research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-3-[(4-fluoro­benzyl­­idene)amino]-5-phenyl­thia­zolidin-2-iminium bromide

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az 1148, Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 2 April 2019; accepted 11 April 2019; online 18 April 2019)

In the cation of the title salt, C16H15FN3S+·Br, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thia­zolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluoro­phenyl ring and the major- and minor-disorder components of the phenyl ring, respectively. The central thia­zolidine ring adopts an envelope conformation. In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (44.3%), Br⋯H/H⋯Br (16.8%), C⋯H/H⋯C (13.9%), F⋯H/H⋯F (10.3%) and S⋯H/H⋯S (3.8%) inter­actions.

1. Chemical context

Noncovalent inter­actions, both inter­molecular and intra­molecular, occur in virtually every substance and play an important role in the synthesis, catalysis, design of materials and biological processes (Akbari et al., 2017[Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888-14896.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175-180.]; Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmoudi et al., 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.],c[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018c). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.], 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.], 2014a[Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67-73.],b[Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1-37.], 2015[Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602-5610.], 2017a[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54-72.],b[Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121-10138.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; Shixaliyev et al., 2013[Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76-79.], 2018[Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377-381.]). On the other hand, Schiff bases and related hydrazone ligands and their complexes have attracted attention over the past decades due to their potential biological, pharmacological and analytical applications (Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175-180.]; Mahmoudi et al., 2018a[Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812-2821.],b[Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959-4971.],c[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018c). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mahmudov et al., 2013[Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244-1281.]). Hetercyclic amines are also widely used in the synthesis of Schiff bases, which provide different kinds of noncovalent inter­actions. As a further study in this field, we report herein the crystal structure and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

The thia­zolidine ring (S1/N2/C1–C3) in the cation of the title salt (Fig. 1[link]) adopts an envelope conformation, with puckering parameters of Q(2) = 0.321 (3) Å and φ(2) = 43.3 (5)°. The mean plane of the thia­zolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluoro­phenyl ring (C5–C10) and the major- and minor-disorder components (C11–C16 and C11′–C16′) of the phenyl ring, respectively. The N2—N1—C4—C5 bridge that links the thia­zolidine and 4-fluoro­phenyl rings has a torsion angle of −177.36 (19)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius. The minor-disorder component has been omitted for clarity

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, centrosymmetrically related cations and anions are linked via pairs of N—H⋯Br hydrogen bonds (Table 1[link]) into dimeric units forming rings of R42(8) graph-set motif (Fig. 2[link]). The dimers are further connected by weak C—H⋯Br inter­actions to form chains running parallel to [110].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1 0.90 2.36 3.2557 (18) 172
N3—H3B⋯Br1i 0.90 2.55 3.3552 (18) 150
C4—H4A⋯Br1ii 0.93 2.99 3.726 (2) 137
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y+1, z.
[Figure 2]
Figure 2
A view of the inter­molecular N—H⋯Br hydrogen bonds of the title salt in the unit cell. The minor-disorder component has been omitted for clarity

Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and inter­molecular inter­actions in the crystal structure. The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]), and comprised dnorm surface plots and 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The plots of the Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −1.4747 (red) to 1.2166 a.u. (blue) is shown in Fig. 3[link]. This plot was generated to qu­antify and visualize the inter­molecular inter­actions and to explain the observed crystal packing.

[Figure 3]
Figure 3
Hirshfeld surface of the title salt mapped with dnorm.

The shape index of the Hirshfeld surface is a tool to visualize ππ stacking inter­actions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 4[link] clearly suggest that there are no ππ inter­actions present in the title salt.

[Figure 4]
Figure 4
Hirshfeld surface of the title salt mapped with shape index.

Fig. 5[link](a) shows the 2D fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. These represent both the overall 2D fingerprint plots and those that represent H⋯H (44.3%), Br⋯H/H⋯Br (16.8%), C⋯H/H⋯C (13.9%), F⋯H/H⋯F (10.3%) and S⋯H/H⋯S (3.8%) contacts, respectively (Figs. 5[link]bf). The most significant inter­molecular inter­actions are the H⋯H inter­actions (44.3%) (Fig. 6b). All the contributions to the Hirshfeld surface are given in Table 2[link].

