research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl 2-amino-5-{4-[bis­­(4-methyl­phen­yl)amino]­benzamido}­thio­phene-3,4-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDépartement de chimie, Université de Montréal, CP 6128, Centre-ville Montreal, QC, H3C 3J7, Canada
*Correspondence e-mail: w.skene@umontreal.ca

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 January 2019; accepted 20 March 2019; online 9 April 2019)

In the title compound, C31H31N3O5S, the regioselective substitution of the thio­phene is confirmed with the amine and the amide at the 2- and 5-positions, respectively. In the mol­ecule, the thio­phene ring is twisted by 12.82 (3)° with respect to the aromatic ring of the benzamido group. Intra­molecular N—H⋯O hydrogen bonds are present involving the N atoms of the primary amine and the amide groups, forming S(6) ring motifs. In the crystal, centrosymmetrically related mol­ecules are linked by pairs of N—H⋯O hydrogen bonds involving the amide carbonyl O atoms and the primary amine N atoms to form dimers of R22(16) ring motif.

1. Chemical context

Azomethines are prepared by the condensation of amines with aldehydes. Using aromatic precursors, the reaction results in the preparation of conjugated azomethines having colors that are readily detectable in the visible spectrum (Dufresne et al., 2007[Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166-1177.]). This is particularly the case with azomethines that are prepared from 2,5-di­amino­thio­phene derivatives (Bolduc et al., 2013[Bolduc, A., Mallet, C. & Skene, W. G. (2013). Sci. China Chem. 56, 3-23.]). These derivatives can be electrochemically oxidized (Yeh et al., 2016[Yeh, L.-C., Huang, T.-C., Lai, F.-Y., Lai, G.-H., Lo, A.-Y., Hsu, S.-C., Yang, T.-I. & Yeh, J.-M. (2016). Surf. Coat. Technol. 303, 154-161.]). The collective properties (reversible color change with applied potential) have proven ideal for use as electrochromic materials (Ma et al., 2016[Ma, X., Wu, Y., Wen, H., Niu, H., Wang, C., Qin, C., Bai, X., Lei, L. & Wang, W. (2016). RSC Adv. 6, 4564-4575.]). While various azomethines have been studied for understating the impact of structure on the absorption and electrochemical properties (Liu et al., 2018[Liu, S., Wu, T., Zhu, Q., Pu, J., Chen, G., Zhang, W. & Li, Z. (2018). RSC Adv. 8, 12779-12784.]), modifying the terminal amine has remained relatively underexplored. Such modification allows property tuning, including reversible oxidation. This is a key property for electrochromic use. Given the underexplored modification of 2-amino­thio­phenes, we investigated its conversion to a tri­phenyl­amide. The tri­phenyl­amide moiety was targeted because of its electrochemically reversible oxidation. Meanwhile, the amide functional group was chosen because of its robustness that could sustain electrochemical redox cycles. More importantly, it would be inert towards imination reactions for constructing conjugated azomethines having both various terminal groups and cores. Given the challenge of unequivocally identifying the configuration and absolute structural identification of amino­thio­phene derivatives with the concomitant limited number of reported tri­phenyl­amine amides, the X-ray crystal structure analysis of the title compound (I) was evaluated and it is reported on herein.

