research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-di-tert-butyl-2-chloro-1,3,2-di­aza­phospho­rinane − a saturated six-membered phospho­rus nitro­gen heterocycle with a partially flattened chair conformation and a long PIII—Cl bond

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de

Edited by S. Parkin, University of Kentucky, USA (Received 7 March 2019; accepted 28 March 2019; online 2 April 2019)

Colourless blocks of 1,3-di-tert-butyl-2-chloro-1,3,2-di­aza­phospho­rinane, C11H24ClN2P (1), were obtained by sublimation in vacuo slightly above room temperature. The asymmetric unit of the monoclinic crystal structure of the six-membered N-heterocyclic compound is defined by one mol­ecule in a general position. The six-membered ring of the mol­ecule adopts a cyclo­hexane-like chair conformation; the chair at one side is to some extent flattened as a result of the approximately trigonal–planar coordination of both nitro­gen atoms. In detail, this modified chair conformation is characterized by an angle of 53.07 (15)° between the plane defined by the three carbon atoms and the best plane of the two nitro­gen atoms and the two carbon atoms bound to them, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitro­gen and phospho­rus atoms. The tert-butyl groups are oriented equatorially and the chloro substituent is oriented axially. The P—Cl bond length of 2.2869 (6) Å is substanti­ally longer than the P—Cl single-bond length in PCl3 [2.034 Å; Galy & Enjalbert (1982[Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1-23.]). J. Solid State Chem. 44, 1–23]. Inspection of the inter­molecular distances gives no evidence for inter­actions stronger than van der Waals forces. The closest contact is between the Cl atom and a methyl­ene group of a neighbouring mol­ecule with a Cl⋯C distance of 3.7134 (18) Å, excluding a significant influence on the P—Cl bonding.