Table 2
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title salt

Contact Percentage contribution
H⋯H 44.3
Br⋯H/H⋯Br 16.8
C⋯H/H⋯C 13.9
F⋯H/H⋯F 10.3
S⋯H/H⋯S 3.8
N⋯C/C⋯N 3.6
S⋯C/C⋯S 2.7
N⋯H/H⋯N 1.8
C⋯C 1.5
N⋯N 0.7
Br⋯C/C⋯Br 0.3
S⋯N/N⋯S 0.3
F⋯C/C⋯F 0.2
[Figure 5]
Figure 5
The 2D fingerprint plots of the title salt, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C, (e) F⋯H/H⋯F and (f) S⋯H/H⋯S inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

3.1. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2-thia­zolidiniminium compounds gave seven hits, viz. UDELUN (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), WILBIC (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), WILBOI01 (Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]), YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]), YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) and YOPLUK (Marthi et al., 1995[Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20-27.]).

In the crystal of UDELUN (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π inter­actions, which only involve the minor-disorder component of the ring, also contribute to the mol­ecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts.

In the remaining structures, the 3-N atom carries a C-substituent instead of an N-substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994[Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762-771.]) of 3-(2′-chloro-2′-phenyl­eth­yl)-2-thia­zolidiniminium p-tolu­ene­sulfonate. In all three structures, the most disordered fragment of these mol­ecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enanti­omers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415-419.]) is a product of the inter­action of 2-amino-5-methyl­thia­zoline with methyl iodide, with alkyl­ation at the endocylic N atom, while YITCAF (Martem'yanova et al., 1993b[Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420-425.]) is a product of the reaction of 3-nitro-5-meth­oxy-, 3-nitro-5-chloro- and 3-bromo-5-nitro­salicyl­aldehyde with the heterocyclic base to form the salt-like complexes.

4. Synthesis and crystallization

To a solution of 3-amino-5-phenyl­thia­zolidin-2-iminium bro­mide (1 mmol) in ethanol (20 ml) was added 4-fluoro­benz­aldehyde (1 mmol). The mixture was refluxed for 2 h and then cooled. The reaction product precipitated from the reaction mixture as colourless single crystals, was collected by filtration and washed with cold acetone (yield 64%; m.p. 544–545 K). Analysis calculated (%) for C16H15BrFN3S: C 50.53, H 3.98, N 11.05; found: C 50.47, H 3.93, N 11.00. 1H NMR (300 MHz, DMSO-d6) : 4.56 (k, 1H, CH2, 3JH-H = 6.6 Hz), 4,87 (t, 1H, CH2, 3JH-H = 7.8 Hz), 5.60 (t, 1H, CH-Ar, 3JH-H = 7.8 Hz), 7.32–8.16 (m, 9H, 9Ar-H), 8.45 (s, 1H, CH=), 10.37 (s, 2H, NH2). 13C NMR (75 MHz, DMSO-d6): 45.39, 55.97, 116.05, 127.81, 128.91, 129.13, 129.60, 131.05, 131.17, 137.55, 150.00, 167.89. MS (ESI), m/z: 300.36 [C16H15FN3S]+ and 79.88 Br.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.90 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C,N). The phenyl ring in the cation is disordered over two sets of sites with an occupancy ratio of 0.503 (4):0.497 (4). Seven outliers (001; [\overline{3}]05; [\overline{1}]43; 010; [\overline{2}]75; [\overline{2}],[\overline{1}],12; and 7[\overline{5}]3) were omitted in the final cycles of refinement.

Table 3
Experimental details

Crystal data
Chemical formula C16H15FN3S+·Br
Mr 380.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.0599 (3), 8.6086 (4), 12.7608 (5)
α, β, γ (°) 96.548 (2), 92.518 (2), 111.065 (2)
V3) 817.39 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.65
Crystal size (mm) 0.16 × 0.12 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.664, 0.782
No. of measured, independent and observed [I > 2σ(I)] reflections 12009, 3321, 2672
Rint 0.025
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.04
No. of reflections 3321
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.48
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).

