research communications
E)-3-[(4-fluorobenzylidene)amino]-5-phenylthiazolidin-2-iminium bromide
and Hirshfeld surface analysis of (aOrganic Chemistry Department, Baku State University, Z. Xalilov str. 23, Az 1148, Baku, Azerbaijan, bDepartment of Physics and Chemistry, "Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, cİlke Education and Health Foundation, Cappadocia University, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of Cameroon
*Correspondence e-mail: toflavien@yahoo.fr
In the cation of the title salt, C16H15FN3S+·Br−, the phenyl ring is disordered over two sets of sites with a refined occupancy ratio of 0.503 (4):0.497 (4). The mean plane of the thiazolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluorophenyl ring and the major- and minor-disorder components of the phenyl ring, respectively. The central thiazolidine ring adopts an In the crystal, centrosymmetrically related cations and anions are linked into dimeric units via N—H⋯Br hydrogen bonds, which are further connected by weak C—H⋯Br hydrogen bonds into chains parallel to [110]. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (44.3%), Br⋯H/H⋯Br (16.8%), C⋯H/H⋯C (13.9%), F⋯H/H⋯F (10.3%) and S⋯H/H⋯S (3.8%) interactions.
Keywords: crystal structure; charge assisted hydrogen bonding; thiazolidine ring; disorder; Hirshfeld surface analysis..
CCDC reference: 1909594
1. Chemical context
Noncovalent interactions, both intermolecular and intramolecular, occur in virtually every substance and play an important role in the synthesis, catalysis, design of materials and biological processes (Akbari et al., 2017; Gurbanov et al., 2018; Kopylovich et al., 2011; Maharramov et al., 2010; Mahmoudi et al., 2018a,b,c; Mahmudov et al., 2011, 2013, 2014a,b, 2015, 2017a,b, 2019; Shixaliyev et al., 2013, 2018). On the other hand, and related hydrazone ligands and their complexes have attracted attention over the past decades due to their potential biological, pharmacological and analytical applications (Kopylovich et al., 2011; Mahmoudi et al., 2018a,b,c; Mahmudov et al., 2013). Hetercyclic are also widely used in the synthesis of which provide different kinds of noncovalent interactions. As a further study in this field, we report herein the and Hirshfeld surface analysis of the title compound.
2. Structural commentary
The thiazolidine ring (S1/N2/C1–C3) in the cation of the title salt (Fig. 1) adopts an with puckering parameters of Q(2) = 0.321 (3) Å and φ(2) = 43.3 (5)°. The mean plane of the thiazolidine ring makes dihedral angles of 13.51 (14), 48.6 (3) and 76.5 (3)° with the fluorophenyl ring (C5–C10) and the major- and minor-disorder components (C11–C16 and C11′–C16′) of the phenyl ring, respectively. The N2—N1—C4—C5 bridge that links the thiazolidine and 4-fluorophenyl rings has a torsion angle of −177.36 (19)°.
3. Supramolecular features and Hirshfeld surface analysis
In the crystal, centrosymmetrically related cations and anions are linked via pairs of N—H⋯Br hydrogen bonds (Table 1) into dimeric units forming rings of R42(8) graph-set motif (Fig. 2). The dimers are further connected by weak C—H⋯Br interactions to form chains running parallel to [110].
|
Hirshfeld surface analysis was used to investigate the presence of hydrogen bonds and intermolecular interactions in the ) of the title salt was generated by CrystalExplorer3.1 (Wolff et al., 2012), and comprised dnorm surface plots and 2D fingerprint plots (Spackman & McKinnon, 2002). The plots of the Hirshfeld surface mapped over dnorm using a standard surface resolution with a fixed colour scale of −1.4747 (red) to 1.2166 a.u. (blue) is shown in Fig. 3. This plot was generated to quantify and visualize the intermolecular interactions and to explain the observed crystal packing.