1. Chemical context

Over the past two decades, P-chloro­functionalized N-heterocyclic phosphanes (NHPCls) received considerable attention, mainly as precursors of N-heterocyclic phosphenium ions (NHPs) that are valence isoelectronic compounds of the well-known N-heterocyclic carbenes (NHCs) (Papke et al., 2017[Papke, M., Dettling, L., Sklorz, J. A. W., Szieberth, D., Nyulászi, L. & Müller, C. (2017). Angew. Chem. Int. Ed. 56, 16484-16489.]), but also as educts of tetra­kis­(amino)­diphosphanes (e.g. Bezombes et al., 2004[Bezombes, J. P., Borisenko, K. B., Hitchcock, P. B., Lappert, M. F., Nycz, J. E., Rankin, D. W. H. & Robertson, H. E. (2004). Dalton Trans. pp. 1980-1988.]; Blum et al., 2016[Blum, M., Puntigam, O., Plebst, S., Ehret, F., Bender, J., Nieger, M. & Gudat, D. (2016). Dalton Trans. 45, 1987-1997.]; Edge et al., 2009[Edge, R., Less, R. J., McInnes, E. J. L., Müther, K., Naseri, V., Rawson, J. M. & Wright, D. S. (2009). Chem. Commun. pp. 1691-1693.]; Frank et al., 1996[Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512-1514.]), some of which reversibly dissociate to stable phosphinyl radicals (`jack-in-the-box dipnictines'; Hinchley et al., 2001[Hinchley, S. L., Morrison, C. A., Rankin, D. W. H., Macdonald, C. L. B., Wiacek, R. J., Voigt, A., Cowley, A. H., Lappert, M. F., Gundersen, G., Clyburne, J. A. C. & Power, P. P. (2001). J. Am. Chem. Soc. 123, 9045-9053.]), and as starting materials in the synthesis of mixed-valent tetra­kis­(amino)­tetra­phosphetes (Breuers et al., 2015[Breuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596-4606.]; Frank et al., 1996[Frank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512-1514.]). Furthermore, NHPCls and NHPs have been used as ligands in transition metal complexes (Thomas et al., 2018[Thomas, C. M., Hatzis, G. P. & Pepi, M. J. (2018). Polyhedron, 143, 215-222.]), some of which have a potential application in catalysis (Gatien et al., 2018[Gatien, A. V., Lavoie, C. M., Bennett, R. N., Ferguson, M. J., McDonald, R., Johnson, E. R., Speed, A. W. H. & Stradiotto, M. (2018). ACS Catal. 8, 5328-5339.]). In the context of NHP chemistry, the majority of compounds are five-membered cycles, and especially P-chloro­functionalized 1,3,2-di­aza­phospho­lenes (Denk et al., 1996[Denk, M. K., Gupta, S. & Ramachandran, R. (1996). Tetrahedron Lett. 37, 9025-9028.]; Carmalt & Lomeli, 1997[Carmalt, C. J. & Lomeli, V. (1997). Chem. Commun. pp. 2095-2096.]) have gained a widespread use as precursors for 1,3,2-di­aza­phospho­lenium cations (the most prominent class of NHPs) that are weak σ-donors and strong π-acceptors (Caputo et al., 2008[Caputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461-3469.]; Tuononen et al., 2007[Tuononen, H. M., Roesler, R., Dutton, J. L. & Ragogna, P. J. (2007). Inorg. Chem. 46, 10693-10706.]). A limited number of structurally characterized examples is known for the class of P-chloro­functionalized four-membered NHPCls Cl—P<(NR)2>E and the related NHPs. The fourth ring member >E, joining the class-defining Cl—P<(NR)2 fragment, is an >SiR2 group in most cases (e.g. Breuers & Frank, 2016[Breuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529-532.]; Gün et al., 2017[Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873-882.]; Mo et al., 2018[Mo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139-142.]; Mo & Frank, 2019[Mo, D. & Frank, W. (2019). Acta Cryst. E75, 405-409.]; Veith et al., 1988[Veith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7-22.]) but some compounds containing >C=N—R (Brazeau et al., 2012[Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398-5414.]), >B—Ph (Konu et al., 2008[Konu, J., Tuononen, H. M., Chivers, T., Corrente, A. M., Boeré, R. T. & Roemmele, T. L. (2008). Inorg. Chem. 47, 3823-3831.]) and >As—Cl (Hinz et al., 2015[Hinz, A., Schulz, A. & Villinger, A. (2015). Angew. Chem. Int. Ed. 54, 668-672.]) have also been synthesized and structurally characterized. In contrast to the aforementioned compounds with four- and five-membered rings, six-membered NHPs and NHPCls are less present in recent publications, although 2-chloro-1,3,2-di­aza­phophorinanes H2C<(CH2NR)2>P–Cl, for instance, have been known since the early 1970s (Maryanoff & Hutchins, 1972[Maryanoff, B. E. & Hutchins, R. O. (1972). J. Org. Chem. 37, 3475-3480.]; Nifant'ev et al., 1977[Nifant'ev, E. E., Zavalishina, A. I., Sorokina, S. F., Borisenko, A. A., Smirnova, E. I. & Gustova, I. V. (1977). Russ. J. Gen. Chem. 47, 1793-1802.]). Temperature-dependent dynamical NMR investigations showed that in solution these substances are not subject to a fast conformation change, like the ring-inversion process of cyclo­hexane, and that in the predominant conformation the chloro substituent is expected to be in the axial position and the residues on the nitro­gen atoms are oriented `diequatorial'. This gives rise to a quite complex 1H-NMR spectrum with an AAKKQTX pattern (X = P, AAKK′ = C4 and C6 protons, Q and T = C5 protons; Hutchins et al., 1972[Hutchins, R. O., Maryanoff, B. E., Albrand, J. P., Cogne, A., Gagnaire, D. & Robert, J. B. (1972). J. Am. Chem. Soc. 94, 9151-9158.]). Furthermore, the number and position of the signals in the 1H-NMR spectrum are dependent on concentration, which was attributed to inter­molecular chlorine-exchange mechanisms. Even though this parent class of six-membered NHPCls has been known for quite some time, no crystal structure analysis has thus far been reported. Herein, we present the crystal structure of the title compound that allows for a structural comparison with the most closely related four- or five-membered NHPCls known, on one hand, and with phospha- and 1,3,2-dioxaphospha­cyclo­hexane deriv­atives, on the other hand.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 1 in the crystal is shown in Fig. 1[link]. The mol­ecule does not suffer from conformational disorder, which is often recognized in the solids of saturated N-heterocyclic compounds. The main characteristics of the mol­ecule are: (i) the partially flattened chair conformation of the central six-membered heterocycle (displayed in more detail in Fig. 2[link]) with an angle of 53.07 (15)° between the plane defined by the carbon atoms and the best plane of C1, C3, N1 and N2, and an angle of 27.96 (7)° between the latter plane and the plane defined by the nitro­gen and phospho­rus atoms; (ii) the equatorial orientation of both tert-butyl groups, enforced by the approximate trigonal–planar coordination of the nitro­gen atoms [sums of angles 356.2 (N1) and 355.8 (N2)], in combination with the axial orientation of the chloro substituent (Fig. 2[link]) [out of plane angle: 106.83 (5)°]; (iii) the length of the P1—Cl1 bond, 2.2869 (6) Å, is substanti­ally longer than the standard single bond (2.02 Å; Brown, 2016[Brown, I. D. (2016). Accumulated Table Of Bond Valence Parameters. Private communication.]) and the longest bond found in a six-membered NHPCl so far. The P—N bond lengths [P1—N1 = 1.6584 (14) and P1—N2 = 1.6519 (14) Å] are significantly smaller than the standard single-bond length [P—N = 1.704 (4) Å; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]] and are close to the lower limit of the range found for NHPCls. The P—Cl bond is substanti­ally longer than the P—Cl single-bond length in PCl3 (2.034 Å; Galy & Enjalbert, 1982[Galy, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1-23.]). The closest related five-membered NHPCl, 2-chloro-1,3-di-tert-butyl-2,1,3-phospha­diazo­lidine (CH2NtBu)2>P–Cl shows almost identical bonding at the phospho­rus atom [P—N = 1.652 (2) and P—Cl = 2.3136 (7) Å; Denk et al., 1999[Denk, M. K., Gupta, S. & Lough, A. J. (1999). Eur. J. Inorg. Chem. 1999, 41-49.]]. Unfortunately, a similar close relationship cannot be found among the known crystal structures of four-membered NHPCls and the closest related compound seems to be the P-chloro-substituted di­aza­phosphasiletidine Cl—P<(NtBu)2>SiMe2 [P—N = 1.6815 (14) and P—Cl = 2.2498 (6) Å; Gün et al., 2017[Gün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873-882.]].