(E)-3-[(4-Fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide top
Crystal data top
C16H15FN3S+·BrZ = 2
Mr = 380.28F(000) = 384
Triclinic, P1Dx = 1.545 Mg m3
a = 8.0599 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6086 (4) ÅCell parameters from 5655 reflections
c = 12.7608 (5) Åθ = 2.6–26.3°
α = 96.548 (2)°µ = 2.65 mm1
β = 92.518 (2)°T = 296 K
γ = 111.065 (2)°Plate, colorless
V = 817.39 (6) Å30.16 × 0.12 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2672 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
θmax = 26.5°, θmin = 2.7°
Tmin = 0.664, Tmax = 0.782h = 107
12009 measured reflectionsk = 1010
3321 independent reflectionsl = 1415
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2228P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3321 reflectionsΔρmax = 0.37 e Å3
254 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.28837 (4)0.06846 (3)0.65093 (2)0.07274 (12)
S10.50535 (9)0.40641 (8)0.72511 (4)0.06317 (17)
F11.1652 (2)0.6889 (3)0.07197 (13)0.0994 (6)
N10.7677 (2)0.5288 (2)0.48291 (13)0.0510 (4)
C10.7491 (4)0.6768 (3)0.66453 (19)0.0676 (7)
H1A0.7659570.7803050.6356400.081*
H1B0.8592050.6885300.7043920.081*
N20.6981 (3)0.5342 (2)0.57951 (13)0.0540 (4)
C20.5974 (5)0.6381 (4)0.73431 (19)0.0803 (9)
H2A0.5067840.6808190.7105230.096*
N30.5389 (3)0.2468 (2)0.54077 (14)0.0564 (5)
H3A0.4725880.1530180.5664190.068*
H3B0.5982180.2401580.4833190.068*
C30.5851 (3)0.3881 (3)0.60334 (16)0.0489 (5)
C40.8962 (3)0.6588 (3)0.46468 (18)0.0583 (6)
H4A0.9434000.7517070.5168540.070*
C50.9692 (3)0.6619 (3)0.36204 (18)0.0532 (5)
C61.0980 (3)0.8092 (3)0.3405 (2)0.0691 (7)
H6A1.1390960.9029140.3923300.083*
C71.1660 (4)0.8188 (4)0.2431 (2)0.0767 (8)
H7A1.2540830.9169700.2291040.092*
C81.1011 (3)0.6810 (4)0.1683 (2)0.0665 (7)
C90.9756 (3)0.5314 (3)0.1862 (2)0.0659 (6)
H9A0.9353500.4386460.1336100.079*
C100.9115 (3)0.5229 (3)0.28380 (19)0.0592 (6)
H10A0.8277920.4222300.2980280.071*
C110.6893 (9)0.7289 (7)0.8505 (5)0.0447 (13)0.503 (4)
C120.5575 (7)0.6983 (7)0.9197 (5)0.0691 (15)0.503 (4)
H12A0.4392290.6358050.8947320.083*0.503 (4)
C130.6019 (12)0.7611 (13)1.0269 (6)0.074 (2)0.503 (4)
H13A0.5132510.7392871.0734810.089*0.503 (4)
C140.7747 (12)0.8546 (10)1.0639 (5)0.0740 (16)0.503 (4)
H14A0.8043490.8988341.1351300.089*0.503 (4)
C150.9041 (8)0.8822 (8)0.9946 (4)0.0811 (17)0.503 (4)
H15A1.0227340.9436081.0192150.097*0.503 (4)
C160.8600 (7)0.8201 (7)0.8893 (4)0.0660 (14)0.503 (4)
H16A0.9495860.8410270.8433220.079*0.503 (4)
C11'0.5982 (9)0.7008 (8)0.8494 (5)0.0489 (14)0.497 (4)
C12'0.5168 (7)0.8137 (6)0.8805 (4)0.0631 (13)0.497 (4)
H12B0.4470470.8413500.8313710.076*0.497 (4)
C13'0.5408 (8)0.8852 (7)0.9865 (5)0.0759 (18)0.497 (4)
H13B0.4882520.9622011.0079700.091*0.497 (4)
C14'0.6390 (15)0.8437 (12)1.0570 (7)0.079 (3)0.497 (4)
H14B0.6556460.8935161.1272400.094*0.497 (4)
C15'0.7133 (14)0.7321 (12)1.0286 (5)0.0843 (19)0.497 (4)
H15B0.7790400.7022741.0789400.101*0.497 (4)
C16'0.6923 (8)0.6598 (8)0.9226 (5)0.0793 (17)0.497 (4)
H16B0.7447370.5820130.9029740.095*0.497 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0842 (2)0.05494 (16)0.05450 (16)0.00131 (12)0.02403 (12)0.00748 (11)
S10.0911 (4)0.0681 (4)0.0419 (3)0.0401 (3)0.0203 (3)0.0126 (3)
F10.1003 (12)0.1287 (15)0.0746 (10)0.0375 (11)0.0439 (9)0.0375 (10)
N10.0588 (10)0.0484 (10)0.0428 (9)0.0154 (9)0.0093 (8)0.0067 (8)
C10.1015 (19)0.0518 (13)0.0448 (12)0.0257 (13)0.0005 (12)0.0010 (10)
N20.0706 (12)0.0494 (10)0.0385 (9)0.0183 (9)0.0088 (8)0.0032 (8)
C20.145 (3)0.0759 (18)0.0422 (13)0.0652 (19)0.0157 (15)0.0117 (12)
N30.0696 (11)0.0478 (10)0.0492 (10)0.0162 (9)0.0199 (9)0.0087 (8)
C30.0593 (12)0.0513 (12)0.0400 (10)0.0240 (10)0.0079 (9)0.0079 (9)
C40.0643 (14)0.0516 (13)0.0492 (12)0.0108 (11)0.0016 (10)0.0044 (10)
C50.0504 (12)0.0514 (12)0.0535 (12)0.0119 (10)0.0028 (10)0.0139 (10)
C60.0733 (16)0.0558 (14)0.0663 (15)0.0074 (12)0.0053 (13)0.0159 (12)
C70.0708 (16)0.0692 (17)0.0845 (19)0.0101 (13)0.0177 (14)0.0362 (16)
C80.0585 (14)0.0891 (19)0.0617 (15)0.0311 (14)0.0196 (12)0.0303 (14)
C90.0575 (14)0.0732 (16)0.0636 (15)0.0204 (12)0.0141 (11)0.0049 (12)
C100.0515 (12)0.0560 (13)0.0627 (14)0.0092 (10)0.0148 (11)0.0103 (11)
C110.052 (3)0.043 (3)0.043 (3)0.018 (3)0.015 (3)0.012 (2)
C120.060 (3)0.084 (4)0.059 (4)0.021 (3)0.014 (3)0.005 (3)
C130.084 (6)0.101 (6)0.045 (4)0.042 (5)0.018 (4)0.009 (4)
C140.100 (5)0.083 (5)0.042 (3)0.038 (4)0.006 (3)0.001 (3)
C150.085 (4)0.096 (4)0.055 (3)0.029 (3)0.003 (3)0.001 (3)
C160.066 (3)0.077 (3)0.049 (3)0.020 (3)0.011 (2)0.003 (2)
C11'0.051 (4)0.053 (3)0.036 (3)0.009 (3)0.016 (3)0.007 (2)
C12'0.066 (3)0.058 (3)0.065 (3)0.019 (2)0.009 (2)0.020 (2)
C13'0.092 (4)0.057 (3)0.083 (4)0.031 (3)0.041 (3)0.006 (3)
C14'0.095 (7)0.073 (5)0.042 (4)0.002 (5)0.013 (4)0.004 (3)
C15'0.087 (5)0.111 (7)0.055 (4)0.037 (5)0.011 (3)0.012 (4)