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009The shape index of the Hirshfeld surface is a tool to visualize π–π stacking interactions by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 4 clearly suggest that there are no π–π interactions present in the title salt.
Fig. 5(a) shows the 2D fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. These represent both the overall 2D fingerprint plots and those that represent H⋯H (44.3%), Br⋯H/H⋯Br (16.8%), C⋯H/H⋯C (13.9%), F⋯H/H⋯F (10.3%) and S⋯H/H⋯S (3.8%) contacts, respectively (Figs. 5b–f). The most significant intermolecular interactions are the H⋯H interactions (44.3%) (Fig. 6b). All the contributions to the Hirshfeld surface are given in Table 2.
|
3.1. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update of November 2018; Groom et al., 2016) for 2-thiazolidiniminium compounds gave seven hits, viz. UDELUN (Akkurt et al., 2018), WILBIC (Marthi et al., 1994), WILBOI (Marthi et al., 1994), WILBOI01 (Marthi et al., 1994), YITCEJ (Martem'yanova et al., 1993a), YITCAF (Martem'yanova et al., 1993b) and YOPLUK (Marthi et al., 1995).
In the crystal of UDELUN (Akkurt et al., 2018), C—H⋯Br and N—H⋯Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along the b-axis direction. Weak C—H⋯π interactions, which only involve the minor-disorder component of the ring, also contribute to the molecular packing. In addition, there are also inversion-related Cl⋯Cl halogen bonds and C—Cl⋯π(ring) contacts.
In the remaining structures, the 3-N atom carries a C-substituent instead of an N-substituent, as found in the title compound. The first three crystal structures were determined for racemic (WILBIC; Marthi et al., 1994) and two optically active samples (WILBOI and WILBOI01; Marthi et al., 1994) of 3-(2′-chloro-2′-phenylethyl)-2-thiazolidiniminium p-toluenesulfonate. In all three structures, the most disordered fragment of these molecules is the asymmetric C atom and the Cl atom attached to it. The disorder of the cation in the racemate corresponds to the presence of both enantiomers at each site in the ratio 0.821 (3):0.179 (3). The system of hydrogen bonds connecting two cations and two anions into 12-membered rings is identical in the racemic and in the optically active crystals. YITCEJ (Martem'yanova et al., 1993a) is a product of the interaction of 2-amino-5-methylthiazoline with methyl iodide, with alkylation at the endocylic N atom, while YITCAF (Martem'yanova et al., 1993b) is a product of the reaction of 3-nitro-5-methoxy-, 3-nitro-5-chloro- and 3-bromo-5-nitrosalicylaldehyde with the heterocyclic base to form the salt-like complexes.
4. Synthesis and crystallization
To a solution of 3-amino-5-phenylthiazolidin-2-iminium bromide (1 mmol) in ethanol (20 ml) was added 4-fluorobenzaldehyde (1 mmol). The mixture was refluxed for 2 h and then cooled. The reaction product precipitated from the reaction mixture as colourless single crystals, was collected by filtration and washed with cold acetone (yield 64%; m.p. 544–545 K). Analysis calculated (%) for C16H15BrFN3S: C 50.53, H 3.98, N 11.05; found: C 50.47, H 3.93, N 11.00. 1H NMR (300 MHz, DMSO-d6) : 4.56 (k, 1H, CH2, 3JH-H = 6.6 Hz), 4,87 (t, 1H, CH2, 3JH-H = 7.8 Hz), 5.60 (t, 1H, CH-Ar, 3JH-H = 7.8 Hz), 7.32–8.16 (m, 9H, 9Ar-H), 8.45 (s, 1H, CH=), 10.37 (s, 2H, NH2). 13C NMR (75 MHz, DMSO-d6): 45.39, 55.97, 116.05, 127.81, 128.91, 129.13, 129.60, 131.05, 131.17, 137.55, 150.00, 167.89. MS (ESI), m/z: 300.36 [C16H15FN3S]+ and 79.88 Br−.