[Figure 1]
Figure 1
Diagram of the mol­ecular structure of compound 1 in the crystal displaying the atom-labelling scheme. Anisotropic displacement ellipsoids are drawn at the 50% probability level, the radii of hydrogen atoms are chosen arbitrarily.
[Figure 2]
Figure 2
Chair conformation of the mol­ecule (H atoms are omitted for clarity); note the cyclo­hexane-like conformation at the `carbon-atom side' [folding angle 53.07 (15)° as compared to 54.5 (6)° in the ordered, monoclinic phase of C6H12 (Kahn et al., 1973[Kahn, R., Fourme, R., André, D. & Renaud, M. (1973). Acta Cryst. B29, 131-138.])] and the `semi-flattened' conformation [folding angle 27.96 (7)°] at the `phospho­rus/nitro­gen-atom side'.

A more general comparison with other P-chloro-functionalized six-membered heterocyclic phospho­rus compounds illustrates the P—Cl bond-length variation depending on the bonding situation in the heterocycle. Di-(3-methyl­indol-2-yl)chloro­phosphine-4-bromo­phenyl­methane (Mallov et al., 2012[Mallov, I., Spinney, H., Jurca, T., Gorelsky, S., Burchell, T. & Richeson, D. (2012). Inorg. Chim. Acta, 392, 5-9.]), exhibits a planar coordination at the two carbon atoms next to the nitro­gen atoms due to exo­alkyl­ene group bonding, with a P—Cl bond length of only 2.108 (2) Å. In 2-chloro-1,3,5,7-tetra­methyl-4,6,8-trioxa-2-phosphaadamantane (Downing et al., 2008[Downing, J. H., Floure, J., Heslop, K., Haddow, M. F., Hopewell, J., Lusi, M., Phetmung, H., Orpen, A. G., Pringle, P. G., Pugh, R. I. & Zambrano-Williams, D. (2008). Organometallics, 27, 3216-3224.]), which can be considered as a chloro­phospho­rinane [(–CR)2>P—Cl] with an enforced chair conformation, P—Cl = 2.0754 (11) Å and in the 2-chloro-1,3,2-dioxaphophorinane derivative [(–O)2 >P—Cl] described by Pavan Kumar & Kumara Swamy (2007[Pavan Kumar, K. V. P. & Kumara Swamy, K. C. (2007). Carbohydr. Res. 342, 1182-1188.]), P—Cl = 2.1227 (9) Å. Some examples of six-membered heterocycles with enforced ring flattening as a result of sterically demanding substituents (Brazeau et al., 2012[Brazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398-5414.]; Burford et al., 2004[Burford, N., Conroy, K. D., Landry, J. C., Ragogna, P. J., Ferguson, M. J. & McDonald, R. (2004). Inorg. Chem. 43, 8245-8251.]; Holthausen et al., 2016[Holthausen, M. H., Sala, C. & Weigand, J. J. (2016). Eur. J. Inorg. Chem. 2016, 667-677.]; Schranz et al., 2000[Schranz, I., Grocholl, L. P., Stahl, L., Staples, R. J. & Johnson, A. (2000). Inorg. Chem. 39, 3037-3041.]) and with flattening due to π-system involvement of the carbon atoms, such as 2-chloro-1,2,3,4-tetra­hydro-1,3,2-di­aza­phosphinium salts (Lesikar et al., 2007[Lesikar, L. A., Woodul, W. D. & Richards, A. F. (2007). Polyhedron, 26, 3242-3246.]; Vidovic et al., 2006[Vidovic, D., Lu, Z., Reeske, G., Moore, J. A. & Cowley, A. H. (2006). Chem. Commun. pp. 3501-3503.]), 2-chloro-5,6-benzo-1,3,2-di­aza­phospho­rin-4-one (Sonnenburg et al., 1997[Sonnenburg, R., Borkenhagen, F., Neda, I., Thönnessen, H., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 126, 11-26.]) and 2-chloro-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2]di­aza­phosphinines (Kozma et al., 2015[Kozma, A., Rust, J. & Alcarazo, M. (2015). Chem. Eur. J. 21, 10829-10834.]; Spinney et al., 2007[Spinney, H. A., Korobkov, I., DiLabio, G. A., Yap, G. P. A. & Richeson, D. S. (2007). Organometallics, 26, 4972-4982.]) all show significantly shorter P—Cl bonds compared to 1, ranging from 2.072 (4) to 2.244 (3) Å. Further geometric details of 1 are given in the supporting information. C—C and C—N bond lengths, as well as endocyclic and exocyclic bond angles, are as expected taking into account the main structural characteristics given above. Finally it should be noted that the crystal structure determin­ation described here confirms the suggestions of Hutchins et al. (1972[Hutchins, R. O., Maryanoff, B. E., Albrand, J. P., Cogne, A., Gagnaire, D. & Robert, J. B. (1972). J. Am. Chem. Soc. 94, 9151-9158.]) concerning the structure of 2-chloro-1,3,2-di­aza­phophorinanes, derived by NMR spectroscopy.