C16'0.084 (4)0.096 (4)0.072 (4)0.053 (4)0.008 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—C31.720 (2)C9—C101.369 (3)
S1—C21.848 (3)C9—H9A0.9300
F1—C81.353 (3)C10—H10A0.9300
N1—C41.276 (3)C11—C161.353 (8)
N1—N21.380 (2)C11—C121.383 (7)
C1—N21.465 (3)C12—C131.393 (10)
C1—C21.506 (4)C12—H12A0.9300
C1—H1A0.9700C13—C141.364 (14)
C1—H1B0.9700C13—H13A0.9300
N2—C31.339 (3)C14—C151.370 (9)
C2—C11'1.505 (6)C14—H14A0.9300
C2—C111.607 (7)C15—C161.370 (7)
C2—H2A0.9800C15—H15A0.9300
N3—C31.297 (3)C16—H16A0.9300
N3—H3A0.9001C11'—C16'1.333 (9)
N3—H3B0.9000C11'—C12'1.389 (8)
C4—C51.458 (3)C12'—C13'1.394 (8)
C4—H4A0.9300C12'—H12B0.9300
C5—C61.386 (3)C13'—C14'1.334 (12)
C5—C101.390 (3)C13'—H13B0.9300
C6—C71.379 (4)C14'—C15'1.329 (15)
C6—H6A0.9300C14'—H14B0.9300
C7—C81.358 (4)C15'—C16'1.399 (9)
C7—H7A0.9300C15'—H15B0.9300
C8—C91.373 (4)C16'—H16B0.9300
C3—S1—C290.65 (11)C10—C9—H9A121.0
C4—N1—N2117.98 (19)C8—C9—H9A121.0
N2—C1—C2105.8 (2)C9—C10—C5121.2 (2)
N2—C1—H1A110.6C9—C10—H10A119.4
C2—C1—H1A110.6C5—C10—H10A119.4
N2—C1—H1B110.6C16—C11—C12118.7 (5)
C2—C1—H1B110.6C16—C11—C2133.2 (5)
H1A—C1—H1B108.7C12—C11—C2108.2 (5)
C3—N2—N1116.37 (17)C11—C12—C13120.0 (6)
C3—N2—C1115.67 (18)C11—C12—H12A120.0
N1—N2—C1127.52 (19)C13—C12—H12A120.0
C11'—C2—C1129.4 (4)C14—C13—C12120.3 (7)
C1—C2—C11104.7 (3)C14—C13—H13A119.8
C11'—C2—S1104.9 (3)C12—C13—H13A119.8
C1—C2—S1105.04 (17)C13—C14—C15119.0 (6)
C11—C2—S1112.7 (2)C13—C14—H14A120.5
C1—C2—H2A111.4C15—C14—H14A120.5
C11—C2—H2A111.4C16—C15—C14120.5 (6)
S1—C2—H2A111.4C16—C15—H15A119.7
C3—N3—H3A117.3C14—C15—H15A119.7
C3—N3—H3B119.6C11—C16—C15121.5 (5)
H3A—N3—H3B120.5C11—C16—H16A119.2
N3—C3—N2123.59 (19)C15—C16—H16A119.2
N3—C3—S1123.18 (17)C16'—C11'—C12'118.8 (6)
N2—C3—S1113.23 (16)C16'—C11'—C2119.7 (5)
N1—C4—C5120.0 (2)C12'—C11'—C2121.2 (5)
N1—C4—H4A120.0C11'—C12'—C13'119.1 (5)
C5—C4—H4A120.0C11'—C12'—H12B120.4
C6—C5—C10118.6 (2)C13'—C12'—H12B120.4
C6—C5—C4119.1 (2)C14'—C13'—C12'120.3 (6)
C10—C5—C4122.3 (2)C14'—C13'—H13B119.9
C7—C6—C5120.8 (3)C12'—C13'—H13B119.9
C7—C6—H6A119.6C15'—C14'—C13'121.0 (8)
C5—C6—H6A119.6C15'—C14'—H14B119.5
C8—C7—C6118.3 (2)C13'—C14'—H14B119.5
C8—C7—H7A120.9C14'—C15'—C16'119.7 (8)
C6—C7—H7A120.9C14'—C15'—H15B120.1
F1—C8—C7119.0 (2)C16'—C15'—H15B120.1
F1—C8—C9117.9 (3)C11'—C16'—C15'121.0 (6)
C7—C8—C9123.1 (2)C11'—C16'—H16B119.5
C10—C9—C8118.0 (3)C15'—C16'—H16B119.5
C4—N1—N2—C3169.1 (2)C6—C5—C10—C92.0 (4)
C4—N1—N2—C13.0 (3)C4—C5—C10—C9176.7 (2)
C2—C1—N2—C326.1 (3)C1—C2—C11—C161.1 (7)
C2—C1—N2—N1161.8 (2)S1—C2—C11—C16112.5 (6)
N2—C1—C2—C11'155.8 (4)C1—C2—C11—C12179.8 (4)
N2—C1—C2—C11150.2 (3)S1—C2—C11—C1266.2 (5)
N2—C1—C2—S131.4 (2)C16—C11—C12—C130.1 (10)
C3—S1—C2—C11'163.6 (3)C2—C11—C12—C13178.9 (6)
C3—S1—C2—C124.92 (19)C11—C12—C13—C140.8 (14)
C3—S1—C2—C11138.3 (3)C12—C13—C14—C151.5 (15)
N1—N2—C3—N30.7 (3)C13—C14—C15—C161.4 (12)
C1—N2—C3—N3173.7 (2)C12—C11—C16—C150.2 (9)
N1—N2—C3—S1179.87 (14)C2—C11—C16—C15178.7 (5)
C1—N2—C3—S16.8 (3)C14—C15—C16—C110.6 (10)
C2—S1—C3—N3168.1 (2)C1—C2—C11'—C16'64.5 (7)
C2—S1—C3—N211.35 (19)S1—C2—C11'—C16'59.9 (7)
N2—N1—C4—C5177.36 (19)C1—C2—C11'—C12'109.3 (6)
N1—C4—C5—C6174.4 (2)S1—C2—C11'—C12'126.3 (5)
N1—C4—C5—C104.2 (4)C16'—C11'—C12'—C13'2.2 (9)
C10—C5—C6—C70.8 (4)C2—C11'—C12'—C13'171.6 (5)
C4—C5—C6—C7177.9 (2)C11'—C12'—C13'—C14'0.9 (9)
C5—C6—C7—C81.2 (4)C12'—C13'—C14'—C15'1.0 (13)
C6—C7—C8—F1179.3 (2)C13'—C14'—C15'—C16'1.5 (16)
C6—C7—C8—C92.3 (4)C12'—C11'—C16'—C15'1.7 (11)
F1—C8—C9—C10179.6 (2)C2—C11'—C16'—C15'172.2 (6)
C7—C8—C9—C101.1 (4)C14'—C15'—C16'—C11'0.2 (14)
C8—C9—C10—C51.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Br10.902.363.2557 (18)172
N3—H3B···Br1i0.902.553.3552 (18)150
C4—H4A···Br1ii0.932.993.726 (2)137
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z.
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title salt top
ContactPercentage contribution
H···H44.3
Br···H/H···Br16.8
C···H/H···C13.9
F···H/H···F10.3
S···H/H···S3.8
N···C/C···N3.6
S···C/C···S2.7
N···H/H···N1.8
C···C1.5
N···N0.7
Br···C/C···Br0.3
S···N/N···S0.3
F···C/C···F0.2
 

Acknowledgements

Ali Khalilov is grateful to Baku State University for the `50+50' individual grant in support of this work.

References

First citationAkbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180.  CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.  CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018c). Eur. J. Inorg. Chem. pp. 4763–4772.  Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73.  CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  CSD CrossRef CAS Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419.  Google Scholar
First citationMartem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425.  Google Scholar
First citationMarthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.  Google Scholar
First citationShixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds