research communications
of diethyl 2-amino-5-{4-[bis(4-methylphenyl)amino]benzamido}thiophene-3,4-dicarboxylate
aDépartement de chimie, Université de Montréal, CP 6128, Centre-ville Montreal, QC, H3C 3J7, Canada
*Correspondence e-mail: w.skene@umontreal.ca
In the title compound, C31H31N3O5S, the regioselective substitution of the thiophene is confirmed with the amine and the amide at the 2- and 5-positions, respectively. In the molecule, the thiophene ring is twisted by 12.82 (3)° with respect to the aromatic ring of the benzamido group. Intramolecular N—H⋯O hydrogen bonds are present involving the N atoms of the primary amine and the amide groups, forming S(6) ring motifs. In the crystal, centrosymmetrically related molecules are linked by pairs of N—H⋯O hydrogen bonds involving the amide carbonyl O atoms and the primary amine N atoms to form dimers of R22(16) ring motif.
CCDC reference: 1904525
1. Chemical context
et al., 2007). This is particularly the case with that are prepared from 2,5-diaminothiophene derivatives (Bolduc et al., 2013). These derivatives can be electrochemically oxidized (Yeh et al., 2016). The collective properties (reversible color change with applied potential) have proven ideal for use as electrochromic materials (Ma et al., 2016). While various have been studied for understating the impact of structure on the absorption and electrochemical properties (Liu et al., 2018), modifying the terminal amine has remained relatively underexplored. Such modification allows property tuning, including reversible oxidation. This is a key property for electrochromic use. Given the underexplored modification of 2-aminothiophenes, we investigated its conversion to a triphenylamide. The triphenylamide moiety was targeted because of its electrochemically reversible oxidation. Meanwhile, the amide was chosen because of its robustness that could sustain electrochemical redox cycles. More importantly, it would be inert towards imination reactions for constructing conjugated having both various terminal groups and cores. Given the challenge of unequivocally identifying the configuration and absolute structural identification of aminothiophene derivatives with the concomitant limited number of reported triphenylamine the X-ray analysis of the title compound (I) was evaluated and it is reported on herein.
are prepared by the condensation of with Using aromatic precursors, the reaction results in the preparation of conjugated having colors that are readily detectable in the visible spectrum (Dufresne2. Structural commentary
In the molecule of I (Fig. 1), the mean plane through the 2,5-diaminotihophene ring (r.m.s. deviation = 0.0116 Å) is inclined to the C1–C6 benzene (ring A) by 12.82 (3)°. The dihedral angles formed by the benzene rings A, B (C18–C23) and C (C25–C30) of the triphenylamide moiety are: A^B = 65.56 (3)°, A^C = 55.22 (4)°, B^C = 66.80 (4)°. The O1—C7, N2—C7, N2—C8 and N3—C11 bond lengths are 1.2315 (13), 1.3644 (13), 1.3829 (13) and 1.3529 (14) Å, respectively. While the reactivity of the primary amine of I is less than that expected for typical arylamines owing to the electron-withdrawing it nonetheless acts as a hydrogen donor. In fact, two N—H⋯O intramolecular hydrogen bonds occur, one each between the ester carbonyl and its adjacent nitrogen, forming rings of S(6) graph-set motif (Table 1). The intramolecular hydrogen bonds observed are consistent with those reported in other 2-amino-3-ester thiophenes (Dufresne & Skene, 2010a,b; Skene et al., 2006; Bourgeaux & Skene, 2007; Bourgeaux et al., 2006; Bolduc et al., 2010; Tshibaka et al., 2011; Furuyama et al., 2014). The of I confirms the asymmetric substitution of thiophene by a primary amine and an amide. Of importance is that the thiophene substitution with the nitrogen atoms occurs at the 2,5-positions, rather than the 3,4-positions. The primary amine at the 2-thiophene position is also confirmed. The 2,5-configuration is desired because extended degrees of conjugation result when the are formed in these positions with arylamines. The presence of ester functionalities at the 3,4-positions is also verified by the crystal structure.
3. Supramolecular features
In the I, centrosymmetrically related molecules are linked into head-to-head hydrogen-bonded dimers (Fig. 2) by pairs of N—H⋯O hydrogen bonds (Table 1) involving the N3 amine atom and the O1 carbonyl atom of the amide group, forming rings of R22(16) graph-set motif. In this arrangement, the sulfur atoms of the two thiophenes are face-to-face and the two heteoratoms are separated by 3.5419 (4) Å. The crystal packing (Fig. 3) is further stabilized by van der Waals forces.
of4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.39, latest update August 2018; Groom et al., 2016) yielded no hits. In fact, no exact thiophene derivatives substituted in the 3,4-positions with electron-withdrawing groups were found. Four structurally similarly thiophenes were identified, three of which were symmetric with at the 2,5-positions (refcodes LOFTAD, LOFTEH, LOFTIL; Fabbro et al., 2014). The most closely related structure was the asymmetric 2-amino, 5-phenylamido-thiophene derivative (LOYDIM; Rodinovskaya et al., 2002). No differences greater than 3σ were found for the N2—C7, N2—C8, and O1—C7 bond lengths of I and the nine counterpart bonds for the reported similar structures. The notable difference was the C11—N3 bond length of I, which is 0.025 Å (3σ = 0.004 Å) shorter than the corresponding bond in LOYDIM [1.378 (5) Å]. The dihedral angle between the planes described by the phenylamide and the 2,5-diaminotihophene rings is also different [5.74 (13)°]. The database survey yielded only four 4-amido-triphenylamines [GUWNAP, GUWNET (Ghosh et al., 2009), and UZEXAZ (Wang et al., 2011)], with one being complexed with cerium (ZOKSUP; Sun et al., 2014). No differences between the N1—phenyl and C4—C7 bond distances were found. The three phenyl-N-phenyl dihedral angles of I are also consistent with the those of the reported structures.
5. Synthesis and crystallization
To a solution of 4-(di-p-tolylamino)benzoic acid (668 mg, 1.7 mmol, 1 eq) in anhydrous dichloromethane (15 mL) were added oxalyl chloride (0.21 mL, 2.3 mmol, 1.8 eq) and one drop of anhydrous DMF. The mixture was stirred for 16 h under nitrogen at room temperature. The solvent was removed under reduced pressure and the resulting 4-(di-p-tolylamino)benzoyl chloride was dissolved in anhydrous THF (20 mL). The mixture was then added dropwise to a solution of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (594 mg, 2.3 mmol, 1.1 eq) and Et3N (2.3 mmol, 0.32 mL, 1.1 eq) in anhydrous THF (5 mL). The reaction mixture was stirred for 6 h under nitrogen at room temperature. After filtering, the solvent of the filtrate was removed under reduced pressure. The residue was purified by SiO2 (hexanes/ethyl acetate 2:1 v/v) to afford the title compound as a yellow solid (589 mg, yield 64%). A suitable crystal of the title compound was obtained by slow evaporation of deuterated chloroform from an NMR tube. 1H NMR (400 MHz, CDCl3): δ = 11.31 (s, 1H), 7.72 (d, 3J = 8.9 Hz, 2H), 7.13 (d, 3J = 8.2 Hz, 4H), 7.05 (d, 3J = 8.2 Hz, 4H), 6.97 (d, 3J = 8.9 Hz, 2H), 5.67 (s, 2H), 4.29 (m, 4H), 2.34 (s, 6H), 1.34 (t, 3J = 7.12 Hz, 3H), 1.32 (t, 3J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ = 166.2, 165.5, 163.4, 154.6, 152.3, 143.9, 136.4, 134.6, 130.4, 128.7, 126.2, 122.5, 119.0, 109.2, 101.8, 61.0, 60.2, 21.0, 14.5, 14.3. MS–HR: (M + H+) exp . m/z = 558.2062, (M + H+) calc. m/z = 558.2057.
6. Refinement
Crystal data, data collection and structure . The amine H atoms were located in a difference-Fourier map and refined freely. All other H atoms were placed geometrically and refined with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups.
details are summarized in Table 2Supporting information
CCDC reference: 1904525
https://doi.org/10.1107/S2056989019003864/rz5251sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019003864/rz5251Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019003864/rz5251Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), and PLATON for Windows Taskbar v1.19 (Spek, 2009).; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C31H31N3O5S | Z = 2 |
Mr = 557.65 | F(000) = 588 |
Triclinic, P1 | Dx = 1.367 Mg m−3 |
a = 7.1314 (2) Å | Ga Kα radiation, λ = 1.34139 Å |
b = 13.4650 (3) Å | Cell parameters from 9687 reflections |
c = 15.4586 (4) Å | θ = 2.7–60.6° |
α = 106.533 (1)° | µ = 0.94 mm−1 |
β = 97.980 (1)° | T = 100 K |
γ = 102.843 (1)° | Block, yellow |
V = 1354.61 (6) Å3 | 0.16 × 0.11 × 0.04 mm |
Bruker Venture Metaljet diffractometer | 6212 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 5916 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.024 |
Detector resolution: 10.24 pixels mm-1 | θmax = 60.7°, θmin = 2.7° |
ω and φ scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −17→17 |
Tmin = 0.679, Tmax = 0.752 | l = −20→20 |
43601 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0563P)2 + 0.4554P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
6212 reflections | Δρmax = 0.39 e Å−3 |
377 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
Experimental. X-ray crystallographic data for I were collected from a single crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.27244 (4) | 0.06598 (2) | 0.58032 (2) | 0.02122 (8) | |
O1 | −0.20024 (12) | 0.13560 (7) | 0.43721 (6) | 0.02656 (18) | |
O2 | 0.39650 (11) | 0.18395 (7) | 0.66336 (6) | 0.02647 (18) | |
O3 | 0.35284 (11) | 0.18307 (6) | 0.80411 (5) | 0.02208 (16) | |
O4 | −0.14268 (12) | −0.01088 (7) | 0.84823 (6) | 0.02709 (18) | |
O5 | 0.15438 (11) | −0.00953 (7) | 0.81408 (5) | 0.02333 (17) | |
N1 | 0.44925 (14) | 0.35825 (8) | 0.25046 (6) | 0.0242 (2) | |
N2 | 0.07397 (14) | 0.15202 (8) | 0.53922 (6) | 0.02104 (19) | |
H2 | 0.199 (3) | 0.1717 (13) | 0.5566 (11) | 0.036 (4)* | |
N3 | −0.42204 (14) | −0.00968 (8) | 0.70555 (7) | 0.0234 (2) | |
H3A | −0.532 (2) | −0.0409 (13) | 0.6625 (11) | 0.032 (4)* | |
H3B | −0.405 (2) | −0.0292 (13) | 0.7503 (12) | 0.031 (4)* | |
C1 | 0.33806 (16) | 0.30899 (9) | 0.30286 (7) | 0.0214 (2) | |
C2 | 0.13314 (16) | 0.29229 (9) | 0.28679 (7) | 0.0226 (2) | |
H2A | 0.069747 | 0.314057 | 0.239990 | 0.027* | |
C3 | 0.02269 (16) | 0.24461 (9) | 0.33822 (7) | 0.0224 (2) | |
H3 | −0.115902 | 0.233884 | 0.326097 | 0.027* | |
C4 | 0.11076 (16) | 0.21182 (9) | 0.40778 (7) | 0.0203 (2) | |
C5 | 0.31471 (16) | 0.22772 (9) | 0.42355 (7) | 0.0218 (2) | |
H5 | 0.377465 | 0.205919 | 0.470486 | 0.026* | |
C6 | 0.42706 (16) | 0.27486 (9) | 0.37173 (8) | 0.0229 (2) | |
H6 | 0.565238 | 0.284067 | 0.383002 | 0.028* | |
C7 | −0.01919 (16) | 0.16301 (9) | 0.46062 (7) | 0.0209 (2) | |
C8 | −0.01785 (15) | 0.10919 (9) | 0.59882 (7) | 0.0200 (2) | |
C9 | 0.07750 (15) | 0.10201 (9) | 0.67966 (7) | 0.0196 (2) | |
C10 | −0.06016 (15) | 0.05446 (9) | 0.72744 (7) | 0.0200 (2) | |
C11 | −0.25434 (16) | 0.03304 (9) | 0.68189 (7) | 0.0206 (2) | |
C12 | 0.28951 (16) | 0.15762 (9) | 0.71298 (7) | 0.0204 (2) | |
C13 | 0.56112 (15) | 0.23930 (9) | 0.83922 (8) | 0.0232 (2) | |
H13A | 0.587955 | 0.312667 | 0.834394 | 0.028* | |
H13B | 0.641392 | 0.199732 | 0.802979 | 0.028* | |
C14 | 0.61165 (18) | 0.24542 (12) | 0.93859 (9) | 0.0330 (3) | |
H14A | 0.585366 | 0.172379 | 0.942452 | 0.049* | |
H14B | 0.531150 | 0.284569 | 0.973706 | 0.049* | |
H14C | 0.751398 | 0.283289 | 0.964429 | 0.049* | |
C15 | −0.02184 (16) | 0.01050 (9) | 0.80248 (7) | 0.0214 (2) | |
C16 | 0.19659 (17) | −0.05354 (10) | 0.88794 (8) | 0.0274 (2) | |
H16A | 0.086332 | −0.116277 | 0.881920 | 0.033* | |
H16B | 0.214461 | 0.001603 | 0.948819 | 0.033* | |
C17 | 0.38311 (18) | −0.08751 (11) | 0.87989 (9) | 0.0300 (3) | |
H17A | 0.365227 | −0.140105 | 0.818579 | 0.045* | |
H17B | 0.412994 | −0.120184 | 0.927395 | 0.045* | |
H17C | 0.492230 | −0.024286 | 0.888468 | 0.045* | |
C18 | 0.35607 (16) | 0.35600 (9) | 0.16150 (7) | 0.0220 (2) | |
C19 | 0.24563 (16) | 0.25904 (9) | 0.09516 (8) | 0.0226 (2) | |
H19 | 0.231993 | 0.193559 | 0.108656 | 0.027* | |
C20 | 0.15469 (16) | 0.25789 (9) | 0.00862 (8) | 0.0236 (2) | |
H20 | 0.074974 | 0.191712 | −0.035401 | 0.028* | |
C21 | 0.17916 (16) | 0.35251 (10) | −0.01418 (8) | 0.0240 (2) | |
C22 | 0.29234 (17) | 0.44882 (10) | 0.05301 (8) | 0.0256 (2) | |
H22 | 0.310723 | 0.514013 | 0.038810 | 0.031* | |
C23 | 0.37864 (17) | 0.45147 (9) | 0.14014 (8) | 0.0248 (2) | |
H23 | 0.452993 | 0.518152 | 0.185205 | 0.030* | |
C24 | 0.09038 (18) | 0.35211 (11) | −0.10897 (8) | 0.0297 (3) | |
H24A | 0.195498 | 0.380647 | −0.137308 | 0.045* | |
H24B | −0.000735 | 0.397250 | −0.103306 | 0.045* | |
H24C | 0.018819 | 0.278181 | −0.147755 | 0.045* | |
C25 | 0.64705 (16) | 0.42384 (9) | 0.28755 (8) | 0.0226 (2) | |
C26 | 0.71207 (18) | 0.48747 (9) | 0.38035 (8) | 0.0261 (2) | |
H26 | 0.624280 | 0.486611 | 0.421240 | 0.031* | |
C27 | 0.90540 (19) | 0.55223 (10) | 0.41312 (9) | 0.0288 (2) | |
H27 | 0.949225 | 0.593205 | 0.476904 | 0.035* | |
C28 | 1.03591 (17) | 0.55826 (9) | 0.35443 (9) | 0.0278 (2) | |
C29 | 0.96756 (17) | 0.49614 (10) | 0.26161 (9) | 0.0270 (2) | |
H29 | 1.053046 | 0.500286 | 0.220010 | 0.032* | |
C30 | 0.77774 (17) | 0.42840 (9) | 0.22849 (8) | 0.0247 (2) | |
H30 | 0.736321 | 0.384840 | 0.165285 | 0.030* | |
C31 | 1.24615 (19) | 0.62789 (12) | 0.39042 (11) | 0.0387 (3) | |
H31A | 1.332337 | 0.583463 | 0.401862 | 0.058* | |
H31B | 1.255322 | 0.684753 | 0.448195 | 0.058* | |
H31C | 1.287141 | 0.660616 | 0.344560 | 0.058* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01620 (13) | 0.02771 (14) | 0.02086 (13) | 0.00373 (10) | 0.00225 (9) | 0.01223 (10) |
O1 | 0.0190 (4) | 0.0387 (5) | 0.0239 (4) | 0.0051 (3) | 0.0031 (3) | 0.0160 (3) |
O2 | 0.0181 (4) | 0.0384 (5) | 0.0246 (4) | 0.0030 (3) | 0.0041 (3) | 0.0168 (3) |
O3 | 0.0168 (4) | 0.0276 (4) | 0.0197 (4) | 0.0006 (3) | 0.0013 (3) | 0.0100 (3) |
O4 | 0.0216 (4) | 0.0368 (5) | 0.0266 (4) | 0.0049 (3) | 0.0062 (3) | 0.0181 (4) |
O5 | 0.0199 (4) | 0.0296 (4) | 0.0241 (4) | 0.0045 (3) | 0.0033 (3) | 0.0166 (3) |
N1 | 0.0211 (4) | 0.0305 (5) | 0.0209 (4) | 0.0009 (4) | 0.0023 (4) | 0.0141 (4) |
N2 | 0.0169 (4) | 0.0280 (5) | 0.0196 (4) | 0.0034 (4) | 0.0031 (3) | 0.0123 (4) |
N3 | 0.0175 (4) | 0.0292 (5) | 0.0241 (5) | 0.0018 (4) | 0.0031 (4) | 0.0140 (4) |
C1 | 0.0228 (5) | 0.0229 (5) | 0.0198 (5) | 0.0042 (4) | 0.0051 (4) | 0.0101 (4) |
C2 | 0.0234 (5) | 0.0277 (5) | 0.0204 (5) | 0.0088 (4) | 0.0043 (4) | 0.0123 (4) |
C3 | 0.0203 (5) | 0.0284 (5) | 0.0203 (5) | 0.0076 (4) | 0.0039 (4) | 0.0105 (4) |
C4 | 0.0207 (5) | 0.0230 (5) | 0.0175 (5) | 0.0044 (4) | 0.0037 (4) | 0.0084 (4) |
C5 | 0.0207 (5) | 0.0257 (5) | 0.0196 (5) | 0.0042 (4) | 0.0018 (4) | 0.0112 (4) |
C6 | 0.0193 (5) | 0.0277 (5) | 0.0228 (5) | 0.0042 (4) | 0.0032 (4) | 0.0120 (4) |
C7 | 0.0207 (5) | 0.0240 (5) | 0.0188 (5) | 0.0055 (4) | 0.0036 (4) | 0.0089 (4) |
C8 | 0.0177 (5) | 0.0224 (5) | 0.0209 (5) | 0.0038 (4) | 0.0041 (4) | 0.0095 (4) |
C9 | 0.0174 (5) | 0.0221 (5) | 0.0197 (5) | 0.0033 (4) | 0.0031 (4) | 0.0095 (4) |
C10 | 0.0180 (5) | 0.0220 (5) | 0.0202 (5) | 0.0030 (4) | 0.0036 (4) | 0.0093 (4) |
C11 | 0.0201 (5) | 0.0216 (5) | 0.0207 (5) | 0.0042 (4) | 0.0041 (4) | 0.0092 (4) |
C12 | 0.0192 (5) | 0.0226 (5) | 0.0211 (5) | 0.0047 (4) | 0.0031 (4) | 0.0109 (4) |
C13 | 0.0167 (5) | 0.0259 (5) | 0.0235 (5) | −0.0004 (4) | 0.0006 (4) | 0.0094 (4) |
C14 | 0.0231 (6) | 0.0460 (7) | 0.0269 (6) | −0.0005 (5) | −0.0011 (5) | 0.0182 (5) |
C15 | 0.0191 (5) | 0.0225 (5) | 0.0207 (5) | 0.0012 (4) | 0.0016 (4) | 0.0091 (4) |
C16 | 0.0234 (5) | 0.0373 (6) | 0.0267 (6) | 0.0055 (5) | 0.0040 (4) | 0.0214 (5) |
C17 | 0.0259 (6) | 0.0401 (7) | 0.0298 (6) | 0.0092 (5) | 0.0035 (5) | 0.0212 (5) |
C18 | 0.0198 (5) | 0.0288 (5) | 0.0206 (5) | 0.0057 (4) | 0.0054 (4) | 0.0133 (4) |
C19 | 0.0215 (5) | 0.0256 (5) | 0.0242 (5) | 0.0053 (4) | 0.0071 (4) | 0.0132 (4) |
C20 | 0.0207 (5) | 0.0282 (5) | 0.0217 (5) | 0.0046 (4) | 0.0046 (4) | 0.0097 (4) |
C21 | 0.0205 (5) | 0.0330 (6) | 0.0228 (5) | 0.0085 (4) | 0.0061 (4) | 0.0141 (4) |
C22 | 0.0266 (6) | 0.0283 (6) | 0.0274 (6) | 0.0079 (4) | 0.0069 (4) | 0.0164 (5) |
C23 | 0.0246 (5) | 0.0253 (5) | 0.0245 (5) | 0.0042 (4) | 0.0038 (4) | 0.0109 (4) |
C24 | 0.0283 (6) | 0.0398 (7) | 0.0248 (6) | 0.0093 (5) | 0.0040 (5) | 0.0172 (5) |
C25 | 0.0212 (5) | 0.0237 (5) | 0.0242 (5) | 0.0038 (4) | 0.0031 (4) | 0.0127 (4) |
C26 | 0.0276 (6) | 0.0261 (5) | 0.0245 (5) | 0.0048 (4) | 0.0069 (4) | 0.0097 (4) |
C27 | 0.0312 (6) | 0.0238 (5) | 0.0270 (6) | 0.0035 (5) | 0.0012 (5) | 0.0071 (4) |
C28 | 0.0234 (5) | 0.0244 (5) | 0.0355 (6) | 0.0035 (4) | 0.0018 (5) | 0.0142 (5) |
C29 | 0.0239 (5) | 0.0307 (6) | 0.0324 (6) | 0.0080 (5) | 0.0082 (5) | 0.0182 (5) |
C30 | 0.0251 (5) | 0.0282 (5) | 0.0230 (5) | 0.0071 (4) | 0.0045 (4) | 0.0121 (4) |
C31 | 0.0258 (6) | 0.0355 (7) | 0.0477 (8) | −0.0015 (5) | 0.0004 (6) | 0.0142 (6) |
S1—C8 | 1.7344 (11) | C14—H14A | 0.9800 |
S1—C11 | 1.7448 (11) | C14—H14B | 0.9800 |
O1—C7 | 1.2315 (13) | C14—H14C | 0.9800 |
O2—C12 | 1.2221 (13) | C16—H16A | 0.9900 |
O3—C12 | 1.3362 (13) | C16—H16B | 0.9900 |
O3—C13 | 1.4548 (12) | C16—C17 | 1.5093 (17) |
O4—C15 | 1.2250 (14) | C17—H17A | 0.9800 |
O5—C15 | 1.3416 (13) | C17—H17B | 0.9800 |
O5—C16 | 1.4541 (12) | C17—H17C | 0.9800 |
N1—C1 | 1.4054 (13) | C18—C19 | 1.3904 (16) |
N1—C18 | 1.4309 (13) | C18—C23 | 1.3970 (15) |
N1—C25 | 1.4254 (14) | C19—H19 | 0.9500 |
N2—H2 | 0.850 (17) | C19—C20 | 1.3977 (15) |
N2—C7 | 1.3644 (13) | C20—H20 | 0.9500 |
N2—C8 | 1.3829 (13) | C20—C21 | 1.3970 (16) |
N3—H3A | 0.883 (17) | C21—C22 | 1.3955 (17) |
N3—H3B | 0.810 (17) | C21—C24 | 1.5114 (15) |
N3—C11 | 1.3529 (14) | C22—H22 | 0.9500 |
C1—C2 | 1.4033 (15) | C22—C23 | 1.3881 (16) |
C1—C6 | 1.4029 (15) | C23—H23 | 0.9500 |
C2—H2A | 0.9500 | C24—H24A | 0.9800 |
C2—C3 | 1.3799 (15) | C24—H24B | 0.9800 |
C3—H3 | 0.9500 | C24—H24C | 0.9800 |
C3—C4 | 1.3970 (15) | C25—C26 | 1.3951 (16) |
C4—C5 | 1.3978 (15) | C25—C30 | 1.3959 (16) |
C4—C7 | 1.4843 (14) | C26—H26 | 0.9500 |
C5—H5 | 0.9500 | C26—C27 | 1.3921 (17) |
C5—C6 | 1.3885 (15) | C27—H27 | 0.9500 |
C6—H6 | 0.9500 | C27—C28 | 1.3923 (18) |
C8—C9 | 1.3767 (14) | C28—C29 | 1.3920 (18) |
C9—C10 | 1.4527 (14) | C28—C31 | 1.5110 (17) |
C9—C12 | 1.4741 (14) | C29—H29 | 0.9500 |
C10—C11 | 1.3902 (15) | C29—C30 | 1.3854 (16) |
C10—C15 | 1.4647 (14) | C30—H30 | 0.9500 |
C13—H13A | 0.9900 | C31—H31A | 0.9800 |
C13—H13B | 0.9900 | C31—H31B | 0.9800 |
C13—C14 | 1.5025 (16) | C31—H31C | 0.9800 |
C8—S1—C11 | 90.70 (5) | O5—C15—C10 | 114.12 (9) |
C12—O3—C13 | 115.11 (8) | O5—C16—H16A | 110.2 |
C15—O5—C16 | 115.43 (8) | O5—C16—H16B | 110.2 |
C1—N1—C18 | 119.80 (9) | O5—C16—C17 | 107.42 (9) |
C1—N1—C25 | 122.19 (9) | H16A—C16—H16B | 108.5 |
C25—N1—C18 | 117.44 (9) | C17—C16—H16A | 110.2 |
C7—N2—H2 | 121.9 (11) | C17—C16—H16B | 110.2 |
C7—N2—C8 | 125.56 (10) | C16—C17—H17A | 109.5 |
C8—N2—H2 | 112.5 (11) | C16—C17—H17B | 109.5 |
H3A—N3—H3B | 120.2 (15) | C16—C17—H17C | 109.5 |
C11—N3—H3A | 119.3 (10) | H17A—C17—H17B | 109.5 |
C11—N3—H3B | 114.4 (11) | H17A—C17—H17C | 109.5 |
C2—C1—N1 | 120.25 (10) | H17B—C17—H17C | 109.5 |
C6—C1—N1 | 121.47 (10) | C19—C18—N1 | 120.52 (10) |
C6—C1—C2 | 118.28 (10) | C19—C18—C23 | 119.47 (10) |
C1—C2—H2A | 119.6 | C23—C18—N1 | 120.01 (10) |
C3—C2—C1 | 120.74 (10) | C18—C19—H19 | 120.0 |
C3—C2—H2A | 119.6 | C18—C19—C20 | 120.00 (10) |
C2—C3—H3 | 119.4 | C20—C19—H19 | 120.0 |
C2—C3—C4 | 121.26 (10) | C19—C20—H20 | 119.5 |
C4—C3—H3 | 119.4 | C21—C20—C19 | 121.05 (10) |
C3—C4—C5 | 118.13 (10) | C21—C20—H20 | 119.5 |
C3—C4—C7 | 117.52 (10) | C20—C21—C24 | 121.84 (11) |
C5—C4—C7 | 124.35 (10) | C22—C21—C20 | 118.02 (10) |
C4—C5—H5 | 119.5 | C22—C21—C24 | 120.13 (10) |
C6—C5—C4 | 121.08 (10) | C21—C22—H22 | 119.3 |
C6—C5—H5 | 119.5 | C23—C22—C21 | 121.46 (10) |
C1—C6—H6 | 119.8 | C23—C22—H22 | 119.3 |
C5—C6—C1 | 120.50 (10) | C18—C23—H23 | 120.0 |
C5—C6—H6 | 119.8 | C22—C23—C18 | 119.95 (11) |
O1—C7—N2 | 121.07 (10) | C22—C23—H23 | 120.0 |
O1—C7—C4 | 123.05 (10) | C21—C24—H24A | 109.5 |
N2—C7—C4 | 115.86 (9) | C21—C24—H24B | 109.5 |
N2—C8—S1 | 121.56 (8) | C21—C24—H24C | 109.5 |
C9—C8—S1 | 113.34 (8) | H24A—C24—H24B | 109.5 |
C9—C8—N2 | 125.00 (10) | H24A—C24—H24C | 109.5 |
C8—C9—C10 | 111.77 (9) | H24B—C24—H24C | 109.5 |
C8—C9—C12 | 118.10 (9) | C26—C25—N1 | 122.05 (10) |
C10—C9—C12 | 129.18 (9) | C26—C25—C30 | 118.80 (10) |
C9—C10—C15 | 129.14 (9) | C30—C25—N1 | 119.09 (10) |
C11—C10—C9 | 111.57 (9) | C25—C26—H26 | 120.0 |
C11—C10—C15 | 118.22 (9) | C27—C26—C25 | 120.10 (11) |
N3—C11—S1 | 118.63 (8) | C27—C26—H26 | 120.0 |
N3—C11—C10 | 128.82 (10) | C26—C27—H27 | 119.3 |
C10—C11—S1 | 112.55 (8) | C26—C27—C28 | 121.43 (11) |
O2—C12—O3 | 122.47 (10) | C28—C27—H27 | 119.3 |
O2—C12—C9 | 123.55 (10) | C27—C28—C31 | 121.27 (12) |
O3—C12—C9 | 113.85 (9) | C29—C28—C27 | 117.78 (11) |
O3—C13—H13A | 110.2 | C29—C28—C31 | 120.94 (12) |
O3—C13—H13B | 110.2 | C28—C29—H29 | 119.2 |
O3—C13—C14 | 107.46 (9) | C30—C29—C28 | 121.52 (11) |
H13A—C13—H13B | 108.5 | C30—C29—H29 | 119.2 |
C14—C13—H13A | 110.2 | C25—C30—H30 | 119.8 |
C14—C13—H13B | 110.2 | C29—C30—C25 | 120.31 (11) |
C13—C14—H14A | 109.5 | C29—C30—H30 | 119.8 |
C13—C14—H14B | 109.5 | C28—C31—H31A | 109.5 |
C13—C14—H14C | 109.5 | C28—C31—H31B | 109.5 |
H14A—C14—H14B | 109.5 | C28—C31—H31C | 109.5 |
H14A—C14—H14C | 109.5 | H31A—C31—H31B | 109.5 |
H14B—C14—H14C | 109.5 | H31A—C31—H31C | 109.5 |
O4—C15—O5 | 122.48 (10) | H31B—C31—H31C | 109.5 |
O4—C15—C10 | 123.32 (10) | ||
S1—C8—C9—C10 | 2.92 (12) | C10—C9—C12—O2 | 171.40 (11) |
S1—C8—C9—C12 | −166.93 (8) | C10—C9—C12—O3 | −12.61 (16) |
N1—C1—C2—C3 | −179.59 (10) | C11—S1—C8—N2 | −178.08 (9) |
N1—C1—C6—C5 | 179.10 (10) | C11—S1—C8—C9 | −1.65 (9) |
N1—C18—C19—C20 | 179.76 (10) | C11—C10—C15—O4 | −25.80 (17) |
N1—C18—C23—C22 | 178.36 (10) | C11—C10—C15—O5 | 151.08 (10) |
N1—C25—C26—C27 | −178.50 (10) | C12—O3—C13—C14 | −171.23 (10) |
N1—C25—C30—C29 | 176.33 (10) | C12—C9—C10—C11 | 165.45 (11) |
N2—C8—C9—C10 | 179.21 (10) | C12—C9—C10—C15 | −26.80 (19) |
N2—C8—C9—C12 | 9.36 (16) | C13—O3—C12—O2 | −3.21 (15) |
C1—N1—C18—C19 | −52.46 (15) | C13—O3—C12—C9 | −179.25 (9) |
C1—N1—C18—C23 | 128.71 (12) | C15—O5—C16—C17 | 170.77 (10) |
C1—N1—C25—C26 | −33.06 (16) | C15—C10—C11—S1 | −167.48 (8) |
C1—N1—C25—C30 | 149.85 (11) | C15—C10—C11—N3 | 11.52 (18) |
C1—C2—C3—C4 | 0.17 (17) | C16—O5—C15—O4 | −2.93 (15) |
C2—C1—C6—C5 | −1.21 (17) | C16—O5—C15—C10 | −179.84 (9) |
C2—C3—C4—C5 | −0.57 (17) | C18—N1—C1—C2 | −22.84 (16) |
C2—C3—C4—C7 | 178.97 (10) | C18—N1—C1—C6 | 156.86 (11) |
C3—C4—C5—C6 | 0.07 (17) | C18—N1—C25—C26 | 138.27 (11) |
C3—C4—C7—O1 | 11.30 (17) | C18—N1—C25—C30 | −38.82 (15) |
C3—C4—C7—N2 | −167.26 (10) | C18—C19—C20—C21 | 2.63 (17) |
C4—C5—C6—C1 | 0.83 (17) | C19—C18—C23—C22 | −0.49 (17) |
C5—C4—C7—O1 | −169.20 (11) | C19—C20—C21—C22 | −1.89 (17) |
C5—C4—C7—N2 | 12.25 (16) | C19—C20—C21—C24 | 176.92 (10) |
C6—C1—C2—C3 | 0.71 (17) | C20—C21—C22—C23 | −0.03 (17) |
C7—N2—C8—S1 | −1.59 (16) | C21—C22—C23—C18 | 1.21 (18) |
C7—N2—C8—C9 | −177.59 (11) | C23—C18—C19—C20 | −1.40 (16) |
C7—C4—C5—C6 | −179.43 (10) | C24—C21—C22—C23 | −178.86 (11) |
C8—S1—C11—N3 | −179.24 (9) | C25—N1—C1—C2 | 148.29 (11) |
C8—S1—C11—C10 | −0.12 (9) | C25—N1—C1—C6 | −32.02 (16) |
C8—N2—C7—O1 | 1.16 (18) | C25—N1—C18—C19 | 135.99 (11) |
C8—N2—C7—C4 | 179.75 (10) | C25—N1—C18—C23 | −42.84 (15) |
C8—C9—C10—C11 | −2.98 (14) | C25—C26—C27—C28 | 2.25 (18) |
C8—C9—C10—C15 | 164.77 (11) | C26—C25—C30—C29 | −0.85 (17) |
C8—C9—C12—O2 | −20.79 (16) | C26—C27—C28—C29 | −0.79 (18) |
C8—C9—C12—O3 | 155.21 (10) | C26—C27—C28—C31 | −179.45 (11) |
C9—C10—C11—S1 | 1.75 (12) | C27—C28—C29—C30 | −1.51 (17) |
C9—C10—C11—N3 | −179.24 (11) | C28—C29—C30—C25 | 2.35 (18) |
C9—C10—C15—O4 | 167.14 (11) | C30—C25—C26—C27 | −1.40 (17) |
C9—C10—C15—O5 | −15.98 (16) | C31—C28—C29—C30 | 177.16 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.850 (17) | 1.958 (17) | 2.6501 (12) | 137.8 (15) |
N3—H3A···O1i | 0.883 (17) | 2.154 (17) | 3.0316 (13) | 172.5 (14) |
N3—H3B···O4 | 0.810 (17) | 2.156 (16) | 2.7656 (13) | 132.2 (14) |
Symmetry code: (i) −x−1, −y, −z+1. |
Acknowledgements
Dr S. Simard is acknowledged for assistance with the crystallographic data collection and preliminary refinement.
Funding information
Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada (Discovery Grant to W. G. Skene); Canada Foundation for Innovation.
References
Bolduc, A., Dufresne, S. & Skene, W. G. (2010). J. Mater. Chem. 20, 4820–4826. Web of Science CSD CrossRef CAS Google Scholar
Bolduc, A., Mallet, C. & Skene, W. G. (2013). Sci. China Chem. 56, 3–23. Web of Science CrossRef CAS Google Scholar
Bourgeaux, M. & Skene, W. G. (2007). J. Org. Chem. 72, 8882–8892. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bourgeaux, M., Vomsheid, S. & Skene, W. G. (2006). Acta Cryst. E62, o5529–o5531. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem. 17, 1166–1177. Web of Science CSD CrossRef CAS Google Scholar
Dufresne, S. & Skene, W. G. (2010a). Acta Cryst. E66, o3027. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dufresne, S. & Skene, W. G. (2010b). Acta Cryst. E66, o3221. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fabbro, C., Armani, S., Carloni, L.-E., De Leo, F., Wouters, J. & Bonifazi, D. (2014). Eur. J. Org. Chem. pp. 5487–5500. Web of Science CSD CrossRef Google Scholar
Furuyama, T., Noguchi, D., Suzuki, Y. & Kobayashi, N. (2014). Can. J. Chem. 92, 765–770. Web of Science CSD CrossRef CAS Google Scholar
Ghosh, K., Masanta, G., Fröhlich, R., Petsalakis, I. D. & Theodorakopoulos, G. (2009). J. Phys. Chem. B, 113, 7800–7809. Web of Science CSD CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, S., Wu, T., Zhu, Q., Pu, J., Chen, G., Zhang, W. & Li, Z. (2018). RSC Adv. 8, 12779–12784. Web of Science CrossRef CAS Google Scholar
Ma, X., Wu, Y., Wen, H., Niu, H., Wang, C., Qin, C., Bai, X., Lei, L. & Wang, W. (2016). RSC Adv. 6, 4564–4575. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rodinovskaya, L. A., Shestopalov, A. M. & Chunikhin, K. S. (2002). Tetrahedron, 58, 4273–4282. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, H., Zhang, Y., Yan, W., Chen, W., Lan, Q., Liu, S., Jiang, L., Chi, Z., Chen, X. & Xu, J. (2014). J. Mater. Chem. C. 2, 5812–5817. Web of Science CSD CrossRef CAS Google Scholar
Tshibaka, T., Bishop, S., Roche, I. U., Dufresne, S., Lubell, W. D. & Skene, W. G. (2011). Chem. Eur. J. 17, 10879–10888. Web of Science CSD CrossRef CAS PubMed Google Scholar
Wang, J., He, C., Wu, P., Wang, J. & Duan, C. (2011). J. Am. Chem. Soc. 133, 12402–12405. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yeh, L.-C., Huang, T.-C., Lai, F.-Y., Lai, G.-H., Lo, A.-Y., Hsu, S.-C., Yang, T.-I. & Yeh, J.-M. (2016). Surf. Coat. Technol. 303, 154–161. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.