3. Supra­molecular features

Inspection of the inter­molecular distances gives no evidence for inter­actions stronger than van der Waals forces in the crystal of 1. The closest contact is given between Cl1 and the methyl­ene group of the neighbouring mol­ecule containing C1 at a Cl⋯C distance of 3.7134 (18) Å, symmetry related by the c glide plane (symmetry code: x, [{1\over 2}] − y, [{1\over 2}] + z). Fig. 3[link] shows the packing of the mol­ecules in the crystal. Space group-symmetry gives rise to an appealing wave-like pattern.

[Figure 3]
Figure 3
Packing diagram of 1 (view direction [00[\overline{1}]]) showing a wave-like pattern. Inspection of the inter­molecular distances gives no evidence for inter­actions stronger than van der Waals forces and inter­molecular influence on the P—Cl bonding can be excluded.

4. Database survey

A search of the Cambridge Structural Database (Version 5.40, November 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the heterocycle substructure of 2-chloro-1,3,2-di­aza­phospho­rinanes (i.e. exclusively single bonds in the six-membered ring) yielded only one structure (DEHZOH; Mallov et al., 2012[Mallov, I., Spinney, H., Jurca, T., Gorelsky, S., Burchell, T. & Richeson, D. (2012). Inorg. Chim. Acta, 392, 5-9.]). However, two of the ring carbon atoms are bonded to exo­alkyl­ene groups and are in planar coordination. A more general search allowing for alternative PIII-functionalization gave eight hits including N1,N11:N4,N8-bis­(μ2-methyl­phosphino)-1,4,8,11-tetra­aza­cyclo­tetra­decane (COLZUY; Hope et al., 1984[Hope, H., Viggiano, M., Moezzi, B. & Power, P. P. (1984). Inorg. Chem. 23, 2550-2552.]), 1,3-di-tert-butyl-2-tri­phenyl­silyl-1,3,2-di­aza­phospho­rinane (DOD­DUV; Nifant'ev et al., 1985[Nifant'ev, E. E., Sorokina, S. F., Vorob'eva, L. A., Borisenko, A. A. & Nevskii, N. N. (1985). Zh. Obshch. Khim. 55, 738-748.]), the 1,3-di-tert-butyl-1,3,2-di­aza­phospho­rinan­yloxy)calix(4)arenes FEMLOZ and FEMLUF (Maslennikova et al., 2004[Maslennikova, V., Serkova, O., Gruner, M., Goutal, S., Bauer, I., Habicher, W., Lyssenko, K., Antipin, M. & Nifantyev, E. E. (2004). Eur. J. Org. Chem. pp. 4884-4893.]), (η5-cyclo­penta­dien­yl)di­chloro­(1,3-dimethyl-1,3,2-di­aza­phosphol­yl)titanium (LAR­TED; Nifant'ev et al., 1991[Nifant'ev, I. E., Manzhukova, L. F., Antipin, M. Y., Struchkov, Y. T. & Nifant'ev, E. E. (1991). Metalloorg. Khim. 4, 475-478.]), the phosphatris(pyrrol­yl)- and -(indol­yl)methanes NEQBUG (Barnard & Mason, 2001a[Barnard, T. S. & Mason, M. R. (2001a). Inorg. Chem. 40, 5001-5009.]) and YETDIK (Barnard & Mason, 2001b[Barnard, T. S. & Mason, M. R. (2001b). Organometallics, 20, 206-214.]) and finally 3-(tert-but­yl)tri­methyl­silyl­amino-2,4-di-tert-butyl-1-[2-(1,3-di-tert-butyl-1,3,2-di­aza­phospho­ridin­yl)]imino-3-thio-1,2,4,3-thiadi­aza­phos­phetidine (YOVYEN; Wrackmeyer et al., 1994[Wrackmeyer, B., Köhler, C., Milius, W. & Herberhold, M. (1994). Phosphorus Sulfur Silicon, 89, 151-162.]). A search for P-chloro-functionalized six-membered ring compounds with any other three ring atoms joining the Cl—P<(NR)2 fragment and allowing for any kind of bonding in the ring gave 16 hits including eight with three carbon atoms. In addition to DEHZOH mentioned before, these include 2-chloro-1-(2′-chloro­eth­yl)-3-methyl-5,6-benzo-1,3,2-di­aza­phospho­rin-4-one (MAMBUX; Sonnenburg et al., 1997[Sonnenburg, R., Borkenhagen, F., Neda, I., Thönnessen, H., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 126, 11-26.]), the 2-chloro-1,3-diorganyl-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2]di­aza­phos­phinines OGOXAL (Kozma et al., 2015[Kozma, A., Rust, J. & Alcarazo, M. (2015). Chem. Eur. J. 21, 10829-10834.]), REQKEE and TIPVIY (Spinney et al., 2007[Spinney, H. A., Korobkov, I., DiLabio, G. A., Yap, G. P. A. & Richeson, D. S. (2007). Organometallics, 26, 4972-4982.]) and the 1,3-bis­(2,6-di-iso­propyl­phen­yl)-2-chloro-1,2,3,4-tetra­hydro-1,3,2-di­aza­phosphinium salts NIJXUA (Lesikar et al., 2007[Lesikar, L. A., Woodul, W. D. & Richards, A. F. (2007). Polyhedron, 26, 3242-3246.]) and PENNUS (Vidovic et al., 2006[Vidovic, D., Lu, Z., Reeske, G., Moore, J. A. & Cowley, A. H. (2006). Chem. Commun. pp. 3501-3503.]).

5. Synthesis and crystallization

The title compound was prepared under an argon atmosphere in oven-dried glassware using standard Schlenk techniques, modifying a published procedure (Nifant'ev et al., 1977[Nifant'ev, E. E., Zavalishina, A. I., Sorokina, S. F., Borisenko, A. A., Smirnova, E. I. & Gustova, I. V. (1977). Russ. J. Gen. Chem. 47, 1793-1802.]) by including a li­thia­tion step. 3.75 g (20.1 mmol) of N,N′-di-tert-butyl-1,3-propanedi­amine were dissolved in a mixture of diethyl ether and n-hexane (35 ml/55 ml). 16 ml of an n-butyl­lithium solution (c = 2.5 mol l−1 in n-hexane, 40 mmol) were slowly added at 263 K. Half an hour later, the reaction mixture was allowed to reach room temperature and the resulting pale-yellow suspension was stirred for 16 h. 2.92 g of PCl3 (21.3 mmol) were added dropwise over a period of 15 minutes at 195 K. To complete the reaction, the yellow reaction mixture was stirred for another hour with cooling and finally for two h at room temperature. Subsequently, the LiCl precipitate was filtered off and, after removal of the solvent under reduced pressure, the crude product was obtained as a yellow solid. Colourless block-shaped crystals suitable for X-ray structure determination were obtained by sublimation in a vacuum (3·10−2 mbar) at 313 K (30% yield; m.p. 327 K), by NMR analysis proved to be pure substance. 1H-NMR (300 MHz, CDCl3, 298 K) δ 3.16–3.07 (m, 4 H), 1.90–1.80 (m, 2 H), 1.34 [d, 4J(H,P) = 3.5 Hz, 18H].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Positions of all hydrogen atoms were identified via subsequent ΔF syntheses. In the refinement, a riding model was applied using idealized C—H bond lengths (0.98–0.99 Å) as well as H—C—H and C—C—H angles. In addition, the H atoms of the CH3 groups were allowed to rotate around the neighbouring C—C bonds. The Uiso values were set to 1.5Ueq(Cmeth­yl) and 1.2Ueq(Cmethyl­ene).

Table 1
Experimental details

Crystal data
Chemical formula C11H24ClN2P
Mr 250.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 12.5954 (5), 9.1549 (3), 12.9614 (6)
β (°) 101.547 (3)
V3) 1464.33 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.48 × 0.28 × 0.25
 
Data collection
Diffractometer Stoe IPDS II
Absorption correction Multi-scan (XPREP; Bruker, 2008[Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.761, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 16291, 3943, 3547
Rint 0.050
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.01
No. of reflections 3943
No. of parameters 142
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.21
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2015[Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a4); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

