research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido­(2,2′-{[2-(1-methyl-1H-imidazol-2-yl-κN3)imidazolidine-1,3-diyl-κN]bis­­(methyl­ene)}bis­­(1-methyl-1H-imidazole-κN3))copper(II) perchlorate

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da, Silveira Ramos, 149, Bl. A, Lab. 628a. CEP 21941-909, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: marciela@iq.ufrj.br

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 13 March 2019; accepted 25 March 2019; online 2 April 2019)

In the crystal structure of the title complex, [CuCl(C17H24N8)]ClO4, the copper(II) metal exhibits an N4Cl penta­coordinate environment in a distorted square-pyramidal geometry. Coordination to the metal centre occurs through the three 1-methyl­imidazole N atoms from the pendant groups, one amine N atom from the imidazolidine moiety and one chlorido anion. Inter­molecular inter­actions take place at two of the 1-methyl-­imidazole rings in the form of parallel-displaced ππ stacking inter­actions forming chains parallel to the a axis. Three O atoms of the perchlorate anion are rotationally disordered between two orientations with occupancies of 0.5.

1. Chemical context

Copper ions play a key role in many natural processes, as they are found in the active site of enzymes involved in electron and O2 transfers, oxidation and reduction, being a target for the obtaining of biomimetic or bioinspired compounds (Stephanos & Addison, 2014[Stephanos, J. J. & Addison, A. W. (2014). Chemistry of Metalloproteins: Problems and Solutions in Bioinorganic Chemistry, pp. 95-146. Hoboken, New Jersey: John Wiley & Sons, Inc.]). As a result of the redox characteristics of the copper ion, the versatility of ligands to which it coordinates, and the geometries it is capable of forming, copper complexes have attracted attention as catalysts for different transformations, mainly involving the activation and reduction of oxygen (Elwell et al., 2017[Elwell, C. E., Gagnon, N. L., Neisen, B. D., Dhar, D., Spaeth, A. D., Yee, G. M. & Tolman, W. B. (2017). Chem. Rev. 117, 2059-2107.]). For the hydrogen evolution reaction (HER), the obtaining of homogeneous copper catalysts is limited by the dissociation of copper(II) because of the more negative potentials required for the reduction of protons (Zhang et al., 2014[Zhang, P., Wang, M., Yang, Y., Yao, T. & Sun, L. (2014). Angew. Chem. Int. Ed. 53, 13803-13807.]; Du et al., 2016[Du, J., Wang, J., Ji, L., Xu, X. & Chen, Z. (2016). Appl. Mater. Interfaces, 8, 30205-30211.]). However, different copper complexes have been obtained and evaluated as catalysts for HER, showing promising results (Zhang et al., 2016[Zhang, P., Wang, M., Chen, H., Liang, Y., Sun, J. & Sun, L. (2016). Adv. Energy Mater. 6, 1-9.]; Haddad et al., 2017[Haddad, A. Z., Cronin, S. P., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2017). Inorg. Chem. 56, 11254-11265.]; Khusnutdinova et al., 2018[Khusnutdinova, D., Wadsworth, B. L., Flores, M., Beiler, A. M., Reyes Cruz, E. A., Zenkov, Y. & Moore, G. F. (2018). ACS Catal. 8, 9888-9898.]). The use of bioinspired tripodal tetra­dentate ligands in the construction of metal complexes catalysts can provide a unique feature, the presence of cis-labile sites for substrate coordination that may be a requisite for its catalytic activity, facilitating electron/atom transfer processes.

[Scheme 1]

Herein, we report the mol­ecular and crystal structure of a novel mononuclear copper(II) complex bearing an imidazolidine tetra­dentate ligand, namely chlorido­(2,2′-{[2-(1-methyl-1H-imidazol-2-yl-κN3)imidazolidine-1,3-diyl-κN]bis­(methylene)}bis­(1-methyl-1H-imidazole-κN3)copper(II) perchlorate, [Cu(L)Cl]ClO4. Similar complexes obtained with penta­dentate ligands derived from the imidazolidine ring opening were previously reported (Cisnetti et al., 2007[Cisnetti, F., Lefèvre, A. S., Guillot, R., Lambert, F., Blain, G., Anxolabéhère-Mallart, E. & Policar, C. (2007). Eur. J. Inorg. Chem. pp. 4472-4480.]; Garcia et al., 2015[Garcia, L., Cisnetti, F., Gillet, N., Guillot, R., Aumont-Nicaise, M., Piquemal, J. P., Desmadril, M., Lambert, F. & Policar, C. (2015). J. Am. Chem. Soc. 137, 1141-1146.]), but to the best of our knowledge, this is the first example of a copper complex bearing an imidazolidine ligand with three 1-methyl-imidazole side arms.

2. Structural commentary

The title complex crystallizes in the monoclinic system, space group P21/n. The asymmetric unit comprises one complex cation and one disordered perchlorate anion (Fig. 1[link]). The copper(II) ion has an N4Cl penta­coordinated environment formed by one ligand mol­ecule and one chlorido ion. Coord­ination of the ligand to the metal centre occurs through the three 1-methyl-imidazole nitro­gen atoms (NMe-im) and one of the tertiary amine nitro­gen atoms from the imidazolidine moiety (Nam). A distorted square-pyramidal geometry is observed (τ = 0.39), with the basal plane composed of the chlorido ion, the amine nitro­gen and the two equivalent 1-methyl-imidazole nitro­gen atoms N11/N21. The third 1-methyl-­imidazole nitro­gen N31 occupies the apical position. Distortion of the geometry is evidenced by the bond angles in the coordin­ation sphere, ranging from 77.43 (11) to 113.64 (12)° and 147.65 (12) to 171.21 (8)° for the cis and trans angles, respectively. This highly distorted square-pyramidal geometry may arise from the formation of a seven-membered chelate ring (Cu1/N1/C5/N4/C7/C32/N31) that is less tensioned than the four or five-membered rings, allowing a more flexible arrangement. As a consequence of the geometry distortion, the copper(II) ion lies 0.2565 (13) Å above the Cl1/N21/N1/N11 basal plane towards the apical position. Square-pyramidal copper complexes exhibiting a smaller geometry distortion tends to show a slighter displacement of the metal centre from the basal plane. In the similar [Cu(bpqa)Cl]+ (τ = 0.16) and [Cu(tmqa)Cl]+ (τ = 0.06) complexes [bpqa = 1-(pyridin-2-yl)-N-(pyridin-2-ylmeth­yl)-N-(quinolin-2-ylmeth­yl)methan­amine; tmqa = tris­(quinolin-2-ylmeth­yl)amine; Wei et al., 1994[Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093-6100.]], the copper(II) ion is 0.189 (2) and 0.045 (3) Å above the basal plane, respectively. For the complexes [Cu(L)(ONO)]+ (τ = 0.27; L = [bis­(2-methyl­imidazol-2-yl)meth­yl][2-(pyridyl-2-yl)eth­yl]amine; Scarpellini et al., 2004a[Scarpellini, M., Neves, A., Castellano, E. E., de Almeida Neves, E. F. & Franco, D. W. (2004a). Polyhedron, 23, 511-518.]) and [Cu(Hhis-im2)Cl]+ {τ = 0.31; Hhis-im2 = 2-(1H-imidazol-4-yl)-N,N-bis­[(1-methyl-1H-imidazol-2-yl)meth­yl]ethanamine; Higa et al., 2007[Higa, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304-3313.]}, the copper-to-plane distances are 0.1761 (1) and 0.23918 (10) Å, respectively.

[Figure 1]
Figure 1
The structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Only one component of the disordered oxygen atoms of the perchlorate anion is shown.

The Cu1—Cl1 bond length is 2.2698 (10) Å, being the longest in the coordination sphere. This value is in good agreement with the Cu—Cl bond lengths of 2.2742 (11) and 2.2690 (12) Å reported for the complexes [Cu(pmea)Cl]+ [pmea = 2-(pyridin-2-yl)-N,N-bis­(pyridin-2-ylmeth­yl)ethan­amine] and [Cu(pmap)Cl]+ [pmap = 2-(pyridin-2-yl)-N-(2-(pyridin-2-yl)eth­yl)-N-(pyridin-2-ylmeth­yl)ethanamine; Schatz et al., 2001[Schatz, M., Becker, M., Thaler, F., Hampel, F., Schindler, S., Jacobson, R. R., Tyeklár, Z., Murthy, N. N., Ghosh, P., Chen, Q., Zubieta, J. & Karlin, K. D. (2001). Inorg. Chem. 40, 2312-2322.]]. For the complexes [Cu(hismimi)Cl2] and [Cu(hismima)Cl2] {hismimi = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)methyl­ene]ethanamine; hismima = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)meth­yl]ethanamine; Scarpellini et al., 2003[Scarpellini, M., Neves, A., Hörner, R., Bortoluzzi, A. J., Szpoganics, B., Zucco, C., Nome Silva, R. A., Drago, V., Mangrich, A. S., Ortiz, W. A., Passos, W. A. C., de Oliveira, M. C. B. & Terenzi, H. (2003). Inorg. Chem. 42, 8353-8365.]}, the Cu—Cl bond lengths range from 2.2882 (11) to 2.2930 (11) Å for the Cl atoms in the basal plane and from 2.5705 (10) to 2.5789 (10) Å for the Cl atoms occupying the apical position.

The Cu—NMe-im bond lengths in the title compound range from 1.976 (3) to 2.173 (3) Å, the longest one being formed by the 1-methyl-­imidazole nitro­gen N11. For the Cu—Nam bond, a distance of 2.137 (3) Å was found. Similar values were reported for the 1-methyl-imidazole-containing complexes [Cu(Hhis-im2)Cl]+ (Higa et al., 2007[Higa, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304-3313.]), [Cu(hismima)(his)]+ {hismima = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)meth­yl]ethanamine; his = histamine; Scarpellini et al., 2001[Scarpellini, M., Neves, A., Bortoluzzi, A. J. & Joussef, A. C. (2001). Acta Cryst. C57, 356-358.]}, [Cu2(hismima)2Cl2]22+ (Scarpellini et al., 2004b[Scarpellini, M., Neves, A., Castellano, E. E. & Franco, D. W. (2004b). J. Mol. Struct. 694, 193-198.]), [Cu(pymimi)Cl2] and [Cu(pymima)Cl2] {pymimi = [2-(pyridyl-2-yl)eth­yl][(1-methyl­imidazol-2-yl)meth­yl]imine; pymima = [2-(pyridyl-2-yl)eth­yl][(1-methyl­imidazol-2-yl)meth­yl]amine; Ferre et al., 2017[Ferre, F. T., Resende, J. A. L. C., Schultz, J., Mangrich, A. S., Faria, R. B., Rocha, A. B. & Scarpellini, M. (2017). Polyhedron, 123, 293-304.]}.