5. details
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.90 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C,N). The phenyl ring in the cation is disordered over two sets of sites with an occupancy ratio of 0.503 (4):0.497 (4). Seven outliers (001; 05; 43; 010; 75; ,,12; and 73) were omitted in the final cycles of refinement.
details are summarized in Table 3Supporting information
CCDC reference: 1909594
https://doi.org/10.1107/S2056989019004973/rz5254sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004973/rz5254Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2003).C16H15FN3S+·Br− | Z = 2 |
Mr = 380.28 | F(000) = 384 |
Triclinic, P1 | Dx = 1.545 Mg m−3 |
a = 8.0599 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.6086 (4) Å | Cell parameters from 5655 reflections |
c = 12.7608 (5) Å | θ = 2.6–26.3° |
α = 96.548 (2)° | µ = 2.65 mm−1 |
β = 92.518 (2)° | T = 296 K |
γ = 111.065 (2)° | Plate, colorless |
V = 817.39 (6) Å3 | 0.16 × 0.12 × 0.09 mm |
Bruker APEXII CCD diffractometer | 2672 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | θmax = 26.5°, θmin = 2.7° |
Tmin = 0.664, Tmax = 0.782 | h = −10→7 |
12009 measured reflections | k = −10→10 |
3321 independent reflections | l = −14→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2228P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3321 reflections | Δρmax = 0.37 e Å−3 |
254 parameters | Δρmin = −0.48 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.28837 (4) | −0.06846 (3) | 0.65093 (2) | 0.07274 (12) | |
S1 | 0.50535 (9) | 0.40641 (8) | 0.72511 (4) | 0.06317 (17) | |
F1 | 1.1652 (2) | 0.6889 (3) | 0.07197 (13) | 0.0994 (6) | |
N1 | 0.7677 (2) | 0.5288 (2) | 0.48291 (13) | 0.0510 (4) | |
C1 | 0.7491 (4) | 0.6768 (3) | 0.66453 (19) | 0.0676 (7) | |
H1A | 0.765957 | 0.780305 | 0.635640 | 0.081* | |
H1B | 0.859205 | 0.688530 | 0.704392 | 0.081* | |
N2 | 0.6981 (3) | 0.5342 (2) | 0.57951 (13) | 0.0540 (4) | |
C2 | 0.5974 (5) | 0.6381 (4) | 0.73431 (19) | 0.0803 (9) | |
H2A | 0.506784 | 0.680819 | 0.710523 | 0.096* | |
N3 | 0.5389 (3) | 0.2468 (2) | 0.54077 (14) | 0.0564 (5) | |
H3A | 0.472588 | 0.153018 | 0.566419 | 0.068* | |
H3B | 0.598218 | 0.240158 | 0.483319 | 0.068* | |
C3 | 0.5851 (3) | 0.3881 (3) | 0.60334 (16) | 0.0489 (5) | |
C4 | 0.8962 (3) | 0.6588 (3) | 0.46468 (18) | 0.0583 (6) | |
H4A | 0.943400 | 0.751707 | 0.516854 | 0.070* | |
C5 | 0.9692 (3) | 0.6619 (3) | 0.36204 (18) | 0.0532 (5) | |
C6 | 1.0980 (3) | 0.8092 (3) | 0.3405 (2) | 0.0691 (7) | |
H6A | 1.139096 | 0.902914 | 0.392330 | 0.083* | |
C7 | 1.1660 (4) | 0.8188 (4) | 0.2431 (2) | 0.0767 (8) | |
H7A | 1.254083 | 0.916970 | 0.229104 | 0.092* | |
C8 | 1.1011 (3) | 0.6810 (4) | 0.1683 (2) | 0.0665 (7) | |
C9 | 0.9756 (3) | 0.5314 (3) | 0.1862 (2) | 0.0659 (6) | |
H9A | 0.935350 | 0.438646 | 0.133610 | 0.079* | |
C10 | 0.9115 (3) | 0.5229 (3) | 0.28380 (19) | 0.0592 (6) | |
H10A | 0.827792 | 0.422230 | 0.298028 | 0.071* | |
C11 | 0.6893 (9) | 0.7289 (7) | 0.8505 (5) | 0.0447 (13) | 0.503 (4) |
C12 | 0.5575 (7) | 0.6983 (7) | 0.9197 (5) | 0.0691 (15) | 0.503 (4) |
H12A | 0.439229 | 0.635805 | 0.894732 | 0.083* | 0.503 (4) |
C13 | 0.6019 (12) | 0.7611 (13) | 1.0269 (6) | 0.074 (2) | 0.503 (4) |
H13A | 0.513251 | 0.739287 | 1.073481 | 0.089* | 0.503 (4) |
C14 | 0.7747 (12) | 0.8546 (10) | 1.0639 (5) | 0.0740 (16) | 0.503 (4) |
H14A | 0.804349 | 0.898834 | 1.135130 | 0.089* | 0.503 (4) |
C15 | 0.9041 (8) | 0.8822 (8) | 0.9946 (4) | 0.0811 (17) | 0.503 (4) |
H15A | 1.022734 | 0.943608 | 1.019215 | 0.097* | 0.503 (4) |
C16 | 0.8600 (7) | 0.8201 (7) | 0.8893 (4) | 0.0660 (14) | 0.503 (4) |
H16A | 0.949586 | 0.841027 | 0.843322 | 0.079* | 0.503 (4) |
C11' | 0.5982 (9) | 0.7008 (8) | 0.8494 (5) | 0.0489 (14) | 0.497 (4) |
C12' | 0.5168 (7) | 0.8137 (6) | 0.8805 (4) | 0.0631 (13) | 0.497 (4) |
H12B | 0.447047 | 0.841350 | 0.831371 | 0.076* | 0.497 (4) |
C13' | 0.5408 (8) | 0.8852 (7) | 0.9865 (5) | 0.0759 (18) | 0.497 (4) |
H13B | 0.488252 | 0.962201 | 1.007970 | 0.091* | 0.497 (4) |
C14' | 0.6390 (15) | 0.8437 (12) | 1.0570 (7) | 0.079 (3) | 0.497 (4) |
H14B | 0.655646 | 0.893516 | 1.127240 | 0.094* | 0.497 (4) |
C15' | 0.7133 (14) | 0.7321 (12) | 1.0286 (5) | 0.0843 (19) | 0.497 (4) |
H15B | 0.779040 | 0.702274 | 1.078940 | 0.101* | 0.497 (4) |
C16' | 0.6923 (8) | 0.6598 (8) | 0.9226 (5) | 0.0793 (17) | 0.497 (4) |
H16B | 0.744737 | 0.582013 | 0.902974 | 0.095* | 0.497 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0842 (2) | 0.05494 (16) | 0.05450 (16) | −0.00131 (12) | 0.02403 (12) | −0.00748 (11) |
S1 | 0.0911 (4) | 0.0681 (4) | 0.0419 (3) | 0.0401 (3) | 0.0203 (3) | 0.0126 (3) |
F1 | 0.1003 (12) | 0.1287 (15) | 0.0746 (10) | 0.0375 (11) | 0.0439 (9) | 0.0375 (10) |
N1 | 0.0588 (10) | 0.0484 (10) | 0.0428 (9) | 0.0154 (9) | 0.0093 (8) | 0.0067 (8) |
C1 | 0.1015 (19) | 0.0518 (13) | 0.0448 (12) | 0.0257 (13) | −0.0005 (12) | −0.0010 (10) |
N2 | 0.0706 (12) | 0.0494 (10) | 0.0385 (9) | 0.0183 (9) | 0.0088 (8) | 0.0032 (8) |
C2 | 0.145 (3) | 0.0759 (18) | 0.0422 (13) | 0.0652 (19) | 0.0157 (15) | 0.0117 (12) |
N3 | 0.0696 (11) | 0.0478 (10) | 0.0492 (10) | 0.0162 (9) | 0.0199 (9) | 0.0087 (8) |
C3 | 0.0593 (12) | 0.0513 (12) | 0.0400 (10) | 0.0240 (10) | 0.0079 (9) | 0.0079 (9) |
C4 | 0.0643 (14) | 0.0516 (13) | 0.0492 (12) | 0.0108 (11) | 0.0016 (10) | 0.0044 (10) |
C5 | 0.0504 (12) | 0.0514 (12) | 0.0535 (12) | 0.0119 (10) | 0.0028 (10) | 0.0139 (10) |
C6 | 0.0733 (16) | 0.0558 (14) | 0.0663 (15) | 0.0074 (12) | 0.0053 (13) | 0.0159 (12) |
C7 | 0.0708 (16) | 0.0692 (17) | 0.0845 (19) | 0.0101 (13) | 0.0177 (14) | 0.0362 (16) |
C8 | 0.0585 (14) | 0.0891 (19) | 0.0617 (15) | 0.0311 (14) | 0.0196 (12) | 0.0303 (14) |
C9 | 0.0575 (14) | 0.0732 (16) | 0.0636 (15) | 0.0204 (12) | 0.0141 (11) | 0.0049 (12) |
C10 | 0.0515 (12) | 0.0560 (13) | 0.0627 (14) | 0.0092 (10) | 0.0148 (11) | 0.0103 (11) |
C11 | 0.052 (3) | 0.043 (3) | 0.043 (3) | 0.018 (3) | 0.015 (3) | 0.012 (2) |
C12 | 0.060 (3) | 0.084 (4) | 0.059 (4) | 0.021 (3) | 0.014 (3) | 0.005 (3) |
C13 | 0.084 (6) | 0.101 (6) | 0.045 (4) | 0.042 (5) | 0.018 (4) | 0.009 (4) |
C14 | 0.100 (5) | 0.083 (5) | 0.042 (3) | 0.038 (4) | 0.006 (3) | 0.001 (3) |
C15 | 0.085 (4) | 0.096 (4) | 0.055 (3) | 0.029 (3) | 0.003 (3) | 0.001 (3) |
C16 | 0.066 (3) | 0.077 (3) | 0.049 (3) | 0.020 (3) | 0.011 (2) | 0.003 (2) |
C11' | 0.051 (4) | 0.053 (3) | 0.036 (3) | 0.009 (3) | 0.016 (3) | 0.007 (2) |
C12' | 0.066 (3) | 0.058 (3) | 0.065 (3) | 0.019 (2) | 0.009 (2) | 0.020 (2) |
C13' | 0.092 (4) | 0.057 (3) | 0.083 (4) | 0.031 (3) | 0.041 (3) | 0.006 (3) |
C14' | 0.095 (7) | 0.073 (5) | 0.042 (4) | 0.002 (5) | 0.013 (4) | −0.004 (3) |
C15' | 0.087 (5) | 0.111 (7) | 0.055 (4) | 0.037 (5) | −0.011 (3) | 0.012 (4) |
C16' | 0.084 (4) | 0.096 (4) | 0.072 (4) | 0.053 (4) | 0.008 (3) | 0.002 (3) |
S1—C3 | 1.720 (2) | C9—C10 | 1.369 (3) |
S1—C2 | 1.848 (3) | C9—H9A | 0.9300 |
F1—C8 | 1.353 (3) | C10—H10A | 0.9300 |
N1—C4 | 1.276 (3) | C11—C16 | 1.353 (8) |
N1—N2 | 1.380 (2) | C11—C12 | 1.383 (7) |
C1—N2 | 1.465 (3) | C12—C13 | 1.393 (10) |
C1—C2 | 1.506 (4) | C12—H12A | 0.9300 |
C1—H1A | 0.9700 | C13—C14 | 1.364 (14) |
C1—H1B | 0.9700 | C13—H13A | 0.9300 |
N2—C3 | 1.339 (3) | C14—C15 | 1.370 (9) |
C2—C11' | 1.505 (6) | C14—H14A | 0.9300 |
C2—C11 | 1.607 (7) | C15—C16 | 1.370 (7) |
C2—H2A | 0.9800 | C15—H15A | 0.9300 |
N3—C3 | 1.297 (3) | C16—H16A | 0.9300 |
N3—H3A | 0.9001 | C11'—C16' | 1.333 (9) |
N3—H3B | 0.9000 | C11'—C12' | 1.389 (8) |
C4—C5 | 1.458 (3) | C12'—C13' | 1.394 (8) |
C4—H4A | 0.9300 | C12'—H12B | 0.9300 |
C5—C6 | 1.386 (3) | C13'—C14' | 1.334 (12) |
C5—C10 | 1.390 (3) | C13'—H13B | 0.9300 |
C6—C7 | 1.379 (4) | C14'—C15' | 1.329 (15) |
C6—H6A | 0.9300 | C14'—H14B | 0.9300 |
C7—C8 | 1.358 (4) | C15'—C16' | 1.399 (9) |
C7—H7A | 0.9300 | C15'—H15B | 0.9300 |
C8—C9 | 1.373 (4) | C16'—H16B | 0.9300 |
C3—S1—C2 | 90.65 (11) | C10—C9—H9A | 121.0 |
C4—N1—N2 | 117.98 (19) | C8—C9—H9A | 121.0 |
N2—C1—C2 | 105.8 (2) | C9—C10—C5 | 121.2 (2) |
N2—C1—H1A | 110.6 | C9—C10—H10A | 119.4 |
C2—C1—H1A | 110.6 | C5—C10—H10A | 119.4 |
N2—C1—H1B | 110.6 | C16—C11—C12 | 118.7 (5) |
C2—C1—H1B | 110.6 | C16—C11—C2 | 133.2 (5) |
H1A—C1—H1B | 108.7 | C12—C11—C2 | 108.2 (5) |
C3—N2—N1 | 116.37 (17) | C11—C12—C13 | 120.0 (6) |
C3—N2—C1 | 115.67 (18) | C11—C12—H12A | 120.0 |
N1—N2—C1 | 127.52 (19) | C13—C12—H12A | 120.0 |
C11'—C2—C1 | 129.4 (4) | C14—C13—C12 | 120.3 (7) |
C1—C2—C11 | 104.7 (3) | C14—C13—H13A | 119.8 |
C11'—C2—S1 | 104.9 (3) | C12—C13—H13A | 119.8 |
C1—C2—S1 | 105.04 (17) | C13—C14—C15 | 119.0 (6) |
C11—C2—S1 | 112.7 (2) | C13—C14—H14A | 120.5 |
C1—C2—H2A | 111.4 | C15—C14—H14A | 120.5 |
C11—C2—H2A | 111.4 | C16—C15—C14 | 120.5 (6) |
S1—C2—H2A | 111.4 | C16—C15—H15A | 119.7 |
C3—N3—H3A | 117.3 | C14—C15—H15A | 119.7 |
C3—N3—H3B | 119.6 | C11—C16—C15 | 121.5 (5) |
H3A—N3—H3B | 120.5 | C11—C16—H16A | 119.2 |
N3—C3—N2 | 123.59 (19) | C15—C16—H16A | 119.2 |
N3—C3—S1 | 123.18 (17) | C16'—C11'—C12' | 118.8 (6) |
N2—C3—S1 | 113.23 (16) | C16'—C11'—C2 | 119.7 (5) |
N1—C4—C5 | 120.0 (2) | C12'—C11'—C2 | 121.2 (5) |
N1—C4—H4A | 120.0 | C11'—C12'—C13' | 119.1 (5) |
C5—C4—H4A | 120.0 | C11'—C12'—H12B | 120.4 |
C6—C5—C10 | 118.6 (2) | C13'—C12'—H12B | 120.4 |
C6—C5—C4 | 119.1 (2) | C14'—C13'—C12' | 120.3 (6) |
C10—C5—C4 | 122.3 (2) | C14'—C13'—H13B | 119.9 |
C7—C6—C5 | 120.8 (3) | C12'—C13'—H13B | 119.9 |
C7—C6—H6A | 119.6 | C15'—C14'—C13' | 121.0 (8) |
C5—C6—H6A | 119.6 | C15'—C14'—H14B | 119.5 |
C8—C7—C6 | 118.3 (2) | C13'—C14'—H14B | 119.5 |
C8—C7—H7A | 120.9 | C14'—C15'—C16' | 119.7 (8) |
C6—C7—H7A | 120.9 | C14'—C15'—H15B | 120.1 |
F1—C8—C7 | 119.0 (2) | C16'—C15'—H15B | 120.1 |
F1—C8—C9 | 117.9 (3) | C11'—C16'—C15' | 121.0 (6) |
C7—C8—C9 | 123.1 (2) | C11'—C16'—H16B | 119.5 |
C10—C9—C8 | 118.0 (3) | C15'—C16'—H16B | 119.5 |
C4—N1—N2—C3 | −169.1 (2) | C6—C5—C10—C9 | −2.0 (4) |
C4—N1—N2—C1 | 3.0 (3) | C4—C5—C10—C9 | 176.7 (2) |
C2—C1—N2—C3 | −26.1 (3) | C1—C2—C11—C16 | −1.1 (7) |
C2—C1—N2—N1 | 161.8 (2) | S1—C2—C11—C16 | 112.5 (6) |
N2—C1—C2—C11' | 155.8 (4) | C1—C2—C11—C12 | −179.8 (4) |
N2—C1—C2—C11 | 150.2 (3) | S1—C2—C11—C12 | −66.2 (5) |
N2—C1—C2—S1 | 31.4 (2) | C16—C11—C12—C13 | 0.1 (10) |
C3—S1—C2—C11' | −163.6 (3) | C2—C11—C12—C13 | 178.9 (6) |
C3—S1—C2—C1 | −24.92 (19) | C11—C12—C13—C14 | 0.8 (14) |
C3—S1—C2—C11 | −138.3 (3) | C12—C13—C14—C15 | −1.5 (15) |
N1—N2—C3—N3 | −0.7 (3) | C13—C14—C15—C16 | 1.4 (12) |
C1—N2—C3—N3 | −173.7 (2) | C12—C11—C16—C15 | −0.2 (9) |
N1—N2—C3—S1 | 179.87 (14) | C2—C11—C16—C15 | −178.7 (5) |
C1—N2—C3—S1 | 6.8 (3) | C14—C15—C16—C11 | −0.6 (10) |
C2—S1—C3—N3 | −168.1 (2) | C1—C2—C11'—C16' | −64.5 (7) |
C2—S1—C3—N2 | 11.35 (19) | S1—C2—C11'—C16' | 59.9 (7) |
N2—N1—C4—C5 | −177.36 (19) | C1—C2—C11'—C12' | 109.3 (6) |
N1—C4—C5—C6 | 174.4 (2) | S1—C2—C11'—C12' | −126.3 (5) |
N1—C4—C5—C10 | −4.2 (4) | C16'—C11'—C12'—C13' | 2.2 (9) |
C10—C5—C6—C7 | 0.8 (4) | C2—C11'—C12'—C13' | −171.6 (5) |
C4—C5—C6—C7 | −177.9 (2) | C11'—C12'—C13'—C14' | −0.9 (9) |
C5—C6—C7—C8 | 1.2 (4) | C12'—C13'—C14'—C15' | −1.0 (13) |
C6—C7—C8—F1 | 179.3 (2) | C13'—C14'—C15'—C16' | 1.5 (16) |
C6—C7—C8—C9 | −2.3 (4) | C12'—C11'—C16'—C15' | −1.7 (11) |
F1—C8—C9—C10 | 179.6 (2) | C2—C11'—C16'—C15' | 172.2 (6) |
C7—C8—C9—C10 | 1.1 (4) | C14'—C15'—C16'—C11' | −0.2 (14) |
C8—C9—C10—C5 | 1.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1 | 0.90 | 2.36 | 3.2557 (18) | 172 |
N3—H3B···Br1i | 0.90 | 2.55 | 3.3552 (18) | 150 |
C4—H4A···Br1ii | 0.93 | 2.99 | 3.726 (2) | 137 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1, y+1, z. |
Contact | Percentage contribution |
H···H | 44.3 |
Br···H/H···Br | 16.8 |
C···H/H···C | 13.9 |
F···H/H···F | 10.3 |
S···H/H···S | 3.8 |
N···C/C···N | 3.6 |
S···C/C···S | 2.7 |
N···H/H···N | 1.8 |
C···C | 1.5 |
N···N | 0.7 |
Br···C/C···Br | 0.3 |
S···N/N···S | 0.3 |
F···C/C···F | 0.2 |
Acknowledgements
Ali Khalilov is grateful to Baku State University for the `50+50' individual grant in support of this work.
References
Akbari Afkhami, F., Mahmoudi, G., Gurbanov, A. V., Zubkov, F. I., Qu, F., Gupta, A. & Safin, D. A. (2017). Dalton Trans. 46, 14888–14896. Web of Science CSD CrossRef CAS PubMed Google Scholar
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011). Inorg. Chim. Acta, 374, 175–180. CSD CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. CSD CrossRef CAS Google Scholar
Mahmoudi, G., Seth, S. K., Bauzá, A., Zubkov, F. I., Gurbanov, A. V., White, J., Stilinović, V., Doert, Th. & Frontera, A. (2018a). CrystEngComm, 20, 2812–2821. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971. CSD CrossRef CAS Google Scholar
Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2018c). Eur. J. Inorg. Chem. pp. 4763–4772. Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Kopylovich, M. N., Fernandes, A. R., Silva, A., Mizar, A. & Pombeiro, A. J. L. (2014a). J. Organomet. Chem. 760, 67–73. CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Sutradhar, M., Kopylovich, M. N., Huseynov, F. E., Shamilov, N. T., Voronina, A. A., Buslaeva, T. M. & Pombeiro, A. J. L. (2015). Dalton Trans. 44, 5602–5610. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138. Web of Science CrossRef CAS PubMed Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Maharramov, A. M., Kurbanova, M. M., Gurbanov, A. V. & Pombeiro, A. J. L. (2014b). Coord. Chem. Rev. 265, 1–37. CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N. & Pombeiro, A. J. L. (2013). Coord. Chem. Rev. 257, 1244–1281. CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. CSD CrossRef CAS Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993a). Khim. Geterotsikl. Soedin. pp. 415–419. Google Scholar
Martem'yanova, N. A., Chunaev, Y. M., Przhiyalgovskaya, N. M., Kurkovskaya, L. N., Filipenko, O. S. & Aldoshin, S. M. (1993b). Khim. Geterotsikl. Soedin. pp. 420–425. Google Scholar
Marthi, K., Larsen, M., Ács, M., Bálint, J. & Fogassy, E. (1995). Acta Chem. Scand. 49, 20–27. CSD CrossRef CAS Web of Science Google Scholar
Marthi, K., Larsen, S., Ács, M., Bálint, J. & Fogassy, E. (1994). Acta Cryst. B50, 762–771. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381. Google Scholar
Shixaliyev, N. Q., Maharramov, A. M., Gurbanov, A. V., Nenajdenko, V. G., Muzalevskiy, V. M., Mahmudov, K. T. & Kopylovich, M. N. (2013). Catal. Today, 217, 76–79. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.