1,3-Di-tert-butyl-2-chloro-1,3,2-diazaphosphinane top
Crystal data top
C11H24ClN2PF(000) = 544
Mr = 250.74Dx = 1.137 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.5954 (5) ÅCell parameters from 20870 reflections
b = 9.1549 (3) Åθ = 4.5–59.2°
c = 12.9614 (6) ŵ = 0.35 mm1
β = 101.547 (3)°T = 173 K
V = 1464.33 (10) Å3Block, colourless
Z = 40.48 × 0.28 × 0.25 mm
Data collection top
Stoe IPDS II
diffractometer
3547 reflections with I > 2σ(I)
ω–scansRint = 0.050
Absorption correction: multi-scan
(XPREP; Bruker, 2008)
θmax = 29.2°, θmin = 2.7°
Tmin = 0.761, Tmax = 0.929h = 1717
16291 measured reflectionsk = 1212
3943 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.8644P]
where P = (Fo2 + 2Fc2)/3
3943 reflections(Δ/σ)max = 0.001
142 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85529 (4)0.26976 (5)0.83702 (4)0.05736 (15)
P10.72874 (3)0.09412 (5)0.77742 (3)0.03774 (11)
N10.67636 (11)0.15879 (16)0.65862 (11)0.0411 (3)
N20.80820 (11)0.03915 (15)0.75215 (11)0.0390 (3)
C10.73831 (16)0.1599 (2)0.57350 (14)0.0511 (4)
H110.79500.23620.58810.061*
H120.68920.18420.50600.061*
C20.79040 (18)0.0142 (3)0.56389 (15)0.0579 (5)
H210.73320.06080.54510.070*
H220.83140.01870.50630.070*
C30.86546 (15)0.0296 (2)0.66384 (14)0.0485 (4)
H310.89810.12560.65380.058*
H320.92480.04280.68090.058*
C40.58516 (16)0.2663 (2)0.64533 (15)0.0507 (4)
C50.6238 (2)0.4171 (3)0.6188 (2)0.0810 (7)
H510.64370.41410.54950.122*
H520.68700.44570.67220.122*
H530.56540.48830.61760.122*
C60.49516 (19)0.2120 (3)0.5566 (2)0.0804 (8)
H610.52450.19620.49300.121*
H620.43720.28500.54230.121*
H630.46600.11990.57770.121*
C70.5396 (2)0.2788 (3)0.7459 (2)0.0756 (7)
H710.59580.31690.80300.113*
H720.51650.18220.76530.113*
H730.47740.34540.73370.113*
C80.85809 (15)0.1413 (2)0.83911 (15)0.0489 (4)
C90.97954 (16)0.1119 (3)0.87176 (17)0.0655 (6)
H911.01540.13900.81410.098*
H921.00960.17000.93430.098*
H930.99150.00790.88790.098*
C100.8368 (3)0.2973 (2)0.7984 (2)0.0860 (8)
H1010.75850.31460.78000.129*
H1020.86990.36640.85330.129*
H1030.86840.31100.73590.129*
C110.80696 (18)0.1203 (3)0.93605 (17)0.0631 (6)
H1110.72860.13670.91640.095*
H1120.82080.02050.96290.095*
H1130.83880.19020.99080.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0692 (3)0.0498 (3)0.0529 (3)0.0125 (2)0.0117 (2)0.0122 (2)
P10.0374 (2)0.0386 (2)0.0394 (2)0.00313 (16)0.01304 (15)0.00418 (16)
N10.0410 (7)0.0420 (7)0.0407 (7)0.0073 (6)0.0093 (5)0.0033 (6)
N20.0388 (7)0.0362 (6)0.0423 (7)0.0030 (5)0.0093 (5)0.0012 (5)
C10.0553 (10)0.0609 (11)0.0386 (8)0.0111 (9)0.0133 (7)0.0070 (8)
C20.0666 (12)0.0672 (13)0.0426 (9)0.0142 (10)0.0169 (9)0.0053 (9)
C30.0493 (9)0.0537 (10)0.0451 (9)0.0109 (8)0.0158 (7)0.0028 (8)
C40.0511 (10)0.0481 (10)0.0529 (10)0.0149 (8)0.0106 (8)0.0062 (8)
C50.101 (2)0.0493 (12)0.0943 (18)0.0181 (13)0.0239 (15)0.0167 (12)
C60.0526 (12)0.098 (2)0.0830 (16)0.0202 (13)0.0058 (11)0.0045 (15)
C70.0733 (15)0.0876 (17)0.0719 (14)0.0409 (14)0.0291 (12)0.0144 (13)
C80.0512 (10)0.0434 (9)0.0522 (10)0.0103 (8)0.0110 (8)0.0108 (8)
C90.0477 (10)0.0957 (17)0.0521 (11)0.0230 (11)0.0076 (8)0.0079 (11)
C100.115 (2)0.0402 (11)0.102 (2)0.0101 (13)0.0214 (17)0.0085 (12)
C110.0636 (12)0.0692 (13)0.0612 (12)0.0141 (10)0.0234 (10)0.0278 (10)
Geometric parameters (Å, º) top
Cl1—P12.2869 (6)C5—H530.9800
P1—N21.6519 (14)C6—H610.9800
P1—N11.6584 (14)C6—H620.9800
N1—C11.473 (2)C6—H630.9800
N1—C41.496 (2)C7—H710.9800
N2—C31.472 (2)C7—H720.9800
N2—C81.502 (2)C7—H730.9800
C1—C21.502 (3)C8—C101.527 (3)
C1—H110.9900C8—C91.527 (3)
C1—H120.9900C8—C111.534 (3)
C2—C31.498 (3)C9—H910.9800
C2—H210.9900C9—H920.9800
C2—H220.9900C9—H930.9800
C3—H310.9900C10—H1010.9800
C3—H320.9900C10—H1020.9800
C4—C51.526 (3)C10—H1030.9800
C4—C61.527 (3)C11—H1110.9800
C4—C71.529 (3)C11—H1120.9800
C5—H510.9800C11—H1130.9800
C5—H520.9800
N2—P1—N1102.93 (7)H52—C5—H53109.5
N2—P1—Cl1100.22 (5)C4—C6—H61109.5
N1—P1—Cl1100.57 (6)C4—C6—H62109.5
C1—N1—C4114.76 (14)H61—C6—H62109.5
C1—N1—P1121.73 (11)C4—C6—H63109.5
C4—N1—P1119.69 (12)H61—C6—H63109.5
C3—N2—C8115.07 (13)H62—C6—H63109.5
C3—N2—P1121.39 (12)C4—C7—H71109.5
C8—N2—P1119.34 (11)C4—C7—H72109.5
N1—C1—C2111.20 (16)H71—C7—H72109.5
N1—C1—H11109.4C4—C7—H73109.5
C2—C1—H11109.4H71—C7—H73109.5
N1—C1—H12109.4H72—C7—H73109.5
C2—C1—H12109.4N2—C8—C10107.76 (17)
H11—C1—H12108.0N2—C8—C9110.10 (16)
C3—C2—C1112.13 (16)C10—C8—C9110.9 (2)
C3—C2—H21109.2N2—C8—C11110.81 (15)
C1—C2—H21109.2C10—C8—C11109.06 (19)
C3—C2—H22109.2C9—C8—C11108.19 (17)
C1—C2—H22109.2C8—C9—H91109.5
H21—C2—H22107.9C8—C9—H92109.5
N2—C3—C2111.45 (15)H91—C9—H92109.5
N2—C3—H31109.3C8—C9—H93109.5
C2—C3—H31109.3H91—C9—H93109.5
N2—C3—H32109.3H92—C9—H93109.5
C2—C3—H32109.3C8—C10—H101109.5
H31—C3—H32108.0C8—C10—H102109.5
N1—C4—C5110.44 (17)H101—C10—H102109.5
N1—C4—C6108.04 (17)C8—C10—H103109.5
C5—C4—C6110.3 (2)H101—C10—H103109.5
N1—C4—C7111.19 (15)H102—C10—H103109.5
C5—C4—C7108.4 (2)C8—C11—H111109.5
C6—C4—C7108.5 (2)C8—C11—H112109.5
C4—C5—H51109.5H111—C11—H112109.5
C4—C5—H52109.5C8—C11—H113109.5
H51—C5—H52109.5H111—C11—H113109.5
C4—C5—H53109.5H112—C11—H113109.5
H51—C5—H53109.5
N2—P1—N1—C133.19 (16)C1—C2—C3—N259.3 (2)
Cl1—P1—N1—C169.98 (15)C1—N1—C4—C548.7 (2)
N2—P1—N1—C4170.01 (13)P1—N1—C4—C5109.66 (18)
Cl1—P1—N1—C486.82 (14)C1—N1—C4—C672.0 (2)
N1—P1—N2—C333.52 (15)P1—N1—C4—C6129.63 (17)
Cl1—P1—N2—C369.94 (13)C1—N1—C4—C7169.02 (19)
N1—P1—N2—C8170.64 (13)P1—N1—C4—C710.7 (2)
Cl1—P1—N2—C885.90 (13)C3—N2—C8—C1072.3 (2)
C4—N1—C1—C2153.99 (17)P1—N2—C8—C10130.43 (17)
P1—N1—C1—C248.1 (2)C3—N2—C8—C948.8 (2)
N1—C1—C2—C358.7 (2)P1—N2—C8—C9108.48 (16)
C8—N2—C3—C2154.03 (17)C3—N2—C8—C11168.49 (17)
P1—N2—C3—C249.2 (2)P1—N2—C8—C1111.2 (2)
 

Acknowledgements

We thank E. Hammes for technical support.

References

First citationBarnard, T. S. & Mason, M. R. (2001a). Inorg. Chem. 40, 5001–5009.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBarnard, T. S. & Mason, M. R. (2001b). Organometallics, 20, 206–214.  Web of Science CSD CrossRef CAS Google Scholar
First citationBezombes, J. P., Borisenko, K. B., Hitchcock, P. B., Lappert, M. F., Nycz, J. E., Rankin, D. W. H. & Robertson, H. E. (2004). Dalton Trans. pp. 1980–1988.  Web of Science CSD CrossRef Google Scholar
First citationBlum, M., Puntigam, O., Plebst, S., Ehret, F., Bender, J., Nieger, M. & Gudat, D. (2016). Dalton Trans. 45, 1987–1997.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrazeau, A. L., Hänninen, M. M., Tuononen, H. M., Jones, N. D. & Ragogna, P. J. (2012). J. Am. Chem. Soc. 134, 5398–5414.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBreuers, V. & Frank, W. (2016). Z. Kristallogr. New Cryst. Struct. 231, 529–532.  CAS Google Scholar
First citationBreuers, V., Lehmann, C. W. & Frank, W. (2015). Chem. Eur. J. 21, 4596–4606.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrown, I. D. (2016). Accumulated Table Of Bond Valence Parameters. Private communication.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurford, N., Conroy, K. D., Landry, J. C., Ragogna, P. J., Ferguson, M. J. & McDonald, R. (2004). Inorg. Chem. 43, 8245–8251.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCaputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461–3469.  Web of Science CSD CrossRef Google Scholar
First citationCarmalt, C. J. & Lomeli, V. (1997). Chem. Commun. pp. 2095–2096.  CSD CrossRef Web of Science Google Scholar
First citationDenk, M. K., Gupta, S. & Lough, A. J. (1999). Eur. J. Inorg. Chem. 1999, 41–49.  CrossRef Google Scholar
First citationDenk, M. K., Gupta, S. & Ramachandran, R. (1996). Tetrahedron Lett. 37, 9025–9028.  CrossRef CAS Web of Science Google Scholar
First citationDowning, J. H., Floure, J., Heslop, K., Haddow, M. F., Hopewell, J., Lusi, M., Phetmung, H., Orpen, A. G., Pringle, P. G., Pugh, R. I. & Zambrano-Williams, D. (2008). Organometallics, 27, 3216–3224.  Web of Science CSD CrossRef CAS Google Scholar
First citationEdge, R., Less, R. J., McInnes, E. J. L., Müther, K., Naseri, V., Rawson, J. M. & Wright, D. S. (2009). Chem. Commun. pp. 1691–1693.  Web of Science CSD CrossRef Google Scholar
First citationFrank, W., Petry, V., Gerwalin, E. & Reiss, G. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 1512–1514.  CSD CrossRef CAS Web of Science Google Scholar
First citationGaly, J. & Enjalbert, R. (1982). J. Solid State Chem. 44, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationGatien, A. V., Lavoie, C. M., Bennett, R. N., Ferguson, M. J., McDonald, R., Johnson, E. R., Speed, A. W. H. & Stradiotto, M. (2018). ACS Catal. 8, 5328–5339.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGün, H., Mettlach née Casel, C. & Frank, W. (2017). Z. Naturforsch. Teil B, 72, 873–882.  Google Scholar
First citationHinchley, S. L., Morrison, C. A., Rankin, D. W. H., Macdonald, C. L. B., Wiacek, R. J., Voigt, A., Cowley, A. H., Lappert, M. F., Gundersen, G., Clyburne, J. A. C. & Power, P. P. (2001). J. Am. Chem. Soc. 123, 9045–9053.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHinz, A., Schulz, A. & Villinger, A. (2015). Angew. Chem. Int. Ed. 54, 668–672.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolthausen, M. H., Sala, C. & Weigand, J. J. (2016). Eur. J. Inorg. Chem. 2016, 667–677.  Web of Science CSD CrossRef CAS Google Scholar
First citationHope, H., Viggiano, M., Moezzi, B. & Power, P. P. (1984). Inorg. Chem. 23, 2550–2552.  CSD CrossRef CAS Web of Science Google Scholar
First citationHutchins, R. O., Maryanoff, B. E., Albrand, J. P., Cogne, A., Gagnaire, D. & Robert, J. B. (1972). J. Am. Chem. Soc. 94, 9151–9158.  CrossRef CAS Web of Science Google Scholar
First citationKahn, R., Fourme, R., André, D. & Renaud, M. (1973). Acta Cryst. B29, 131–138.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKonu, J., Tuononen, H. M., Chivers, T., Corrente, A. M., Boeré, R. T. & Roemmele, T. L. (2008). Inorg. Chem. 47, 3823–3831.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKozma, A., Rust, J. & Alcarazo, M. (2015). Chem. Eur. J. 21, 10829–10834.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLesikar, L. A., Woodul, W. D. & Richards, A. F. (2007). Polyhedron, 26, 3242–3246.  Web of Science CSD CrossRef CAS Google Scholar
First citationMallov, I., Spinney, H., Jurca, T., Gorelsky, S., Burchell, T. & Richeson, D. (2012). Inorg. Chim. Acta, 392, 5–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaryanoff, B. E. & Hutchins, R. O. (1972). J. Org. Chem. 37, 3475–3480.  CrossRef CAS Web of Science Google Scholar
First citationMaslennikova, V., Serkova, O., Gruner, M., Goutal, S., Bauer, I., Habicher, W., Lyssenko, K., Antipin, M. & Nifantyev, E. E. (2004). Eur. J. Org. Chem. pp. 4884–4893.  Web of Science CSD CrossRef Google Scholar
First citationMo, D. & Frank, W. (2019). Acta Cryst. E75, 405–409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMo, D., Serio, M. & Frank, W. (2018). Z. Kristallogr. New Cryst. Struct. 233, 139–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationNifant'ev, E. E., Sorokina, S. F., Vorob'eva, L. A., Borisenko, A. A. & Nevskii, N. N. (1985). Zh. Obshch. Khim. 55, 738–748.  CAS Google Scholar
First citationNifant'ev, E. E., Zavalishina, A. I., Sorokina, S. F., Borisenko, A. A., Smirnova, E. I. & Gustova, I. V. (1977). Russ. J. Gen. Chem. 47, 1793–1802.  Google Scholar
First citationNifant'ev, I. E., Manzhukova, L. F., Antipin, M. Y., Struchkov, Y. T. & Nifant'ev, E. E. (1991). Metalloorg. Khim. 4, 475–478.  CAS Google Scholar
First citationPapke, M., Dettling, L., Sklorz, J. A. W., Szieberth, D., Nyulászi, L. & Müller, C. (2017). Angew. Chem. Int. Ed. 56, 16484–16489.  Web of Science CSD CrossRef CAS Google Scholar
First citationPavan Kumar, K. V. P. & Kumara Swamy, K. C. (2007). Carbohydr. Res. 342, 1182–1188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchranz, I., Grocholl, L. P., Stahl, L., Staples, R. J. & Johnson, A. (2000). Inorg. Chem. 39, 3037–3041.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonnenburg, R., Borkenhagen, F., Neda, I., Thönnessen, H., Jones, P. G. & Schmutzler, R. (1997). Phosphorus Sulfur Silicon Relat. Elem. 126, 11–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpinney, H. A., Korobkov, I., DiLabio, G. A., Yap, G. P. A. & Richeson, D. S. (2007). Organometallics, 26, 4972–4982.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThomas, C. M., Hatzis, G. P. & Pepi, M. J. (2018). Polyhedron, 143, 215–222.  Web of Science CrossRef CAS Google Scholar
First citationTuononen, H. M., Roesler, R., Dutton, J. L. & Ragogna, P. J. (2007). Inorg. Chem. 46, 10693–10706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVeith, M. & Bertsch, B. (1988). Z. Anorg. Allg. Chem. 557, 7–22.  CSD CrossRef CAS Web of Science Google Scholar
First citationVidovic, D., Lu, Z., Reeske, G., Moore, J. A. & Cowley, A. H. (2006). Chem. Commun. pp. 3501–3503.  Web of Science CSD CrossRef Google Scholar
First citationWrackmeyer, B., Köhler, C., Milius, W. & Herberhold, M. (1994). Phosphorus Sulfur Silicon, 89, 151–162.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds