. W., Szieberth, D., Nyulászi, L. & Müller, C. (2017). Angew. Chem. Int. Ed. 56, 16484–16489. Web of Science CSD CrossRef CAS Google Scholar
Pavan Kumar, K. V. P. & Kumara Swamy, K. C. (2007). Carbohydr. Res. 342, 1182–1188. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schranz, I., Grocholl, L. P., Stahl, L., Staples, R. J. & Johnson, A. (2000). Inorg. Chem. 39, 3037–3041. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sonnenburg, R., Borkenhagen, F., Neda, I., Thönnessen, H., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 126, 11–26. Web of Science CSD CrossRef CAS Google Scholar
Spinney, H. A., Korobkov, I., DiLabio, G. A., Yap, G. P. A. & Richeson, D. S. (2007). Organometallics, 26, 4972–4982. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Thomas, C. M., Hatzis, G. P. & Pepi, M. J. (2018). Polyhedron, 143, 215–222. Web of Science CrossRef CAS Google Scholar
Tuononen, H. M., Roesler, R., Dutton, J. L. & Ragogna, P. J. (2007). Inorg. Chem. 46, 10693–10706. Web of Science CrossRef PubMed CAS Google Scholar
Veith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7–22. CSD CrossRef CAS Web of Science Google Scholar
Vidovic, D., Lu, Z., Reeske, G., Moore, J. A. & Cowley, A. H. (2006). Chem. Commun. pp. 3501–3503. Web of Science CSD CrossRef Google Scholar
Wrackmeyer, B., Köhler, C., Milius, W. & Herberhold, M. (1994). Phosphorus Sulfur Silicon, 89, 151–162. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.