3. Supra­molecular features

Inter­molecular contacts in the title compound occur through ππ stacking inter­actions (Fig. 2[link]) involving two 1-methyl-imidazole rings (N21/C22/N23/C25/C26 and N31/C32/N33/C35/C36), forming chains that propagate parallel to the a axis. The inter­centroid distances are 3.690 (2) and 3.761 (2) Å, the centroid-to-plane distances are 3.4719 (15) and 3.6240 (15) Å, and the parallel shifts are 1.250 (6) and 1.008 (7) Å.

[Figure 2]
Figure 2
Crystal packing (viewed perpendicular to (100), top left, and (010), top right) and inter­molecular ππ stacking inter­actions (dashed lines, bottom) in the structure of the title compound.

4. Features of related complexes

In penta­coordinated copper(II) complexes containing tripodal N4 donor ligands similar to the title compound, the Cu—Cl bond length seems to be directly related to the type and degree of geometry distortion around the metal centre. In complexes exhibiting a square-pyramidal geometry, as in the title compound, the Cu—Cl bond length has a range of 2.27–2.29 Å. For complexes in a trigonal–bipyramidal geometry, the Cu—Cl distance is around 2.23 Å (Karlin et al., 1982[Karlin, K. D., Hayes, J. C., Juen, S., Hutchinson, J. P. & Zubieta, J. (1982). Inorg. Chem. 21, 4106-4108.]; Oberhausen et al., 1990[Oberhausen, K. J., O'brien, R. J., Richardson, J. F. & Buchanan, R. M. (1990). Inorg. Chim. Acta, 173, 145-154.]; Wang et al., 1995[Wang, J., Mashuta, M. S., Richardson, J. F. & Buchanan, R. M. (1995). Acta Cryst. C51, 50-52.]). This difference may be related to the ligand spatial orientation, resulting from the geometric arrangements around the metal centre. The trigonal–bipyramidal geometry imposes a vertical positioning of the coordinated ligand rings parallel to the axial direction, which minimizes the repulsion between the electronic clouds of the chloride ion and the tripodal ligand. This arrangement allows a greater approach of the chloride ion to the metal centre and consequently a shorter bond distance. In the case of complexes in a square-pyramidal geometry, the coordinated rings are oriented parallel to the basal plane, increasing the chloride/ligand repulsion effect, which makes the Cu—Cl bond more elongated. Curiously, copper complexes in both geometries with tripodal ligands showing steric hindrance exhibit inter­mediate Cu—Cl bond distances among those found for complexes with non-hindered ligands on square-pyramidal and trigonal–bipyramidal geometries, indicating a balance of repulsive and stabilizing chloride/ligand inter­actions that is geometry independent (Wei et al., 1994[Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093-6100.]; Jitsukawa et al., 2001[Jitsukawa, K., Harata, M., Arii, H., Sakurai, H. & Masuda, H. (2001). Inorg. Chim. Acta, 324, 108-116.]).

5. Synthesis and crystallization

2,2′-{[2-(1-Methyl-1H-imidazol-2-yl)imidazolidine-1,3-di­yl]bis­(methyl­ene)}bis­(1-methyl-1H-imidazole), L: The new ligand L was synthesized by condensation reaction between N1,N2-bis­[(1-methyl-1H-imidazol-2-yl)meth­yl]ethane-1,2-di­amine (Neves et al., 1997[Neves, A., Tamanini, M., Correia, V. R. & Vencato, I. (1997). J. Braz. Chem. Soc. 8, 519-522.]) (1.8939 g, 7.63 mmol) and 1-methyl-2-imidazole­carboxaldehyde (0.8401 g, 7.63 mmol) in ethano­lic media (40 ml). The reaction mixture was stirred for 24 h at room temperature, when the solvent was removed by rota-evaporation. To the resulting white solid, 40 ml of ethyl ether were added, and the mixture was stirred at room temperature for 24 h. After removal of the solvent under reduced pressure, the resulting white solid was recrystallized from acetone. Yield after recrystallization: 2.4 g (92%). 1H NMR (500 MHz, DMSO) δ 7.16 (d, J = 0.8 Hz, 1H), 7.01 (d, J = 1.1 Hz, 2H), 6.84 (d, J = 1.1 Hz, 1H), 6.73 (d, J = 1.2 Hz, 2H), 4.20 (s, 1H), 3.74 (s, 3H), 3.63 (d, J = 13.5 Hz, 2H), 3.43 (d, J = 13.5 Hz, 2H), 3.33 (s, 6H), 2.96–2.87 (m, 2H), 2.75–2.67 (m, 2H) p.p.m. 13C NMR (126 MHz, DMSO) δ 144.89, 144.45, 127.16, 126.75, 124.13, 122.18, 82.92, 50.45, 33.37, 32.19 p.p.m..

[Cu(L)Cl]ClO4: The synthesis was achieved by reacting CuCl2·2H2O (0.1708 g, 1 mmol) and the ligand L (0.3403 g, 1 mmol) in ethano­lic media, at room temperature. Recrystallization of the obtained amorphous green solid in aceto­nitrile solution at room temperature yielded 0.152 g (28%) of green single crystals after one day. IR (cm−1, KBr): 3460 (ν O—H), 3160–3130 (ν C—Harom), 2972–2854 (ν C—Hali), 1636–1419 (ν C=N/C=Cring), 1285 (ν C—Namine), 1096/623 (ν Cl—O), 771 (δ C—Harom), 502 (ν Cu—Namine), 291 (ν Cu—Cl).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The perchlorate anion is rotationally disordered over two orientations sharing the O1 oxygen atom with site occupancy factors of 0.5. The two disordered positions were refined by applying SADI restraints on the Cl–O bond lengths and O⋯O separations. The Uij parameters of the Cl2 atom were restrained to an approximate isotropic behaviour.

Table 1
Experimental details

Crystal data
Chemical formula [CuCl(C17H24N8)]ClO4
Mr 538.88
Crystal system, space group Monoclinic, P21/n
Temperature (K) 288
a, b, c (Å) 10.2904 (4), 8.1336 (3), 26.317 (1)
β (°) 96.170 (1)
V3) 2189.92 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.29
Crystal size (mm) 0.25 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.656, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 41042, 4471, 3704
Rint 0.069
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.102, 1.12
No. of reflections 4471
No. of parameters 319
No. of restraints 63
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.53
Computer programs: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.], SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Chlorido(2,2'-{[2-(1-methyl-1H-imidazol-2-yl-κN3)imidazolidine-1,3-diyl-κN]bis(methylene)}bis(1-methyl-1H-imidazole-κN3))copper(II) perchlorate top
Crystal data top
[CuCl(C17H24N8)]ClO4F(000) = 1108
Mr = 538.88Dx = 1.634 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2904 (4) ÅCell parameters from 117 reflections
b = 8.1336 (3) Åθ = 2.9–22.7°
c = 26.317 (1) ŵ = 1.29 mm1
β = 96.170 (1)°T = 288 K
V = 2189.92 (14) Å3Block, clear light green
Z = 40.25 × 0.16 × 0.09 mm
Data collection top
Bruker D8 Venture
diffractometer
3704 reflections with I > 2σ(I)
φ and ω scansRint = 0.069
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 26.4°, θmin = 2.2°
Tmin = 0.656, Tmax = 0.745h = 1212
41042 measured reflectionsk = 1010
4471 independent reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0274P)2 + 4.7286P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
4471 reflectionsΔρmax = 0.52 e Å3
319 parametersΔρmin = 0.53 e Å3
63 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.18398 (4)0.35492 (5)0.56226 (2)0.02658 (12)
Cl20.61349 (10)0.81015 (12)0.66768 (4)0.0394 (2)
Cl10.20109 (10)0.10125 (11)0.52765 (4)0.0442 (3)
N210.2633 (3)0.4598 (3)0.50530 (11)0.0276 (6)
N10.1935 (3)0.6031 (3)0.58904 (10)0.0237 (6)
N310.0181 (3)0.3032 (4)0.59528 (11)0.0298 (6)
N230.3807 (3)0.6599 (4)0.47829 (11)0.0293 (6)
N110.3159 (3)0.3367 (4)0.63224 (12)0.0324 (7)
N330.1361 (3)0.2601 (4)0.64552 (11)0.0332 (7)
N130.3635 (3)0.4347 (4)0.70991 (11)0.0362 (7)
N40.0918 (3)0.6184 (4)0.66510 (11)0.0331 (7)
C120.2988 (3)0.4602 (4)0.66327 (13)0.0283 (7)
C260.2978 (3)0.4181 (5)0.45779 (13)0.0319 (8)
H260.2753540.3212320.4402450.038*
C220.3146 (3)0.6059 (4)0.51634 (12)0.0241 (7)
C50.2183 (3)0.6065 (4)0.64627 (12)0.0267 (7)
H50.2683230.7058470.6564600.032*
C320.0283 (3)0.3493 (5)0.63838 (13)0.0307 (8)
C60.3044 (3)0.6840 (4)0.56629 (13)0.0286 (8)
H6A0.2879290.8008880.5619700.034*
H6B0.3851680.6695350.5884890.034*
C360.0650 (3)0.1818 (4)0.57440 (15)0.0336 (8)
H360.0572090.1274410.5437940.040*
C250.3696 (4)0.5416 (5)0.44102 (14)0.0341 (8)
H250.4050450.5456450.4099840.041*
C350.1586 (3)0.1546 (5)0.60512 (15)0.0388 (9)
H350.2260560.0783820.5999120.047*
C70.0270 (4)0.4682 (5)0.67877 (14)0.0388 (9)
H7A0.0440430.5003410.6980610.047*
H7B0.0890980.4076630.7020430.047*
C20.0650 (3)0.6893 (4)0.57597 (14)0.0328 (8)
H2A0.0036120.6191740.5555230.039*
H2B0.0765710.7902070.5573560.039*
C240.4503 (4)0.8151 (5)0.47750 (16)0.0414 (10)
H24A0.3905770.9042250.4806680.062*
H24B0.4880650.8251860.4458370.062*
H24C0.5183290.8183470.5054660.062*
C160.3943 (4)0.2272 (5)0.66066 (16)0.0407 (9)
H160.4220150.1269060.6487470.049*
C30.0176 (4)0.7253 (5)0.62797 (15)0.0437 (10)
H3A0.0327310.8398000.6371020.052*
H3B0.0751730.7028260.6269910.052*
C150.4254 (4)0.2850 (5)0.70806 (16)0.0458 (10)
H150.4780940.2343060.7344120.055*
C340.2202 (4)0.2733 (6)0.68726 (17)0.0541 (12)
H34A0.1697920.2490930.7192280.081*
H34B0.2910940.1965670.6815540.081*
H34C0.2543830.3829660.6881930.081*
C140.3707 (5)0.5456 (6)0.75403 (16)0.0577 (12)
H14A0.3805950.6567280.7427960.087*
H14B0.4442140.5161610.7778640.087*
H14C0.2918650.5364780.7703300.087*
O10.5896 (4)0.8829 (4)0.61817 (11)0.0659 (10)
O20.551 (2)0.904 (3)0.7022 (7)0.089 (6)0.5
O30.5625 (15)0.6503 (12)0.6636 (6)0.074 (4)0.5
O40.7476 (8)0.803 (3)0.6829 (7)0.093 (6)0.5
O4'0.7405 (11)0.851 (3)0.6894 (7)0.109 (7)0.5
O3'0.604 (2)0.6372 (13)0.6674 (8)0.124 (8)0.5
O2'0.526 (2)0.870 (3)0.7006 (9)0.094 (7)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0292 (2)0.0192 (2)0.0325 (2)0.00422 (17)0.00912 (17)0.00224 (18)
Cl20.0445 (5)0.0387 (5)0.0368 (5)0.0036 (4)0.0122 (4)0.0021 (4)
Cl10.0441 (5)0.0221 (4)0.0698 (7)0.0053 (4)0.0219 (5)0.0113 (4)
N210.0282 (15)0.0246 (15)0.0307 (16)0.0030 (12)0.0062 (12)0.0021 (12)
N10.0239 (14)0.0234 (14)0.0240 (14)0.0002 (11)0.0038 (11)0.0010 (11)
N310.0260 (15)0.0310 (16)0.0329 (16)0.0058 (12)0.0058 (12)0.0013 (13)
N230.0258 (14)0.0281 (15)0.0350 (16)0.0026 (12)0.0077 (12)0.0080 (13)
N110.0320 (16)0.0256 (15)0.0397 (17)0.0030 (13)0.0041 (13)0.0037 (14)
N330.0213 (15)0.0458 (19)0.0336 (17)0.0043 (13)0.0073 (12)0.0035 (15)
N130.0349 (17)0.0458 (19)0.0278 (16)0.0012 (14)0.0028 (13)0.0076 (14)
N40.0322 (16)0.0355 (17)0.0328 (16)0.0020 (13)0.0090 (13)0.0078 (14)
C120.0237 (17)0.0317 (19)0.0296 (19)0.0019 (14)0.0034 (14)0.0039 (15)
C260.0322 (19)0.0334 (19)0.0302 (19)0.0010 (15)0.0036 (15)0.0064 (16)
C220.0238 (16)0.0204 (16)0.0279 (17)0.0002 (13)0.0024 (13)0.0020 (13)
C50.0280 (17)0.0263 (18)0.0256 (17)0.0013 (14)0.0016 (14)0.0033 (14)
C320.0244 (17)0.038 (2)0.0307 (18)0.0017 (15)0.0057 (14)0.0013 (16)
C60.0309 (18)0.0213 (17)0.0339 (19)0.0068 (14)0.0055 (15)0.0012 (14)
C360.0274 (18)0.034 (2)0.040 (2)0.0056 (15)0.0046 (15)0.0016 (16)
C250.0341 (19)0.042 (2)0.0278 (19)0.0046 (16)0.0088 (15)0.0031 (17)
C350.0263 (18)0.044 (2)0.045 (2)0.0093 (17)0.0015 (16)0.0039 (19)
C70.034 (2)0.052 (2)0.033 (2)0.0089 (18)0.0145 (16)0.0053 (18)
C20.0327 (19)0.0305 (19)0.034 (2)0.0044 (15)0.0007 (15)0.0015 (16)
C240.036 (2)0.036 (2)0.054 (3)0.0064 (17)0.0154 (18)0.0106 (19)
C160.038 (2)0.034 (2)0.050 (2)0.0086 (17)0.0088 (18)0.0113 (19)
C30.040 (2)0.047 (2)0.044 (2)0.0149 (19)0.0039 (18)0.009 (2)
C150.037 (2)0.056 (3)0.044 (2)0.011 (2)0.0034 (18)0.024 (2)
C340.034 (2)0.082 (3)0.050 (3)0.011 (2)0.0230 (19)0.001 (2)
C140.067 (3)0.074 (3)0.030 (2)0.003 (3)0.003 (2)0.002 (2)
O10.088 (3)0.072 (2)0.0390 (17)0.0155 (19)0.0133 (16)0.0106 (16)
O20.141 (15)0.087 (9)0.041 (7)0.065 (10)0.020 (8)0.001 (6)
O30.093 (7)0.060 (8)0.066 (7)0.046 (6)0.006 (5)0.026 (6)
O40.023 (5)0.143 (13)0.112 (11)0.011 (6)0.010 (5)0.008 (8)
O4'0.098 (11)0.158 (16)0.066 (8)0.059 (10)0.012 (7)0.035 (9)
O3'0.23 (2)0.041 (7)0.106 (12)0.035 (8)0.036 (13)0.011 (6)
O2'0.097 (9)0.111 (14)0.085 (12)0.045 (9)0.065 (9)0.029 (8)
Geometric parameters (Å, º) top
Cu1—Cl12.2698 (10)N4—C31.461 (5)
Cu1—N211.976 (3)C12—C51.491 (5)
Cu1—N12.137 (3)C26—H260.9300
Cu1—N312.041 (3)C26—C251.349 (5)
Cu1—N112.173 (3)C22—C61.474 (5)
Cl2—O11.428 (3)C5—H50.9800
Cl2—O21.395 (10)C32—C71.503 (5)
Cl2—O31.402 (8)C6—H6A0.9700
Cl2—O41.396 (9)C6—H6B0.9700
Cl2—O4'1.410 (11)C36—H360.9300
Cl2—O3'1.410 (10)C36—C351.341 (5)
Cl2—O2'1.405 (10)C25—H250.9300
N21—C261.378 (4)C35—H350.9300
N21—C221.320 (4)C7—H7A0.9700
N1—C51.501 (4)C7—H7B0.9700
N1—C61.497 (4)C2—H2A0.9700
N1—C21.503 (4)C2—H2B0.9700
N31—C321.331 (4)C2—C31.530 (5)
N31—C361.381 (4)C24—H24A0.9600
N23—C221.343 (4)C24—H24B0.9600
N23—C251.370 (5)C24—H24C0.9600
N23—C241.452 (5)C16—H160.9300
N11—C121.318 (5)C16—C151.339 (6)
N11—C161.368 (5)C3—H3A0.9700
N33—C321.355 (4)C3—H3B0.9700
N33—C351.366 (5)C15—H150.9300
N33—C341.473 (4)C34—H34A0.9600
N13—C121.348 (4)C34—H34B0.9600
N13—C151.377 (5)C34—H34C0.9600
N13—C141.466 (5)C14—H14A0.9600
N4—C51.445 (4)C14—H14B0.9600
N4—C71.455 (5)C14—H14C0.9600
N21—Cu1—Cl191.82 (9)N1—C5—H5108.5
N21—Cu1—N180.47 (11)N4—C5—N1106.5 (3)
N21—Cu1—N31147.65 (12)N4—C5—C12116.3 (3)
N21—Cu1—N11113.64 (12)N4—C5—H5108.5
N1—Cu1—Cl1171.21 (8)C12—C5—N1108.4 (3)
N1—Cu1—N1177.43 (11)C12—C5—H5108.5
N31—Cu1—Cl195.04 (9)N31—C32—N33110.0 (3)
N31—Cu1—N193.74 (11)N31—C32—C7129.8 (3)
N31—Cu1—N1195.74 (11)N33—C32—C7120.0 (3)
N11—Cu1—Cl1102.11 (8)N1—C6—H6A110.3
O2—Cl2—O1108.7 (10)N1—C6—H6B110.3
O2—Cl2—O3111.3 (11)C22—C6—N1107.3 (3)
O2—Cl2—O4110.3 (11)C22—C6—H6A110.3
O2—Cl2—O4'94.5 (15)C22—C6—H6B110.3
O2—Cl2—O3'120.9 (15)H6A—C6—H6B108.5
O2—Cl2—O2'16 (2)N31—C36—H36125.3
O3—Cl2—O1106.8 (7)C35—C36—N31109.4 (3)
O3—Cl2—O4'125.1 (12)C35—C36—H36125.3
O3—Cl2—O3'18.1 (13)N23—C25—H25126.4
O3—Cl2—O2'96.2 (15)C26—C25—N23107.1 (3)
O4—Cl2—O1110.3 (9)C26—C25—H25126.4
O4—Cl2—O3109.3 (10)N33—C35—H35126.5
O4—Cl2—O4'18.1 (16)C36—C35—N33107.0 (3)
O4—Cl2—O3'91.3 (13)C36—C35—H35126.5
O4—Cl2—O2'121.4 (15)N4—C7—C32120.9 (3)
O4'—Cl2—O1109.4 (7)N4—C7—H7A107.1
O3'—Cl2—O1113.8 (9)N4—C7—H7B107.1
O3'—Cl2—O4'107.5 (11)C32—C7—H7A107.1
O2'—Cl2—O1111.1 (12)C32—C7—H7B107.1
O2'—Cl2—O4'107.4 (12)H7A—C7—H7B106.8
O2'—Cl2—O3'107.5 (12)N1—C2—H2A111.0
C26—N21—Cu1138.6 (2)N1—C2—H2B111.0
C22—N21—Cu1114.2 (2)N1—C2—C3104.0 (3)
C22—N21—C26106.5 (3)H2A—C2—H2B109.0
C5—N1—Cu1110.19 (19)C3—C2—H2A111.0
C5—N1—C2105.7 (2)C3—C2—H2B111.0
C6—N1—Cu1107.06 (19)N23—C24—H24A109.5
C6—N1—C5109.8 (2)N23—C24—H24B109.5
C6—N1—C2113.2 (3)N23—C24—H24C109.5
C2—N1—Cu1110.9 (2)H24A—C24—H24B109.5
C32—N31—Cu1134.3 (2)H24A—C24—H24C109.5
C32—N31—C36106.1 (3)H24B—C24—H24C109.5
C36—N31—Cu1119.2 (2)N11—C16—H16124.8
C22—N23—C25107.1 (3)C15—C16—N11110.4 (4)
C22—N23—C24125.8 (3)C15—C16—H16124.8
C25—N23—C24127.1 (3)N4—C3—C2106.9 (3)
C12—N11—Cu1111.1 (2)N4—C3—H3A110.3
C12—N11—C16105.5 (3)N4—C3—H3B110.3
C16—N11—Cu1141.8 (3)C2—C3—H3A110.3
C32—N33—C35107.5 (3)C2—C3—H3B110.3
C32—N33—C34128.3 (3)H3A—C3—H3B108.6
C35—N33—C34124.2 (3)N13—C15—H15126.9
C12—N13—C15106.8 (3)C16—C15—N13106.2 (3)
C12—N13—C14127.2 (3)C16—C15—H15126.9
C15—N13—C14126.0 (3)N33—C34—H34A109.5
C5—N4—C7118.8 (3)N33—C34—H34B109.5
C5—N4—C3103.6 (3)N33—C34—H34C109.5
C7—N4—C3116.4 (3)H34A—C34—H34B109.5
N11—C12—N13111.2 (3)H34A—C34—H34C109.5
N11—C12—C5122.0 (3)H34B—C34—H34C109.5
N13—C12—C5126.9 (3)N13—C14—H14A109.5
N21—C26—H26125.7N13—C14—H14B109.5
C25—C26—N21108.5 (3)N13—C14—H14C109.5
C25—C26—H26125.7H14A—C14—H14B109.5
N21—C22—N23110.7 (3)H14A—C14—H14C109.5
N21—C22—C6121.3 (3)H14B—C14—H14C109.5
N23—C22—C6127.9 (3)
Cu1—N21—C26—C25169.6 (3)C5—N4—C3—C233.7 (4)
Cu1—N21—C22—N23172.2 (2)C32—N31—C36—C350.9 (4)
Cu1—N21—C22—C63.5 (4)C32—N33—C35—C360.1 (4)
Cu1—N1—C5—N494.3 (2)C6—N1—C5—N4148.0 (3)
Cu1—N1—C5—C1231.5 (3)C6—N1—C5—C1286.2 (3)
Cu1—N1—C6—C2230.9 (3)C6—N1—C2—C3124.7 (3)
Cu1—N1—C2—C3114.9 (3)C36—N31—C32—N330.8 (4)
Cu1—N31—C32—N33171.5 (2)C36—N31—C32—C7175.2 (4)
Cu1—N31—C32—C73.0 (6)C25—N23—C22—N210.4 (4)
Cu1—N31—C36—C35172.8 (3)C25—N23—C22—C6175.8 (3)
Cu1—N11—C12—N13169.3 (2)C35—N33—C32—N310.4 (4)
Cu1—N11—C12—C511.4 (4)C35—N33—C32—C7175.5 (3)
Cu1—N11—C16—C15163.7 (3)C7—N4—C5—N194.3 (3)
N21—C26—C25—N230.4 (4)C7—N4—C5—C1226.5 (4)
N21—C22—C6—N120.1 (4)C7—N4—C3—C298.7 (4)
N1—C2—C3—N417.7 (4)C2—N1—C5—N425.6 (3)
N31—C32—C7—N438.0 (6)C2—N1—C5—C12151.4 (3)
N31—C36—C35—N330.6 (4)C2—N1—C6—C2291.6 (3)
N23—C22—C6—N1165.0 (3)C24—N23—C22—N21179.5 (3)
N11—C12—C5—N113.4 (4)C24—N23—C22—C64.2 (5)
N11—C12—C5—N4106.4 (4)C24—N23—C25—C26179.4 (3)
N11—C16—C15—N130.8 (4)C16—N11—C12—N130.5 (4)
N33—C32—C7—N4148.0 (3)C16—N11—C12—C5179.8 (3)
N13—C12—C5—N1165.8 (3)C3—N4—C5—N136.7 (3)
N13—C12—C5—N474.4 (4)C3—N4—C5—C12157.5 (3)
C12—N11—C16—C150.8 (4)C3—N4—C7—C3254.2 (5)
C12—N13—C15—C160.5 (4)C15—N13—C12—N110.0 (4)
C26—N21—C22—N230.1 (4)C15—N13—C12—C5179.3 (3)
C26—N21—C22—C6175.9 (3)C34—N33—C32—N31178.2 (4)
C22—N21—C26—C250.2 (4)C34—N33—C32—C76.7 (6)
C22—N23—C25—C260.5 (4)C34—N33—C35—C36177.8 (4)
C5—N1—C6—C22150.5 (3)C14—N13—C12—N11178.4 (4)
C5—N1—C2—C34.5 (4)C14—N13—C12—C50.9 (6)
C5—N4—C7—C3270.9 (5)C14—N13—C15—C16178.9 (4)
 

Acknowledgements

The authors thank the Laboratório Multiusuário de Difração de Raios X da Universidade Federal Fluminense (LDRX/UFF) for the use of laboratory facilities.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (scholarship No. 141341/2013–0 to D. da Silva Padilha); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Financial Code No. 001); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant Nos. E-26/111.177/2011 and E-26/110.157/2014 to M. Scarpellini).

References

First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCisnetti, F., Lefèvre, A. S., Guillot, R., Lambert, F., Blain, G., Anxolabéhère-Mallart, E. & Policar, C. (2007). Eur. J. Inorg. Chem. pp. 4472–4480.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, J., Wang, J., Ji, L., Xu, X. & Chen, Z. (2016). Appl. Mater. Interfaces, 8, 30205–30211.  Web of Science CrossRef CAS Google Scholar
First citationElwell, C. E., Gagnon, N. L., Neisen, B. D., Dhar, D., Spaeth, A. D., Yee, G. M. & Tolman, W. B. (2017). Chem. Rev. 117, 2059–2107.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerre, F. T., Resende, J. A. L. C., Schultz, J., Mangrich, A. S., Faria, R. B., Rocha, A. B. & Scarpellini, M. (2017). Polyhedron, 123, 293–304.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcia, L., Cisnetti, F., Gillet, N., Guillot, R., Aumont-Nicaise, M., Piquemal, J. P., Desmadril, M., Lambert, F. & Policar, C. (2015). J. Am. Chem. Soc. 137, 1141–1146.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHaddad, A. Z., Cronin, S. P., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2017). Inorg. Chem. 56, 11254–11265.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHiga, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304–3313.  Web of Science CSD CrossRef CAS Google Scholar
First citationJitsukawa, K., Harata, M., Arii, H., Sakurai, H. & Masuda, H. (2001). Inorg. Chim. Acta, 324, 108–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarlin, K. D., Hayes, J. C., Juen, S., Hutchinson, J. P. & Zubieta, J. (1982). Inorg. Chem. 21, 4106–4108.  CSD CrossRef CAS Web of Science Google Scholar
First citationKhusnutdinova, D., Wadsworth, B. L., Flores, M., Beiler, A. M., Reyes Cruz, E. A., Zenkov, Y. & Moore, G. F. (2018). ACS Catal. 8, 9888–9898.  Web of Science CrossRef CAS Google Scholar
First citationNeves, A., Tamanini, M., Correia, V. R. & Vencato, I. (1997). J. Braz. Chem. Soc. 8, 519–522.  Web of Science CSD CrossRef CAS Google Scholar
First citationOberhausen, K. J., O'brien, R. J., Richardson, J. F. & Buchanan, R. M. (1990). Inorg. Chim. Acta, 173, 145–154.  CSD CrossRef CAS Web of Science Google Scholar
First citationScarpellini, M., Neves, A., Bortoluzzi, A. J. & Joussef, A. C. (2001). Acta Cryst. C57, 356–358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScarpellini, M., Neves, A., Castellano, E. E., de Almeida Neves, E. F. & Franco, D. W. (2004a). Polyhedron, 23, 511–518.  Web of Science CSD CrossRef CAS Google Scholar
First citationScarpellini, M., Neves, A., Castellano, E. E. & Franco, D. W. (2004b). J. Mol. Struct. 694, 193–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationScarpellini, M., Neves, A., Hörner, R., Bortoluzzi, A. J., Szpoganics, B., Zucco, C., Nome Silva, R. A., Drago, V., Mangrich, A. S., Ortiz, W. A., Passos, W. A. C., de Oliveira, M. C. B. & Terenzi, H. (2003). Inorg. Chem. 42, 8353–8365.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchatz, M., Becker, M., Thaler, F., Hampel, F., Schindler, S., Jacobson, R. R., Tyeklár, Z., Murthy, N. N., Ghosh, P., Chen, Q., Zubieta, J. & Karlin, K. D. (2001). Inorg. Chem. 40, 2312–2322.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStephanos, J. J. & Addison, A. W. (2014). Chemistry of Metalloproteins: Problems and Solutions in Bioinorganic Chemistry, pp. 95–146. Hoboken, New Jersey: John Wiley & Sons, Inc.  Google Scholar
First citationWang, J., Mashuta, M. S., Richardson, J. F. & Buchanan, R. M. (1995). Acta Cryst. C51, 50–52.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093–6100.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, P., Wang, M., Chen, H., Liang, Y., Sun, J. & Sun, L. (2016). Adv. Energy Mater. 6, 1–9.  Google Scholar
First citationZhang, P., Wang, M., Yang, Y., Yao, T. & Sun, L. (2014). Angew. Chem. Int. Ed. 53, 13803–13807.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds