research communications
Chlorido(2,2′-{[2-(1-methyl-1H-imidazol-2-yl-κN3)imidazolidine-1,3-diyl-κN]bis(methylene)}bis(1-methyl-1H-imidazole-κN3))copper(II) perchlorate
aInstituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da, Silveira Ramos, 149, Bl. A, Lab. 628a. CEP 21941-909, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: marciela@iq.ufrj.br
In the 17H24N8)]ClO4, the copper(II) metal exhibits an N4Cl pentacoordinate environment in a distorted square-pyramidal geometry. Coordination to the metal centre occurs through the three 1-methylimidazole N atoms from the pendant groups, one amine N atom from the imidazolidine moiety and one chlorido anion. Intermolecular interactions take place at two of the 1-methyl-imidazole rings in the form of parallel-displaced π–π stacking interactions forming chains parallel to the a axis. Three O atoms of the perchlorate anion are rotationally disordered between two orientations with occupancies of 0.5.
of the title complex, [CuCl(CKeywords: crystal structure; copper complex; imidazolidine ligand.
CCDC reference: 1905520
1. Chemical context
Copper ions play a key role in many natural processes, as they are found in the active site of enzymes involved in electron and O2 transfers, oxidation and reduction, being a target for the obtaining of biomimetic or bioinspired compounds (Stephanos & Addison, 2014). As a result of the redox characteristics of the copper ion, the versatility of ligands to which it coordinates, and the geometries it is capable of forming, copper complexes have attracted attention as catalysts for different transformations, mainly involving the activation and reduction of oxygen (Elwell et al., 2017). For the hydrogen evolution reaction (HER), the obtaining of homogeneous copper catalysts is limited by the dissociation of copper(II) because of the more negative potentials required for the reduction of protons (Zhang et al., 2014; Du et al., 2016). However, different copper complexes have been obtained and evaluated as catalysts for HER, showing promising results (Zhang et al., 2016; Haddad et al., 2017; Khusnutdinova et al., 2018). The use of bioinspired tripodal tetradentate ligands in the construction of metal complexes catalysts can provide a unique feature, the presence of cis-labile sites for substrate coordination that may be a requisite for its facilitating electron/atom transfer processes.
Herein, we report the molecular and H-imidazol-2-yl-κN3)imidazolidine-1,3-diyl-κN]bis(methylene)}bis(1-methyl-1H-imidazole-κN3)copper(II) perchlorate, [Cu(L)Cl]ClO4. Similar complexes obtained with pentadentate ligands derived from the imidazolidine ring opening were previously reported (Cisnetti et al., 2007; Garcia et al., 2015), but to the best of our knowledge, this is the first example of a copper complex bearing an imidazolidine ligand with three 1-methyl-imidazole side arms.
of a novel mononuclear copper(II) complex bearing an imidazolidine tetradentate ligand, namely chlorido(2,2′-{[2-(1-methyl-12. Structural commentary
The title complex crystallizes in the monoclinic system, P21/n. The comprises one complex cation and one disordered perchlorate anion (Fig. 1). The copper(II) ion has an N4Cl pentacoordinated environment formed by one ligand molecule and one chlorido ion. Coordination of the ligand to the metal centre occurs through the three 1-methyl-imidazole nitrogen atoms (NMe-im) and one of the tertiary amine nitrogen atoms from the imidazolidine moiety (Nam). A distorted square-pyramidal geometry is observed (τ = 0.39), with the basal plane composed of the chlorido ion, the amine nitrogen and the two equivalent 1-methyl-imidazole nitrogen atoms N11/N21. The third 1-methyl-imidazole nitrogen N31 occupies the apical position. Distortion of the geometry is evidenced by the bond angles in the coordination sphere, ranging from 77.43 (11) to 113.64 (12)° and 147.65 (12) to 171.21 (8)° for the cis and trans angles, respectively. This highly distorted square-pyramidal geometry may arise from the formation of a seven-membered chelate ring (Cu1/N1/C5/N4/C7/C32/N31) that is less tensioned than the four or five-membered rings, allowing a more flexible arrangement. As a consequence of the geometry distortion, the copper(II) ion lies 0.2565 (13) Å above the Cl1/N21/N1/N11 basal plane towards the apical position. Square-pyramidal copper complexes exhibiting a smaller geometry distortion tends to show a slighter displacement of the metal centre from the basal plane. In the similar [Cu(bpqa)Cl]+ (τ = 0.16) and [Cu(tmqa)Cl]+ (τ = 0.06) complexes [bpqa = 1-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)-N-(quinolin-2-ylmethyl)methanamine; tmqa = tris(quinolin-2-ylmethyl)amine; Wei et al., 1994], the copper(II) ion is 0.189 (2) and 0.045 (3) Å above the basal plane, respectively. For the complexes [Cu(L)(ONO)]+ (τ = 0.27; L = [bis(2-methylimidazol-2-yl)methyl][2-(pyridyl-2-yl)ethyl]amine; Scarpellini et al., 2004a) and [Cu(Hhis-im2)Cl]+ {τ = 0.31; Hhis-im2 = 2-(1H-imidazol-4-yl)-N,N-bis[(1-methyl-1H-imidazol-2-yl)methyl]ethanamine; Higa et al., 2007}, the copper-to-plane distances are 0.1761 (1) and 0.23918 (10) Å, respectively.
The Cu1—Cl1 bond length is 2.2698 (10) Å, being the longest in the coordination sphere. This value is in good agreement with the Cu—Cl bond lengths of 2.2742 (11) and 2.2690 (12) Å reported for the complexes [Cu(pmea)Cl]+ [pmea = 2-(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethanamine] and [Cu(pmap)Cl]+ [pmap = 2-(pyridin-2-yl)-N-(2-(pyridin-2-yl)ethyl)-N-(pyridin-2-ylmethyl)ethanamine; Schatz et al., 2001]. For the complexes [Cu(hismimi)Cl2] and [Cu(hismima)Cl2] {hismimi = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)methylene]ethanamine; hismima = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)methyl]ethanamine; Scarpellini et al., 2003}, the Cu—Cl bond lengths range from 2.2882 (11) to 2.2930 (11) Å for the Cl atoms in the basal plane and from 2.5705 (10) to 2.5789 (10) Å for the Cl atoms occupying the apical position.
The Cu—NMe-im bond lengths in the title compound range from 1.976 (3) to 2.173 (3) Å, the longest one being formed by the 1-methyl-imidazole nitrogen N11. For the Cu—Nam bond, a distance of 2.137 (3) Å was found. Similar values were reported for the 1-methyl-imidazole-containing complexes [Cu(Hhis-im2)Cl]+ (Higa et al., 2007), [Cu(hismima)(his)]+ {hismima = 2-(1H-imidazol-4-yl)-N-[(1-methyl-1H-imidazol-2-yl)methyl]ethanamine; his = histamine; Scarpellini et al., 2001}, [Cu2(hismima)2Cl2]22+ (Scarpellini et al., 2004b), [Cu(pymimi)Cl2] and [Cu(pymima)Cl2] {pymimi = [2-(pyridyl-2-yl)ethyl][(1-methylimidazol-2-yl)methyl]imine; pymima = [2-(pyridyl-2-yl)ethyl][(1-methylimidazol-2-yl)methyl]amine; Ferre et al., 2017}.
3. Supramolecular features
Intermolecular contacts in the title compound occur through π–π stacking interactions (Fig. 2) involving two 1-methyl-imidazole rings (N21/C22/N23/C25/C26 and N31/C32/N33/C35/C36), forming chains that propagate parallel to the a axis. The intercentroid distances are 3.690 (2) and 3.761 (2) Å, the centroid-to-plane distances are 3.4719 (15) and 3.6240 (15) Å, and the parallel shifts are 1.250 (6) and 1.008 (7) Å.
4. Features of related complexes
In pentacoordinated copper(II) complexes containing tripodal N4 donor ligands similar to the title compound, the Cu—Cl bond length seems to be directly related to the type and degree of geometry distortion around the metal centre. In complexes exhibiting a square-pyramidal geometry, as in the title compound, the Cu—Cl bond length has a range of 2.27–2.29 Å. For complexes in a trigonal–bipyramidal geometry, the Cu—Cl distance is around 2.23 Å (Karlin et al., 1982; Oberhausen et al., 1990; Wang et al., 1995). This difference may be related to the ligand spatial orientation, resulting from the geometric arrangements around the metal centre. The trigonal–bipyramidal geometry imposes a vertical positioning of the coordinated ligand rings parallel to the axial direction, which minimizes the repulsion between the electronic clouds of the chloride ion and the tripodal ligand. This arrangement allows a greater approach of the chloride ion to the metal centre and consequently a shorter bond distance. In the case of complexes in a square-pyramidal geometry, the coordinated rings are oriented parallel to the basal plane, increasing the chloride/ligand repulsion effect, which makes the Cu—Cl bond more elongated. Curiously, copper complexes in both geometries with tripodal ligands showing exhibit intermediate Cu—Cl bond distances among those found for complexes with non-hindered ligands on square-pyramidal and trigonal–bipyramidal geometries, indicating a balance of repulsive and stabilizing chloride/ligand interactions that is geometry independent (Wei et al., 1994; Jitsukawa et al., 2001).
5. Synthesis and crystallization
2,2′-{[2-(1-Methyl-1H-imidazol-2-yl)imidazolidine-1,3-diyl]bis(methylene)}bis(1-methyl-1H-imidazole), L: The new ligand L was synthesized by condensation reaction between N1,N2-bis[(1-methyl-1H-imidazol-2-yl)methyl]ethane-1,2-diamine (Neves et al., 1997) (1.8939 g, 7.63 mmol) and 1-methyl-2-imidazolecarboxaldehyde (0.8401 g, 7.63 mmol) in ethanolic media (40 ml). The reaction mixture was stirred for 24 h at room temperature, when the solvent was removed by rota-evaporation. To the resulting white solid, 40 ml of ethyl ether were added, and the mixture was stirred at room temperature for 24 h. After removal of the solvent under reduced pressure, the resulting white solid was recrystallized from acetone. Yield after recrystallization: 2.4 g (92%). 1H NMR (500 MHz, DMSO) δ 7.16 (d, J = 0.8 Hz, 1H), 7.01 (d, J = 1.1 Hz, 2H), 6.84 (d, J = 1.1 Hz, 1H), 6.73 (d, J = 1.2 Hz, 2H), 4.20 (s, 1H), 3.74 (s, 3H), 3.63 (d, J = 13.5 Hz, 2H), 3.43 (d, J = 13.5 Hz, 2H), 3.33 (s, 6H), 2.96–2.87 (m, 2H), 2.75–2.67 (m, 2H) p.p.m. 13C NMR (126 MHz, DMSO) δ 144.89, 144.45, 127.16, 126.75, 124.13, 122.18, 82.92, 50.45, 33.37, 32.19 p.p.m..
[Cu(L)Cl]ClO4: The synthesis was achieved by reacting CuCl2·2H2O (0.1708 g, 1 mmol) and the ligand L (0.3403 g, 1 mmol) in ethanolic media, at room temperature. Recrystallization of the obtained amorphous green solid in acetonitrile solution at room temperature yielded 0.152 g (28%) of green single crystals after one day. IR (cm−1, KBr): 3460 (ν O—H), 3160–3130 (ν C—Harom), 2972–2854 (ν C—Hali), 1636–1419 (ν C=N/C=Cring), 1285 (ν C—Namine), 1096/623 (ν Cl—O), 771 (δ C—Harom), 502 (ν Cu—Namine), 291 (ν Cu—Cl).
6. Refinement
Crystal data, data collection and structure . The perchlorate anion is rotationally disordered over two orientations sharing the O1 oxygen atom with site occupancy factors of 0.5. The two disordered positions were refined by applying SADI restraints on the Cl–O bond lengths and O⋯O separations. The Uij parameters of the Cl2 atom were restrained to an approximate isotropic behaviour.
details are summarized in Table 1Supporting information
CCDC reference: 1905520
https://doi.org/10.1107/S2056989019004055/rz4029sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004055/rz4029Isup2.hkl
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[CuCl(C17H24N8)]ClO4 | F(000) = 1108 |
Mr = 538.88 | Dx = 1.634 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2904 (4) Å | Cell parameters from 117 reflections |
b = 8.1336 (3) Å | θ = 2.9–22.7° |
c = 26.317 (1) Å | µ = 1.29 mm−1 |
β = 96.170 (1)° | T = 288 K |
V = 2189.92 (14) Å3 | Block, clear light green |
Z = 4 | 0.25 × 0.16 × 0.09 mm |
Bruker D8 Venture diffractometer | 3704 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.069 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 26.4°, θmin = 2.2° |
Tmin = 0.656, Tmax = 0.745 | h = −12→12 |
41042 measured reflections | k = −10→10 |
4471 independent reflections | l = −32→32 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0274P)2 + 4.7286P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.001 |
4471 reflections | Δρmax = 0.52 e Å−3 |
319 parameters | Δρmin = −0.53 e Å−3 |
63 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were placed geometrically and refined using a riding atom approximation, with C–H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.18398 (4) | 0.35492 (5) | 0.56226 (2) | 0.02658 (12) | |
Cl2 | 0.61349 (10) | 0.81015 (12) | 0.66768 (4) | 0.0394 (2) | |
Cl1 | 0.20109 (10) | 0.10125 (11) | 0.52765 (4) | 0.0442 (3) | |
N21 | 0.2633 (3) | 0.4598 (3) | 0.50530 (11) | 0.0276 (6) | |
N1 | 0.1935 (3) | 0.6031 (3) | 0.58904 (10) | 0.0237 (6) | |
N31 | 0.0181 (3) | 0.3032 (4) | 0.59528 (11) | 0.0298 (6) | |
N23 | 0.3807 (3) | 0.6599 (4) | 0.47829 (11) | 0.0293 (6) | |
N11 | 0.3159 (3) | 0.3367 (4) | 0.63224 (12) | 0.0324 (7) | |
N33 | −0.1361 (3) | 0.2601 (4) | 0.64552 (11) | 0.0332 (7) | |
N13 | 0.3635 (3) | 0.4347 (4) | 0.70991 (11) | 0.0362 (7) | |
N4 | 0.0918 (3) | 0.6184 (4) | 0.66510 (11) | 0.0331 (7) | |
C12 | 0.2988 (3) | 0.4602 (4) | 0.66327 (13) | 0.0283 (7) | |
C26 | 0.2978 (3) | 0.4181 (5) | 0.45779 (13) | 0.0319 (8) | |
H26 | 0.275354 | 0.321232 | 0.440245 | 0.038* | |
C22 | 0.3146 (3) | 0.6059 (4) | 0.51634 (12) | 0.0241 (7) | |
C5 | 0.2183 (3) | 0.6065 (4) | 0.64627 (12) | 0.0267 (7) | |
H5 | 0.268323 | 0.705847 | 0.656460 | 0.032* | |
C32 | −0.0283 (3) | 0.3493 (5) | 0.63838 (13) | 0.0307 (8) | |
C6 | 0.3044 (3) | 0.6840 (4) | 0.56629 (13) | 0.0286 (8) | |
H6A | 0.287929 | 0.800888 | 0.561970 | 0.034* | |
H6B | 0.385168 | 0.669535 | 0.588489 | 0.034* | |
C36 | −0.0650 (3) | 0.1818 (4) | 0.57440 (15) | 0.0336 (8) | |
H36 | −0.057209 | 0.127441 | 0.543794 | 0.040* | |
C25 | 0.3696 (4) | 0.5416 (5) | 0.44102 (14) | 0.0341 (8) | |
H25 | 0.405045 | 0.545645 | 0.409984 | 0.041* | |
C35 | −0.1586 (3) | 0.1546 (5) | 0.60512 (15) | 0.0388 (9) | |
H35 | −0.226056 | 0.078382 | 0.599912 | 0.047* | |
C7 | 0.0270 (4) | 0.4682 (5) | 0.67877 (14) | 0.0388 (9) | |
H7A | −0.044043 | 0.500341 | 0.698061 | 0.047* | |
H7B | 0.089098 | 0.407663 | 0.702043 | 0.047* | |
C2 | 0.0650 (3) | 0.6893 (4) | 0.57597 (14) | 0.0328 (8) | |
H2A | 0.003612 | 0.619174 | 0.555523 | 0.039* | |
H2B | 0.076571 | 0.790207 | 0.557356 | 0.039* | |
C24 | 0.4503 (4) | 0.8151 (5) | 0.47750 (16) | 0.0414 (10) | |
H24A | 0.390577 | 0.904225 | 0.480668 | 0.062* | |
H24B | 0.488065 | 0.825186 | 0.445837 | 0.062* | |
H24C | 0.518329 | 0.818347 | 0.505466 | 0.062* | |
C16 | 0.3943 (4) | 0.2272 (5) | 0.66066 (16) | 0.0407 (9) | |
H16 | 0.422015 | 0.126906 | 0.648747 | 0.049* | |
C3 | 0.0176 (4) | 0.7253 (5) | 0.62797 (15) | 0.0437 (10) | |
H3A | 0.032731 | 0.839800 | 0.637102 | 0.052* | |
H3B | −0.075173 | 0.702826 | 0.626991 | 0.052* | |
C15 | 0.4254 (4) | 0.2850 (5) | 0.70806 (16) | 0.0458 (10) | |
H15 | 0.478094 | 0.234306 | 0.734412 | 0.055* | |
C34 | −0.2202 (4) | 0.2733 (6) | 0.68726 (17) | 0.0541 (12) | |
H34A | −0.169792 | 0.249093 | 0.719228 | 0.081* | |
H34B | −0.291094 | 0.196567 | 0.681554 | 0.081* | |
H34C | −0.254383 | 0.382966 | 0.688193 | 0.081* | |
C14 | 0.3707 (5) | 0.5456 (6) | 0.75403 (16) | 0.0577 (12) | |
H14A | 0.380595 | 0.656728 | 0.742796 | 0.087* | |
H14B | 0.444214 | 0.516161 | 0.777864 | 0.087* | |
H14C | 0.291865 | 0.536478 | 0.770330 | 0.087* | |
O1 | 0.5896 (4) | 0.8829 (4) | 0.61817 (11) | 0.0659 (10) | |
O2 | 0.551 (2) | 0.904 (3) | 0.7022 (7) | 0.089 (6) | 0.5 |
O3 | 0.5625 (15) | 0.6503 (12) | 0.6636 (6) | 0.074 (4) | 0.5 |
O4 | 0.7476 (8) | 0.803 (3) | 0.6829 (7) | 0.093 (6) | 0.5 |
O4' | 0.7405 (11) | 0.851 (3) | 0.6894 (7) | 0.109 (7) | 0.5 |
O3' | 0.604 (2) | 0.6372 (13) | 0.6674 (8) | 0.124 (8) | 0.5 |
O2' | 0.526 (2) | 0.870 (3) | 0.7006 (9) | 0.094 (7) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0292 (2) | 0.0192 (2) | 0.0325 (2) | −0.00422 (17) | 0.00912 (17) | −0.00224 (18) |
Cl2 | 0.0445 (5) | 0.0387 (5) | 0.0368 (5) | −0.0036 (4) | 0.0122 (4) | −0.0021 (4) |
Cl1 | 0.0441 (5) | 0.0221 (4) | 0.0698 (7) | −0.0053 (4) | 0.0219 (5) | −0.0113 (4) |
N21 | 0.0282 (15) | 0.0246 (15) | 0.0307 (16) | −0.0030 (12) | 0.0062 (12) | −0.0021 (12) |
N1 | 0.0239 (14) | 0.0234 (14) | 0.0240 (14) | 0.0002 (11) | 0.0038 (11) | 0.0010 (11) |
N31 | 0.0260 (15) | 0.0310 (16) | 0.0329 (16) | −0.0058 (12) | 0.0058 (12) | −0.0013 (13) |
N23 | 0.0258 (14) | 0.0281 (15) | 0.0350 (16) | 0.0026 (12) | 0.0077 (12) | 0.0080 (13) |
N11 | 0.0320 (16) | 0.0256 (15) | 0.0397 (17) | 0.0030 (13) | 0.0041 (13) | 0.0037 (14) |
N33 | 0.0213 (15) | 0.0458 (19) | 0.0336 (17) | −0.0043 (13) | 0.0073 (12) | 0.0035 (15) |
N13 | 0.0349 (17) | 0.0458 (19) | 0.0278 (16) | −0.0012 (14) | 0.0028 (13) | 0.0076 (14) |
N4 | 0.0322 (16) | 0.0355 (17) | 0.0328 (16) | 0.0020 (13) | 0.0090 (13) | −0.0078 (14) |
C12 | 0.0237 (17) | 0.0317 (19) | 0.0296 (19) | −0.0019 (14) | 0.0034 (14) | 0.0039 (15) |
C26 | 0.0322 (19) | 0.0334 (19) | 0.0302 (19) | −0.0010 (15) | 0.0036 (15) | −0.0064 (16) |
C22 | 0.0238 (16) | 0.0204 (16) | 0.0279 (17) | −0.0002 (13) | 0.0024 (13) | 0.0020 (13) |
C5 | 0.0280 (17) | 0.0263 (18) | 0.0256 (17) | −0.0013 (14) | 0.0016 (14) | −0.0033 (14) |
C32 | 0.0244 (17) | 0.038 (2) | 0.0307 (18) | −0.0017 (15) | 0.0057 (14) | 0.0013 (16) |
C6 | 0.0309 (18) | 0.0213 (17) | 0.0339 (19) | −0.0068 (14) | 0.0055 (15) | −0.0012 (14) |
C36 | 0.0274 (18) | 0.034 (2) | 0.040 (2) | −0.0056 (15) | 0.0046 (15) | −0.0016 (16) |
C25 | 0.0341 (19) | 0.042 (2) | 0.0278 (19) | 0.0046 (16) | 0.0088 (15) | 0.0031 (17) |
C35 | 0.0263 (18) | 0.044 (2) | 0.045 (2) | −0.0093 (17) | −0.0015 (16) | 0.0039 (19) |
C7 | 0.034 (2) | 0.052 (2) | 0.033 (2) | −0.0089 (18) | 0.0145 (16) | −0.0053 (18) |
C2 | 0.0327 (19) | 0.0305 (19) | 0.034 (2) | 0.0044 (15) | −0.0007 (15) | 0.0015 (16) |
C24 | 0.036 (2) | 0.036 (2) | 0.054 (3) | −0.0064 (17) | 0.0154 (18) | 0.0106 (19) |
C16 | 0.038 (2) | 0.034 (2) | 0.050 (2) | 0.0086 (17) | 0.0088 (18) | 0.0113 (19) |
C3 | 0.040 (2) | 0.047 (2) | 0.044 (2) | 0.0149 (19) | 0.0039 (18) | −0.009 (2) |
C15 | 0.037 (2) | 0.056 (3) | 0.044 (2) | 0.011 (2) | 0.0034 (18) | 0.024 (2) |
C34 | 0.034 (2) | 0.082 (3) | 0.050 (3) | −0.011 (2) | 0.0230 (19) | −0.001 (2) |
C14 | 0.067 (3) | 0.074 (3) | 0.030 (2) | 0.003 (3) | −0.003 (2) | −0.002 (2) |
O1 | 0.088 (3) | 0.072 (2) | 0.0390 (17) | −0.0155 (19) | 0.0133 (16) | 0.0106 (16) |
O2 | 0.141 (15) | 0.087 (9) | 0.041 (7) | 0.065 (10) | 0.020 (8) | −0.001 (6) |
O3 | 0.093 (7) | 0.060 (8) | 0.066 (7) | −0.046 (6) | −0.006 (5) | 0.026 (6) |
O4 | 0.023 (5) | 0.143 (13) | 0.112 (11) | 0.011 (6) | 0.010 (5) | −0.008 (8) |
O4' | 0.098 (11) | 0.158 (16) | 0.066 (8) | −0.059 (10) | −0.012 (7) | 0.035 (9) |
O3' | 0.23 (2) | 0.041 (7) | 0.106 (12) | 0.035 (8) | 0.036 (13) | −0.011 (6) |
O2' | 0.097 (9) | 0.111 (14) | 0.085 (12) | 0.045 (9) | 0.065 (9) | 0.029 (8) |
Cu1—Cl1 | 2.2698 (10) | N4—C3 | 1.461 (5) |
Cu1—N21 | 1.976 (3) | C12—C5 | 1.491 (5) |
Cu1—N1 | 2.137 (3) | C26—H26 | 0.9300 |
Cu1—N31 | 2.041 (3) | C26—C25 | 1.349 (5) |
Cu1—N11 | 2.173 (3) | C22—C6 | 1.474 (5) |
Cl2—O1 | 1.428 (3) | C5—H5 | 0.9800 |
Cl2—O2 | 1.395 (10) | C32—C7 | 1.503 (5) |
Cl2—O3 | 1.402 (8) | C6—H6A | 0.9700 |
Cl2—O4 | 1.396 (9) | C6—H6B | 0.9700 |
Cl2—O4' | 1.410 (11) | C36—H36 | 0.9300 |
Cl2—O3' | 1.410 (10) | C36—C35 | 1.341 (5) |
Cl2—O2' | 1.405 (10) | C25—H25 | 0.9300 |
N21—C26 | 1.378 (4) | C35—H35 | 0.9300 |
N21—C22 | 1.320 (4) | C7—H7A | 0.9700 |
N1—C5 | 1.501 (4) | C7—H7B | 0.9700 |
N1—C6 | 1.497 (4) | C2—H2A | 0.9700 |
N1—C2 | 1.503 (4) | C2—H2B | 0.9700 |
N31—C32 | 1.331 (4) | C2—C3 | 1.530 (5) |
N31—C36 | 1.381 (4) | C24—H24A | 0.9600 |
N23—C22 | 1.343 (4) | C24—H24B | 0.9600 |
N23—C25 | 1.370 (5) | C24—H24C | 0.9600 |
N23—C24 | 1.452 (5) | C16—H16 | 0.9300 |
N11—C12 | 1.318 (5) | C16—C15 | 1.339 (6) |
N11—C16 | 1.368 (5) | C3—H3A | 0.9700 |
N33—C32 | 1.355 (4) | C3—H3B | 0.9700 |
N33—C35 | 1.366 (5) | C15—H15 | 0.9300 |
N33—C34 | 1.473 (4) | C34—H34A | 0.9600 |
N13—C12 | 1.348 (4) | C34—H34B | 0.9600 |
N13—C15 | 1.377 (5) | C34—H34C | 0.9600 |
N13—C14 | 1.466 (5) | C14—H14A | 0.9600 |
N4—C5 | 1.445 (4) | C14—H14B | 0.9600 |
N4—C7 | 1.455 (5) | C14—H14C | 0.9600 |
N21—Cu1—Cl1 | 91.82 (9) | N1—C5—H5 | 108.5 |
N21—Cu1—N1 | 80.47 (11) | N4—C5—N1 | 106.5 (3) |
N21—Cu1—N31 | 147.65 (12) | N4—C5—C12 | 116.3 (3) |
N21—Cu1—N11 | 113.64 (12) | N4—C5—H5 | 108.5 |
N1—Cu1—Cl1 | 171.21 (8) | C12—C5—N1 | 108.4 (3) |
N1—Cu1—N11 | 77.43 (11) | C12—C5—H5 | 108.5 |
N31—Cu1—Cl1 | 95.04 (9) | N31—C32—N33 | 110.0 (3) |
N31—Cu1—N1 | 93.74 (11) | N31—C32—C7 | 129.8 (3) |
N31—Cu1—N11 | 95.74 (11) | N33—C32—C7 | 120.0 (3) |
N11—Cu1—Cl1 | 102.11 (8) | N1—C6—H6A | 110.3 |
O2—Cl2—O1 | 108.7 (10) | N1—C6—H6B | 110.3 |
O2—Cl2—O3 | 111.3 (11) | C22—C6—N1 | 107.3 (3) |
O2—Cl2—O4 | 110.3 (11) | C22—C6—H6A | 110.3 |
O2—Cl2—O4' | 94.5 (15) | C22—C6—H6B | 110.3 |
O2—Cl2—O3' | 120.9 (15) | H6A—C6—H6B | 108.5 |
O2—Cl2—O2' | 16 (2) | N31—C36—H36 | 125.3 |
O3—Cl2—O1 | 106.8 (7) | C35—C36—N31 | 109.4 (3) |
O3—Cl2—O4' | 125.1 (12) | C35—C36—H36 | 125.3 |
O3—Cl2—O3' | 18.1 (13) | N23—C25—H25 | 126.4 |
O3—Cl2—O2' | 96.2 (15) | C26—C25—N23 | 107.1 (3) |
O4—Cl2—O1 | 110.3 (9) | C26—C25—H25 | 126.4 |
O4—Cl2—O3 | 109.3 (10) | N33—C35—H35 | 126.5 |
O4—Cl2—O4' | 18.1 (16) | C36—C35—N33 | 107.0 (3) |
O4—Cl2—O3' | 91.3 (13) | C36—C35—H35 | 126.5 |
O4—Cl2—O2' | 121.4 (15) | N4—C7—C32 | 120.9 (3) |
O4'—Cl2—O1 | 109.4 (7) | N4—C7—H7A | 107.1 |
O3'—Cl2—O1 | 113.8 (9) | N4—C7—H7B | 107.1 |
O3'—Cl2—O4' | 107.5 (11) | C32—C7—H7A | 107.1 |
O2'—Cl2—O1 | 111.1 (12) | C32—C7—H7B | 107.1 |
O2'—Cl2—O4' | 107.4 (12) | H7A—C7—H7B | 106.8 |
O2'—Cl2—O3' | 107.5 (12) | N1—C2—H2A | 111.0 |
C26—N21—Cu1 | 138.6 (2) | N1—C2—H2B | 111.0 |
C22—N21—Cu1 | 114.2 (2) | N1—C2—C3 | 104.0 (3) |
C22—N21—C26 | 106.5 (3) | H2A—C2—H2B | 109.0 |
C5—N1—Cu1 | 110.19 (19) | C3—C2—H2A | 111.0 |
C5—N1—C2 | 105.7 (2) | C3—C2—H2B | 111.0 |
C6—N1—Cu1 | 107.06 (19) | N23—C24—H24A | 109.5 |
C6—N1—C5 | 109.8 (2) | N23—C24—H24B | 109.5 |
C6—N1—C2 | 113.2 (3) | N23—C24—H24C | 109.5 |
C2—N1—Cu1 | 110.9 (2) | H24A—C24—H24B | 109.5 |
C32—N31—Cu1 | 134.3 (2) | H24A—C24—H24C | 109.5 |
C32—N31—C36 | 106.1 (3) | H24B—C24—H24C | 109.5 |
C36—N31—Cu1 | 119.2 (2) | N11—C16—H16 | 124.8 |
C22—N23—C25 | 107.1 (3) | C15—C16—N11 | 110.4 (4) |
C22—N23—C24 | 125.8 (3) | C15—C16—H16 | 124.8 |
C25—N23—C24 | 127.1 (3) | N4—C3—C2 | 106.9 (3) |
C12—N11—Cu1 | 111.1 (2) | N4—C3—H3A | 110.3 |
C12—N11—C16 | 105.5 (3) | N4—C3—H3B | 110.3 |
C16—N11—Cu1 | 141.8 (3) | C2—C3—H3A | 110.3 |
C32—N33—C35 | 107.5 (3) | C2—C3—H3B | 110.3 |
C32—N33—C34 | 128.3 (3) | H3A—C3—H3B | 108.6 |
C35—N33—C34 | 124.2 (3) | N13—C15—H15 | 126.9 |
C12—N13—C15 | 106.8 (3) | C16—C15—N13 | 106.2 (3) |
C12—N13—C14 | 127.2 (3) | C16—C15—H15 | 126.9 |
C15—N13—C14 | 126.0 (3) | N33—C34—H34A | 109.5 |
C5—N4—C7 | 118.8 (3) | N33—C34—H34B | 109.5 |
C5—N4—C3 | 103.6 (3) | N33—C34—H34C | 109.5 |
C7—N4—C3 | 116.4 (3) | H34A—C34—H34B | 109.5 |
N11—C12—N13 | 111.2 (3) | H34A—C34—H34C | 109.5 |
N11—C12—C5 | 122.0 (3) | H34B—C34—H34C | 109.5 |
N13—C12—C5 | 126.9 (3) | N13—C14—H14A | 109.5 |
N21—C26—H26 | 125.7 | N13—C14—H14B | 109.5 |
C25—C26—N21 | 108.5 (3) | N13—C14—H14C | 109.5 |
C25—C26—H26 | 125.7 | H14A—C14—H14B | 109.5 |
N21—C22—N23 | 110.7 (3) | H14A—C14—H14C | 109.5 |
N21—C22—C6 | 121.3 (3) | H14B—C14—H14C | 109.5 |
N23—C22—C6 | 127.9 (3) | ||
Cu1—N21—C26—C25 | −169.6 (3) | C5—N4—C3—C2 | 33.7 (4) |
Cu1—N21—C22—N23 | 172.2 (2) | C32—N31—C36—C35 | −0.9 (4) |
Cu1—N21—C22—C6 | −3.5 (4) | C32—N33—C35—C36 | −0.1 (4) |
Cu1—N1—C5—N4 | −94.3 (2) | C6—N1—C5—N4 | 148.0 (3) |
Cu1—N1—C5—C12 | 31.5 (3) | C6—N1—C5—C12 | −86.2 (3) |
Cu1—N1—C6—C22 | 30.9 (3) | C6—N1—C2—C3 | −124.7 (3) |
Cu1—N1—C2—C3 | 114.9 (3) | C36—N31—C32—N33 | 0.8 (4) |
Cu1—N31—C32—N33 | −171.5 (2) | C36—N31—C32—C7 | 175.2 (4) |
Cu1—N31—C32—C7 | 3.0 (6) | C25—N23—C22—N21 | 0.4 (4) |
Cu1—N31—C36—C35 | 172.8 (3) | C25—N23—C22—C6 | 175.8 (3) |
Cu1—N11—C12—N13 | 169.3 (2) | C35—N33—C32—N31 | −0.4 (4) |
Cu1—N11—C12—C5 | −11.4 (4) | C35—N33—C32—C7 | −175.5 (3) |
Cu1—N11—C16—C15 | −163.7 (3) | C7—N4—C5—N1 | 94.3 (3) |
N21—C26—C25—N23 | 0.4 (4) | C7—N4—C5—C12 | −26.5 (4) |
N21—C22—C6—N1 | −20.1 (4) | C7—N4—C3—C2 | −98.7 (4) |
N1—C2—C3—N4 | −17.7 (4) | C2—N1—C5—N4 | 25.6 (3) |
N31—C32—C7—N4 | 38.0 (6) | C2—N1—C5—C12 | 151.4 (3) |
N31—C36—C35—N33 | 0.6 (4) | C2—N1—C6—C22 | −91.6 (3) |
N23—C22—C6—N1 | 165.0 (3) | C24—N23—C22—N21 | −179.5 (3) |
N11—C12—C5—N1 | −13.4 (4) | C24—N23—C22—C6 | −4.2 (5) |
N11—C12—C5—N4 | 106.4 (4) | C24—N23—C25—C26 | 179.4 (3) |
N11—C16—C15—N13 | 0.8 (4) | C16—N11—C12—N13 | 0.5 (4) |
N33—C32—C7—N4 | −148.0 (3) | C16—N11—C12—C5 | 179.8 (3) |
N13—C12—C5—N1 | 165.8 (3) | C3—N4—C5—N1 | −36.7 (3) |
N13—C12—C5—N4 | −74.4 (4) | C3—N4—C5—C12 | −157.5 (3) |
C12—N11—C16—C15 | −0.8 (4) | C3—N4—C7—C32 | 54.2 (5) |
C12—N13—C15—C16 | −0.5 (4) | C15—N13—C12—N11 | 0.0 (4) |
C26—N21—C22—N23 | −0.1 (4) | C15—N13—C12—C5 | −179.3 (3) |
C26—N21—C22—C6 | −175.9 (3) | C34—N33—C32—N31 | −178.2 (4) |
C22—N21—C26—C25 | −0.2 (4) | C34—N33—C32—C7 | 6.7 (6) |
C22—N23—C25—C26 | −0.5 (4) | C34—N33—C35—C36 | 177.8 (4) |
C5—N1—C6—C22 | 150.5 (3) | C14—N13—C12—N11 | 178.4 (4) |
C5—N1—C2—C3 | −4.5 (4) | C14—N13—C12—C5 | −0.9 (6) |
C5—N4—C7—C32 | −70.9 (5) | C14—N13—C15—C16 | −178.9 (4) |
Acknowledgements
The authors thank the Laboratório Multiusuário de Difração de Raios X da Universidade Federal Fluminense (LDRX/UFF) for the use of laboratory facilities.
Funding information
Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (scholarship No. 141341/2013–0 to D. da Silva Padilha); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Financial Code No. 001); Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (grant Nos. E-26/111.177/2011 and E-26/110.157/2014 to M. Scarpellini).
References
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cisnetti, F., Lefèvre, A. S., Guillot, R., Lambert, F., Blain, G., Anxolabéhère-Mallart, E. & Policar, C. (2007). Eur. J. Inorg. Chem. pp. 4472–4480. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Du, J., Wang, J., Ji, L., Xu, X. & Chen, Z. (2016). Appl. Mater. Interfaces, 8, 30205–30211. Web of Science CrossRef CAS Google Scholar
Elwell, C. E., Gagnon, N. L., Neisen, B. D., Dhar, D., Spaeth, A. D., Yee, G. M. & Tolman, W. B. (2017). Chem. Rev. 117, 2059–2107. Web of Science CrossRef CAS PubMed Google Scholar
Ferre, F. T., Resende, J. A. L. C., Schultz, J., Mangrich, A. S., Faria, R. B., Rocha, A. B. & Scarpellini, M. (2017). Polyhedron, 123, 293–304. Web of Science CSD CrossRef CAS Google Scholar
Garcia, L., Cisnetti, F., Gillet, N., Guillot, R., Aumont-Nicaise, M., Piquemal, J. P., Desmadril, M., Lambert, F. & Policar, C. (2015). J. Am. Chem. Soc. 137, 1141–1146. Web of Science CSD CrossRef CAS PubMed Google Scholar
Haddad, A. Z., Cronin, S. P., Mashuta, M. S., Buchanan, R. M. & Grapperhaus, C. A. (2017). Inorg. Chem. 56, 11254–11265. Web of Science CSD CrossRef CAS PubMed Google Scholar
Higa, T., Moriya, M., Shimazaki, Y., Yajima, T., Tani, F., Karasawa, S., Nakano, M., Naruta, Y. & Yamauchi, O. (2007). Inorg. Chim. Acta, 360, 3304–3313. Web of Science CSD CrossRef CAS Google Scholar
Jitsukawa, K., Harata, M., Arii, H., Sakurai, H. & Masuda, H. (2001). Inorg. Chim. Acta, 324, 108–116. Web of Science CSD CrossRef CAS Google Scholar
Karlin, K. D., Hayes, J. C., Juen, S., Hutchinson, J. P. & Zubieta, J. (1982). Inorg. Chem. 21, 4106–4108. CSD CrossRef CAS Web of Science Google Scholar
Khusnutdinova, D., Wadsworth, B. L., Flores, M., Beiler, A. M., Reyes Cruz, E. A., Zenkov, Y. & Moore, G. F. (2018). ACS Catal. 8, 9888–9898. Web of Science CrossRef CAS Google Scholar
Neves, A., Tamanini, M., Correia, V. R. & Vencato, I. (1997). J. Braz. Chem. Soc. 8, 519–522. Web of Science CSD CrossRef CAS Google Scholar
Oberhausen, K. J., O'brien, R. J., Richardson, J. F. & Buchanan, R. M. (1990). Inorg. Chim. Acta, 173, 145–154. CSD CrossRef CAS Web of Science Google Scholar
Scarpellini, M., Neves, A., Bortoluzzi, A. J. & Joussef, A. C. (2001). Acta Cryst. C57, 356–358. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Scarpellini, M., Neves, A., Castellano, E. E., de Almeida Neves, E. F. & Franco, D. W. (2004a). Polyhedron, 23, 511–518. Web of Science CSD CrossRef CAS Google Scholar
Scarpellini, M., Neves, A., Castellano, E. E. & Franco, D. W. (2004b). J. Mol. Struct. 694, 193–198. Web of Science CSD CrossRef CAS Google Scholar
Scarpellini, M., Neves, A., Hörner, R., Bortoluzzi, A. J., Szpoganics, B., Zucco, C., Nome Silva, R. A., Drago, V., Mangrich, A. S., Ortiz, W. A., Passos, W. A. C., de Oliveira, M. C. B. & Terenzi, H. (2003). Inorg. Chem. 42, 8353–8365. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schatz, M., Becker, M., Thaler, F., Hampel, F., Schindler, S., Jacobson, R. R., Tyeklár, Z., Murthy, N. N., Ghosh, P., Chen, Q., Zubieta, J. & Karlin, K. D. (2001). Inorg. Chem. 40, 2312–2322. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stephanos, J. J. & Addison, A. W. (2014). Chemistry of Metalloproteins: Problems and Solutions in Bioinorganic Chemistry, pp. 95–146. Hoboken, New Jersey: John Wiley & Sons, Inc. Google Scholar
Wang, J., Mashuta, M. S., Richardson, J. F. & Buchanan, R. M. (1995). Acta Cryst. C51, 50–52. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093–6100. CSD CrossRef CAS Web of Science Google Scholar
Zhang, P., Wang, M., Chen, H., Liang, Y., Sun, J. & Sun, L. (2016). Adv. Energy Mater. 6, 1–9. Google Scholar
Zhang, P., Wang, M., Yang, Y., Yao, T. & Sun, L. (2014). Angew. Chem. Int. Ed. 53, 13803–13807. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.