[Scheme 1]

2. Structural commentary

In the mol­ecule of I (Fig. 1[link]), the mean plane through the 2,5-di­amino­tihophene ring (r.m.s. deviation = 0.0116 Å) is inclined to the C1–C6 benzene (ring A) by 12.82 (3)°. The dihedral angles formed by the benzene rings A, B (C18–C23) and C (C25–C30) of the tri­phenyl­amide moiety are: A^B = 65.56 (3)°, A^C = 55.22 (4)°, B^C = 66.80 (4)°. The O1—C7, N2—C7, N2—C8 and N3—C11 bond lengths are 1.2315 (13), 1.3644 (13), 1.3829 (13) and 1.3529 (14) Å, respectively. While the reactivity of the primary amine of I is less than that expected for typical aryl­amines owing to the electron-withdrawing esters, it nonetheless acts as a hydrogen donor. In fact, two N—H⋯O intra­molecular hydrogen bonds occur, one each between the ester carbonyl and its adjacent nitro­gen, forming rings of S(6) graph-set motif (Table 1[link]). The intra­molecular hydrogen bonds observed are consistent with those reported in other 2-amino-3-ester thio­phenes (Dufresne & Skene, 2010a[Dufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027.],b[Dufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221.]; Skene et al., 2006[Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382-o2384.]; Bourgeaux & Skene, 2007[Bourgeaux, M. & Skene, W. G. (2007). J. Org. Chem. 72, 8882-8892.]; Bourgeaux et al., 2006[Bourgeaux, M., Vomsheid, S. & Skene, W. G. (2006). Acta Cryst. E62, o5529-o5531.]; Bolduc et al., 2010[Bolduc, A., Dufresne, S. & Skene, W. G. (2010). J. Mater. Chem. 20, 4820-4826.]; Tshibaka et al., 2011[Tshibaka, T., Bishop, S., Roche, I. U., Dufresne, S., Lubell, W. D. & Skene, W. G. (2011). Chem. Eur. J. 17, 10879-10888.]; Furuyama et al., 2014[Furuyama, T., Noguchi, D., Suzuki, Y. & Kobayashi, N. (2014). Can. J. Chem. 92, 765-770.]). The crystal structure of I confirms the asymmetric substitution of thio­phene by a primary amine and an amide. Of importance is that the thio­phene substitution with the nitro­gen atoms occurs at the 2,5-positions, rather than the 3,4-positions. The primary amine at the 2-thio­phene position is also confirmed. The 2,5-configuration is desired because extended degrees of conjugation result when the azomethines are formed in these positions with aryl­amines. The presence of ester functionalities at the 3,4-positions is also verified by the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.850 (17) 1.958 (17) 2.6501 (12) 137.8 (15)
N3—H3A⋯O1i 0.883 (17) 2.154 (17) 3.0316 (13) 172.5 (14)
N3—H3B⋯O4 0.810 (17) 2.156 (16) 2.7656 (13) 132.2 (14)
Symmetry code: (i) -x-1, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of I with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Intra­molecular hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In the crystal structure of I, centrosymmetrically related mol­ecules are linked into head-to-head hydrogen-bonded dimers (Fig. 2[link]) by pairs of N—H⋯O hydrogen bonds (Table 1[link]) involving the N3 amine atom and the O1 carbonyl atom of the amide group, forming rings of R22(16) graph-set motif. In this arrangement, the sulfur atoms of the two thio­phenes are face-to-face and the two heteoratoms are separated by 3.5419 (4) Å. The crystal packing (Fig. 3[link]) is further stabilized by van der Waals forces.

[Figure 2]
Figure 2
Supra­molecular dimer of I showing the inter­molecular hydrogen bonds as dotted lines.
[Figure 3]
Figure 3
Crystal packing of I approximately viewed along the a axis.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.39, latest update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded no hits. In fact, no exact thio­phene derivatives substituted in the 3,4-positions with electron-withdrawing groups were found. Four structurally similarly thio­phenes were identified, three of which were symmetric with amides at the 2,5-positions (refcodes LOFTAD, LOFTEH, LOFTIL; Fabbro et al., 2014[Fabbro, C., Armani, S., Carloni, L.-E., De Leo, F., Wouters, J. & Bonifazi, D. (2014). Eur. J. Org. Chem. pp. 5487-5500.]). The most closely related structure was the asymmetric 2-amino, 5-phenyl­amido-thio­phene derivative (LOYDIM; Rodinovskaya et al., 2002[Rodinovskaya, L. A., Shestopalov, A. M. & Chunikhin, K. S. (2002). Tetrahedron, 58, 4273-4282.]). No differences greater than 3σ were found for the N2—C7, N2—C8, and O1—C7 bond lengths of I and the nine counterpart bonds for the reported similar structures. The notable difference was the C11—N3 bond length of I, which is 0.025 Å (3σ = 0.004 Å) shorter than the corresponding bond in LOYDIM [1.378 (5) Å]. The dihedral angle between the planes described by the phenyl­amide and the 2,5-di­amino­tihophene rings is also different [5.74 (13)°]. The database survey yielded only four 4-amido-tri­phenyl­amines [GUWNAP, GUWNET (Ghosh et al., 2009[Ghosh, K., Masanta, G., Fröhlich, R., Petsalakis, I. D. & Theodorakopoulos, G. (2009). J. Phys. Chem. B, 113, 7800-7809.]), and UZEXAZ (Wang et al., 2011[Wang, J., He, C., Wu, P., Wang, J. & Duan, C. (2011). J. Am. Chem. Soc. 133, 12402-12405.])], with one being complexed with cerium (ZOKSUP; Sun et al., 2014[Sun, H., Zhang, Y., Yan, W., Chen, W., Lan, Q., Liu, S., Jiang, L., Chi, Z., Chen, X. & Xu, J. (2014). J. Mater. Chem. C. 2, 5812-5817.]). No differences between the N1—phenyl and C4—C7 bond distances were found. The three phenyl-N-phenyl dihedral angles of I are also consistent with the those of the reported structures.

5. Synthesis and crystallization

To a solution of 4-(di-p-tolyl­amino)­benzoic acid (668 mg, 1.7 mmol, 1 eq) in anhydrous di­chloro­methane (15 mL) were added oxalyl chloride (0.21 mL, 2.3 mmol, 1.8 eq) and one drop of anhydrous DMF. The mixture was stirred for 16 h under nitro­gen at room temperature. The solvent was removed under reduced pressure and the resulting 4-(di-p-tolyl­amino)­benzoyl chloride was dissolved in anhydrous THF (20 mL). The mixture was then added dropwise to a solution of diethyl 2,5-di­amino­thio­phene-3,4-di­carboxyl­ate (594 mg, 2.3 mmol, 1.1 eq) and Et3N (2.3 mmol, 0.32 mL, 1.1 eq) in anhydrous THF (5 mL). The reaction mixture was stirred for 6 h under nitro­gen at room temperature. After filtering, the solvent of the filtrate was removed under reduced pressure. The residue was purified by SiO2 column chromatography (hexa­nes/ethyl acetate 2:1 v/v) to afford the title compound as a yellow solid (589 mg, yield 64%). A suitable crystal of the title compound was obtained by slow evaporation of deuterated chloro­form from an NMR tube. 1H NMR (400 MHz, CDCl3): δ = 11.31 (s, 1H), 7.72 (d, 3J = 8.9 Hz, 2H), 7.13 (d, 3J = 8.2 Hz, 4H), 7.05 (d, 3J = 8.2 Hz, 4H), 6.97 (d, 3J = 8.9 Hz, 2H), 5.67 (s, 2H), 4.29 (m, 4H), 2.34 (s, 6H), 1.34 (t, 3J = 7.12 Hz, 3H), 1.32 (t, 3J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ = 166.2, 165.5, 163.4, 154.6, 152.3, 143.9, 136.4, 134.6, 130.4, 128.7, 126.2, 122.5, 119.0, 109.2, 101.8, 61.0, 60.2, 21.0, 14.5, 14.3. MS–HR: (M + H+) exp . m/z = 558.2062, (M + H+) calc. m/z = 558.2057.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amine H atoms were located in a difference-Fourier map and refined freely. All other H atoms were placed geometrically and refined with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C31H31N3O5S
Mr 557.65
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.1314 (2), 13.4650 (3), 15.4586 (4)
α, β, γ (°) 106.533 (1), 97.980 (1), 102.843 (1)
V3) 1354.61 (6)
Z 2
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 0.94
Crystal size (mm) 0.16 × 0.11 × 0.04
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.679, 0.752
No. of measured, independent and observed [I > 2σ(I)] reflections 43601, 6212, 5916
Rint 0.024
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.05
No. of reflections 6212
No. of parameters 377
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), and PLATON for Windows Taskbar v1.19 (Spek, 2009).; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Diethyl 2-amino-5-{4-[bis(4-methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate top
Crystal data top
C31H31N3O5SZ = 2
Mr = 557.65F(000) = 588
Triclinic, P1Dx = 1.367 Mg m3
a = 7.1314 (2) ÅGa Kα radiation, λ = 1.34139 Å
b = 13.4650 (3) ÅCell parameters from 9687 reflections
c = 15.4586 (4) Åθ = 2.7–60.6°
α = 106.533 (1)°µ = 0.94 mm1
β = 97.980 (1)°T = 100 K
γ = 102.843 (1)°Block, yellow
V = 1354.61 (6) Å30.16 × 0.11 × 0.04 mm
Data collection top
Bruker Venture Metaljet
diffractometer
6212 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source5916 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.024
Detector resolution: 10.24 pixels mm-1θmax = 60.7°, θmin = 2.7°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.679, Tmax = 0.752l = 2020
43601 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.4554P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6212 reflectionsΔρmax = 0.39 e Å3
377 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27244 (4)0.06598 (2)0.58032 (2)0.02122 (8)
O10.20024 (12)0.13560 (7)0.43721 (6)0.02656 (18)
O20.39650 (11)0.18395 (7)0.66336 (6)0.02647 (18)
O30.35284 (11)0.18307 (6)0.80411 (5)0.02208 (16)
O40.14268 (12)0.01088 (7)0.84823 (6)0.02709 (18)
O50.15438 (11)0.00953 (7)0.81408 (5)0.02333 (17)
N10.44925 (14)0.35825 (8)0.25046 (6)0.0242 (2)
N20.07397 (14)0.15202 (8)0.53922 (6)0.02104 (19)
H20.199 (3)0.1717 (13)0.5566 (11)0.036 (4)*
N30.42204 (14)0.00968 (8)0.70555 (7)0.0234 (2)
H3A0.532 (2)0.0409 (13)0.6625 (11)0.032 (4)*
H3B0.405 (2)0.0292 (13)0.7503 (12)0.031 (4)*
C10.33806 (16)0.30899 (9)0.30286 (7)0.0214 (2)
C20.13314 (16)0.29229 (9)0.28679 (7)0.0226 (2)
H2A0.0697470.3140570.2399900.027*
C30.02269 (16)0.24461 (9)0.33822 (7)0.0224 (2)
H30.1159020.2338840.3260970.027*
C40.11076 (16)0.21182 (9)0.40778 (7)0.0203 (2)
C50.31471 (16)0.22772 (9)0.42355 (7)0.0218 (2)
H50.3774650.2059190.4704860.026*
C60.42706 (16)0.27486 (9)0.37173 (8)0.0229 (2)
H60.5652380.2840670.3830020.028*
C70.01919 (16)0.16301 (9)0.46062 (7)0.0209 (2)
C80.01785 (15)0.10919 (9)0.59882 (7)0.0200 (2)
C90.07750 (15)0.10201 (9)0.67966 (7)0.0196 (2)
C100.06016 (15)0.05446 (9)0.72744 (7)0.0200 (2)
C110.25434 (16)0.03304 (9)0.68189 (7)0.0206 (2)
C120.28951 (16)0.15762 (9)0.71298 (7)0.0204 (2)
C130.56112 (15)0.23930 (9)0.83922 (8)0.0232 (2)
H13A0.5879550.3126670.8343940.028*
H13B0.6413920.1997320.8029790.028*
C140.61165 (18)0.24542 (12)0.93859 (9)0.0330 (3)
H14A0.5853660.1723790.9424520.049*
H14B0.5311500.2845690.9737060.049*
H14C0.7513980.2832890.9644290.049*
C150.02184 (16)0.01050 (9)0.80248 (7)0.0214 (2)
C160.19659 (17)0.05354 (10)0.88794 (8)0.0274 (2)
H16A0.0863320.1162770.8819200.033*
H16B0.2144610.0016030.9488190.033*
C170.38311 (18)0.08751 (11)0.87989 (9)0.0300 (3)
H17A0.3652270.1401050.8185790.045*
H17B0.4129940.1201840.9273950.045*
H17C0.4922300.0242860.8884680.045*
C180.35607 (16)0.35600 (9)0.16150 (7)0.0220 (2)
C190.24563 (16)0.25904 (9)0.09516 (8)0.0226 (2)
H190.2319930.1935590.1086560.027*
C200.15469 (16)0.25789 (9)0.00862 (8)0.0236 (2)
H200.0749740.1917120.0354010.028*
C210.17916 (16)0.35251 (10)0.01418 (8)0.0240 (2)
C220.29234 (17)0.44882 (10)0.05301 (8)0.0256 (2)
H220.3107230.5140130.0388100.031*
C230.37864 (17)0.45147 (9)0.14014 (8)0.0248 (2)
H230.4529930.5181520.1852050.030*
C240.09038 (18)0.35211 (11)0.10897 (8)0.0297 (3)
H24A0.1954980.3806470.1373080.045*
H24B0.0007350.3972500.1033060.045*
H24C0.0188190.2781810.1477550.045*
C250.64705 (16)0.42384 (9)0.28755 (8)0.0226 (2)
C260.71207 (18)0.48747 (9)0.38035 (8)0.0261 (2)
H260.6242800.4866110.4212400.031*
C270.90540 (19)0.55223 (10)0.41312 (9)0.0288 (2)
H270.9492250.5932050.4769040.035*
C281.03591 (17)0.55826 (9)0.35443 (9)0.0278 (2)
C290.96756 (17)0.49614 (10)0.26161 (9)0.0270 (2)
H291.0530460.5002860.2200100.032*
C300.77774 (17)0.42840 (9)0.22849 (8)0.0247 (2)
H300.7363210.3848400.1652850.030*
C311.24615 (19)0.62789 (12)0.39042 (11)0.0387 (3)
H31A1.3323370.5834630.4018620.058*
H31B1.2553220.6847530.4481950.058*
H31C1.2871410.6606160.3445600.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01620 (13)0.02771 (14)0.02086 (13)0.00373 (10)0.00225 (9)0.01223 (10)
O10.0190 (4)0.0387 (5)0.0239 (4)0.0051 (3)0.0031 (3)0.0160 (3)
O20.0181 (4)0.0384 (5)0.0246 (4)0.0030 (3)0.0041 (3)0.0168 (3)
O30.0168 (4)0.0276 (4)0.0197 (4)0.0006 (3)0.0013 (3)0.0100 (3)
O40.0216 (4)0.0368 (5)0.0266 (4)0.0049 (3)0.0062 (3)0.0181 (4)
O50.0199 (4)0.0296 (4)0.0241 (4)0.0045 (3)0.0033 (3)0.0166 (3)
N10.0211 (4)0.0305 (5)0.0209 (4)0.0009 (4)0.0023 (4)0.0141 (4)
N20.0169 (4)0.0280 (5)0.0196 (4)0.0034 (4)0.0031 (3)0.0123 (4)
N30.0175 (4)0.0292 (5)0.0241 (5)0.0018 (4)0.0031 (4)0.0140 (4)
C10.0228 (5)0.0229 (5)0.0198 (5)0.0042 (4)0.0051 (4)0.0101 (4)
C20.0234 (5)0.0277 (5)0.0204 (5)0.0088 (4)0.0043 (4)0.0123 (4)
C30.0203 (5)0.0284 (5)0.0203 (5)0.0076 (4)0.0039 (4)0.0105 (4)
C40.0207 (5)0.0230 (5)0.0175 (5)0.0044 (4)0.0037 (4)0.0084 (4)
C50.0207 (5)0.0257 (5)0.0196 (5)0.0042 (4)0.0018 (4)0.0112 (4)
C60.0193 (5)0.0277 (5)0.0228 (5)0.0042 (4)0.0032 (4)0.0120 (4)
C70.0207 (5)0.0240 (5)0.0188 (5)0.0055 (4)0.0036 (4)0.0089 (4)
C80.0177 (5)0.0224 (5)0.0209 (5)0.0038 (4)0.0041 (4)0.0095 (4)
C90.0174 (5)0.0221 (5)0.0197 (5)0.0033 (4)0.0031 (4)0.0095 (4)
C100.0180 (5)0.0220 (5)0.0202 (5)0.0030 (4)0.0036 (4)0.0093 (4)
C110.0201 (5)0.0216 (5)0.0207 (5)0.0042 (4)0.0041 (4)0.0092 (4)
C120.0192 (5)0.0226 (5)0.0211 (5)0.0047 (4)0.0031 (4)0.0109 (4)
C130.0167 (5)0.0259 (5)0.0235 (5)0.0004 (4)0.0006 (4)0.0094 (4)
C140.0231 (6)0.0460 (7)0.0269 (6)0.0005 (5)0.0011 (5)0.0182 (5)
C150.0191 (5)0.0225 (5)0.0207 (5)0.0012 (4)0.0016 (4)0.0091 (4)
C160.0234 (5)0.0373 (6)0.0267 (6)0.0055 (5)0.0040 (4)0.0214 (5)
C170.0259 (6)0.0401 (7)0.0298 (6)0.0092 (5)0.0035 (5)0.0212 (5)
C180.0198 (5)0.0288 (5)0.0206 (5)0.0057 (4)0.0054 (4)0.0133 (4)
C190.0215 (5)0.0256 (5)0.0242 (5)0.0053 (4)0.0071 (4)0.0132 (4)
C200.0207 (5)0.0282 (5)0.0217 (5)0.0046 (4)0.0046 (4)0.0097 (4)
C210.0205 (5)0.0330 (6)0.0228 (5)0.0085 (4)0.0061 (4)0.0141 (4)
C220.0266 (6)0.0283 (6)0.0274 (6)0.0079 (4)0.0069 (4)0.0164 (5)
C230.0246 (5)0.0253 (5)0.0245 (5)0.0042 (4)0.0038 (4)0.0109 (4)
C240.0283 (6)0.0398 (7)0.0248 (6)0.0093 (5)0.0040 (5)0.0172 (5)
C250.0212 (5)0.0237 (5)0.0242 (5)0.0038 (4)0.0031 (4)0.0127 (4)
C260.0276 (6)0.0261 (5)0.0245 (5)0.0048 (4)0.0069 (4)0.0097 (4)
C270.0312 (6)0.0238 (5)0.0270 (6)0.0035 (5)0.0012 (5)0.0071 (4)
C280.0234 (5)0.0244 (5)0.0355 (6)0.0035 (4)0.0018 (5)0.0142 (5)
C290.0239 (5)0.0307 (6)0.0324 (6)0.0080 (5)0.0082 (5)0.0182 (5)
C300.0251 (5)0.0282 (5)0.0230 (5)0.0071 (4)0.0045 (4)0.0121 (4)
C310.0258 (6)0.0355 (7)0.0477 (8)0.0015 (5)0.0004 (6)0.0142 (6)
Geometric parameters (Å, º) top
S1—C81.7344 (11)C14—H14A0.9800
S1—C111.7448 (11)C14—H14B0.9800
O1—C71.2315 (13)C14—H14C0.9800
O2—C121.2221 (13)C16—H16A0.9900
O3—C121.3362 (13)C16—H16B0.9900
O3—C131.4548 (12)C16—C171.5093 (17)
O4—C151.2250 (14)C17—H17A0.9800
O5—C151.3416 (13)C17—H17B0.9800
O5—C161.4541 (12)C17—H17C0.9800
N1—C11.4054 (13)C18—C191.3904 (16)
N1—C181.4309 (13)C18—C231.3970 (15)
N1—C251.4254 (14)C19—H190.9500
N2—H20.850 (17)C19—C201.3977 (15)
N2—C71.3644 (13)C20—H200.9500
N2—C81.3829 (13)C20—C211.3970 (16)
N3—H3A0.883 (17)C21—C221.3955 (17)
N3—H3B0.810 (17)C21—C241.5114 (15)
N3—C111.3529 (14)C22—H220.9500
C1—C21.4033 (15)C22—C231.3881 (16)
C1—C61.4029 (15)C23—H230.9500
C2—H2A0.9500C24—H24A0.9800
C2—C31.3799 (15)C24—H24B0.9800
C3—H30.9500C24—H24C0.9800
C3—C41.3970 (15)C25—C261.3951 (16)
C4—C51.3978 (15)C25—C301.3959 (16)
C4—C71.4843 (14)C26—H260.9500
C5—H50.9500C26—C271.3921 (17)
C5—C61.3885 (15)C27—H270.9500
C6—H60.9500C27—C281.3923 (18)
C8—C91.3767 (14)C28—C291.3920 (18)
C9—C101.4527 (14)C28—C311.5110 (17)
C9—C121.4741 (14)C29—H290.9500
C10—C111.3902 (15)C29—C301.3854 (16)
C10—C151.4647 (14)C30—H300.9500
C13—H13A0.9900C31—H31A0.9800
C13—H13B0.9900C31—H31B0.9800
C13—C141.5025 (16)C31—H31C0.9800
C8—S1—C1190.70 (5)O5—C15—C10114.12 (9)
C12—O3—C13115.11 (8)O5—C16—H16A110.2
C15—O5—C16115.43 (8)O5—C16—H16B110.2
C1—N1—C18119.80 (9)O5—C16—C17107.42 (9)
C1—N1—C25122.19 (9)H16A—C16—H16B108.5
C25—N1—C18117.44 (9)C17—C16—H16A110.2
C7—N2—H2121.9 (11)C17—C16—H16B110.2
C7—N2—C8125.56 (10)C16—C17—H17A109.5
C8—N2—H2112.5 (11)C16—C17—H17B109.5
H3A—N3—H3B120.2 (15)C16—C17—H17C109.5
C11—N3—H3A119.3 (10)H17A—C17—H17B109.5
C11—N3—H3B114.4 (11)H17A—C17—H17C109.5
C2—C1—N1120.25 (10)H17B—C17—H17C109.5
C6—C1—N1121.47 (10)C19—C18—N1120.52 (10)
C6—C1—C2118.28 (10)C19—C18—C23119.47 (10)
C1—C2—H2A119.6C23—C18—N1120.01 (10)
C3—C2—C1120.74 (10)C18—C19—H19120.0
C3—C2—H2A119.6C18—C19—C20120.00 (10)
C2—C3—H3119.4C20—C19—H19120.0
C2—C3—C4121.26 (10)C19—C20—H20119.5
C4—C3—H3119.4C21—C20—C19121.05 (10)
C3—C4—C5118.13 (10)C21—C20—H20119.5
C3—C4—C7117.52 (10)C20—C21—C24121.84 (11)
C5—C4—C7124.35 (10)C22—C21—C20118.02 (10)
C4—C5—H5119.5C22—C21—C24120.13 (10)
C6—C5—C4121.08 (10)C21—C22—H22119.3
C6—C5—H5119.5C23—C22—C21121.46 (10)
C1—C6—H6119.8C23—C22—H22119.3
C5—C6—C1120.50 (10)C18—C23—H23120.0
C5—C6—H6119.8C22—C23—C18119.95 (11)
O1—C7—N2121.07 (10)C22—C23—H23120.0
O1—C7—C4123.05 (10)C21—C24—H24A109.5
N2—C7—C4115.86 (9)C21—C24—H24B109.5
N2—C8—S1121.56 (8)C21—C24—H24C109.5
C9—C8—S1113.34 (8)H24A—C24—H24B109.5
C9—C8—N2125.00 (10)H24A—C24—H24C109.5
C8—C9—C10111.77 (9)H24B—C24—H24C109.5
C8—C9—C12118.10 (9)C26—C25—N1122.05 (10)
C10—C9—C12129.18 (9)C26—C25—C30118.80 (10)
C9—C10—C15129.14 (9)C30—C25—N1119.09 (10)
C11—C10—C9111.57 (9)C25—C26—H26120.0
C11—C10—C15118.22 (9)C27—C26—C25120.10 (11)
N3—C11—S1118.63 (8)C27—C26—H26120.0
N3—C11—C10128.82 (10)C26—C27—H27119.3
C10—C11—S1112.55 (8)C26—C27—C28121.43 (11)
O2—C12—O3122.47 (10)C28—C27—H27119.3
O2—C12—C9123.55 (10)C27—C28—C31121.27 (12)
O3—C12—C9113.85 (9)C29—C28—C27117.78 (11)
O3—C13—H13A110.2C29—C28—C31120.94 (12)
O3—C13—H13B110.2C28—C29—H29119.2
O3—C13—C14107.46 (9)C30—C29—C28121.52 (11)
H13A—C13—H13B108.5C30—C29—H29119.2
C14—C13—H13A110.2C25—C30—H30119.8
C14—C13—H13B110.2C29—C30—C25120.31 (11)
C13—C14—H14A109.5C29—C30—H30119.8
C13—C14—H14B109.5C28—C31—H31A109.5
C13—C14—H14C109.5C28—C31—H31B109.5
H14A—C14—H14B109.5C28—C31—H31C109.5
H14A—C14—H14C109.5H31A—C31—H31B109.5
H14B—C14—H14C109.5H31A—C31—H31C109.5
O4—C15—O5122.48 (10)H31B—C31—H31C109.5
O4—C15—C10123.32 (10)
S1—C8—C9—C102.92 (12)C10—C9—C12—O2171.40 (11)
S1—C8—C9—C12166.93 (8)C10—C9—C12—O312.61 (16)
N1—C1—C2—C3179.59 (10)C11—S1—C8—N2178.08 (9)
N1—C1—C6—C5179.10 (10)C11—S1—C8—C91.65 (9)
N1—C18—C19—C20179.76 (10)C11—C10—C15—O425.80 (17)
N1—C18—C23—C22178.36 (10)C11—C10—C15—O5151.08 (10)
N1—C25—C26—C27178.50 (10)C12—O3—C13—C14171.23 (10)
N1—C25—C30—C29176.33 (10)C12—C9—C10—C11165.45 (11)
N2—C8—C9—C10179.21 (10)C12—C9—C10—C1526.80 (19)
N2—C8—C9—C129.36 (16)C13—O3—C12—O23.21 (15)
C1—N1—C18—C1952.46 (15)C13—O3—C12—C9179.25 (9)
C1—N1—C18—C23128.71 (12)C15—O5—C16—C17170.77 (10)
C1—N1—C25—C2633.06 (16)C15—C10—C11—S1167.48 (8)
C1—N1—C25—C30149.85 (11)C15—C10—C11—N311.52 (18)
C1—C2—C3—C40.17 (17)C16—O5—C15—O42.93 (15)
C2—C1—C6—C51.21 (17)C16—O5—C15—C10179.84 (9)
C2—C3—C4—C50.57 (17)C18—N1—C1—C222.84 (16)
C2—C3—C4—C7178.97 (10)C18—N1—C1—C6156.86 (11)
C3—C4—C5—C60.07 (17)C18—N1—C25—C26138.27 (11)
C3—C4—C7—O111.30 (17)C18—N1—C25—C3038.82 (15)
C3—C4—C7—N2167.26 (10)C18—C19—C20—C212.63 (17)
C4—C5—C6—C10.83 (17)C19—C18—C23—C220.49 (17)
C5—C4—C7—O1169.20 (11)C19—C20—C21—C221.89 (17)
C5—C4—C7—N212.25 (16)C19—C20—C21—C24176.92 (10)
C6—C1—C2—C30.71 (17)C20—C21—C22—C230.03 (17)
C7—N2—C8—S11.59 (16)C21—C22—C23—C181.21 (18)
C7—N2—C8—C9177.59 (11)C23—C18—C19—C201.40 (16)
C7—C4—C5—C6179.43 (10)C24—C21—C22—C23178.86 (11)
C8—S1—C11—N3179.24 (9)C25—N1—C1—C2148.29 (11)
C8—S1—C11—C100.12 (9)C25—N1—C1—C632.02 (16)
C8—N2—C7—O11.16 (18)C25—N1—C18—C19135.99 (11)
C8—N2—C7—C4179.75 (10)C25—N1—C18—C2342.84 (15)
C8—C9—C10—C112.98 (14)C25—C26—C27—C282.25 (18)
C8—C9—C10—C15164.77 (11)C26—C25—C30—C290.85 (17)
C8—C9—C12—O220.79 (16)C26—C27—C28—C290.79 (18)
C8—C9—C12—O3155.21 (10)C26—C27—C28—C31179.45 (11)
C9—C10—C11—S11.75 (12)C27—C28—C29—C301.51 (17)
C9—C10—C11—N3179.24 (11)C28—C29—C30—C252.35 (18)
C9—C10—C15—O4167.14 (11)C30—C25—C26—C271.40 (17)
C9—C10—C15—O515.98 (16)C31—C28—C29—C30177.16 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.850 (17)1.958 (17)2.6501 (12)137.8 (15)
N3—H3A···O1i0.883 (17)2.154 (17)3.0316 (13)172.5 (14)
N3—H3B···O40.810 (17)2.156 (16)2.7656 (13)132.2 (14)
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

Dr S. Simard is acknowledged for assistance with the crystallographic data collection and preliminary refinement.

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (Discovery Grant to W. G. Skene); Canada Foundation for Innovation.

References

First citationBolduc, A., Dufresne, S. & Skene, W. G. (2010). J. Mater. Chem. 20, 4820–4826.  Web of Science CSD CrossRef CAS Google Scholar
First citationBolduc, A., Mallet, C. & Skene, W. G. (2013). Sci. China Chem. 56, 3–23.  Web of Science CrossRef CAS Google Scholar
First citationBourgeaux, M. & Skene, W. G. (2007). J. Org. Chem. 72, 8882–8892.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBourgeaux, M., Vomsheid, S. & Skene, W. G. (2006). Acta Cryst. E62, o5529–o5531.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177.  Web of Science CSD CrossRef CAS Google Scholar
First citationDufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFabbro, C., Armani, S., Carloni, L.-E., De Leo, F., Wouters, J. & Bonifazi, D. (2014). Eur. J. Org. Chem. pp. 5487–5500.  Web of Science CSD CrossRef Google Scholar
First citationFuruyama, T., Noguchi, D., Suzuki, Y. & Kobayashi, N. (2014). Can. J. Chem. 92, 765–770.  Web of Science CSD CrossRef CAS Google Scholar
First citationGhosh, K., Masanta, G., Fröhlich, R., Petsalakis, I. D. & Theodorakopoulos, G. (2009). J. Phys. Chem. B, 113, 7800–7809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, S., Wu, T., Zhu, Q., Pu, J., Chen, G., Zhang, W. & Li, Z. (2018). RSC Adv. 8, 12779–12784.  Web of Science CrossRef CAS Google Scholar
First citationMa, X., Wu, Y., Wen, H., Niu, H., Wang, C., Qin, C., Bai, X., Lei, L. & Wang, W. (2016). RSC Adv. 6, 4564–4575.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodinovskaya, L. A., Shestopalov, A. M. & Chunikhin, K. S. (2002). Tetrahedron, 58, 4273–4282.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H., Zhang, Y., Yan, W., Chen, W., Lan, Q., Liu, S., Jiang, L., Chi, Z., Chen, X. & Xu, J. (2014). J. Mater. Chem. C. 2, 5812–5817.  Web of Science CSD CrossRef CAS Google Scholar
First citationTshibaka, T., Bishop, S., Roche, I. U., Dufresne, S., Lubell, W. D. & Skene, W. G. (2011). Chem. Eur. J. 17, 10879–10888.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWang, J., He, C., Wu, P., Wang, J. & Duan, C. (2011). J. Am. Chem. Soc. 133, 12402–12405.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeh, L.-C., Huang, T.-C., Lai, F.-Y., Lai, G.-H., Lo, A.-Y., Hsu, S.-C., Yang, T.-I. & Yeh, J.-M. (2016). Surf. Coat. Technol. 303, 154–161.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds