research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,5,6,7,8,8-hexa­chloro-2-(3,4-di­meth­­oxy­pheneth­yl)-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione [+solvent]

CROSSMARK_Color_square_no_text.svg

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India, and cDepartment of Medical Physics, Bharathiar University, Coimbatore, India
*Correspondence e-mail: gunaunom@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 February 2019; accepted 26 March 2019; online 2 April 2019)

In the title compound, C19H15Cl6NO4 [+solvent], the six-membered ring of the norbornene moiety adopts a boat conformation and the two five-membered rings have envelope conformations. The pyrrolidine ring makes a dihedral angle of 14.83 (12)° with the 3,4-di­meth­oxy­phenyl ring, which are attached to each other by an extended N—CH2—CH2—Car bridge. In the crystal, the structure features C—H⋯O inter­molecular hydrogen bonds, an offset ππ inter­action [inter­centroid distance = 3.564 (1) Å] and a C—Cl⋯π inter­action. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] of PLATON. The solvent contribution was not included in the reported mol­ecular weight and density.

1. Chemical context

One of the fundamental objectives of organic and medicinal chemistry is the design and synthesis of mol­ecules having value as human therapeutic agents (Patil & Rajput, 2014[Patil, M. M. & Rajput, S. S. (2014). Int. J. Pharm. Pharm. Sci. 6, 8-14.]). Succinimide derivatives are significant compounds found in various natural products, and have outstanding biological and pharmaceutical activity (Ahire & Mhaske, 2017[Ahire, M. M. & Mhaske, S. B. (2017). ACS Omega, 2, 6598-6604.]). Cyclic imides and their derivatives contain an imide ring and the general structure –CO–-N(R)—CO–, and can cross biological membranes in vivo (Hargreaves et al., 1970[Hargreaves, M. K., Pritchard, J. G. & Dave, H. R. (1970). Chem. Rev. 70, 439-469.]). The variety of biological activities and pharmaceutical uses of compounds containing a succinimide moiety is considerable. They include activities such as anti­fungal (Hazra et al., 2004[Hazra, B., Pore, V., Dey, S., Datta, S., Darokar, M., Saikia, D., Khanuja, S. P. S. & Thakur, A. (2004). Bioorg. Med. Chem. Lett. 14, 773-777.]), anti-tubercular (Isaka et al., 2006[Isaka, M., Prathumpai, W., Wongsa, P. & Tanticharoen, M. (2006). Org. Lett. 8, 2815-2817.]), CNS depressant (Aeberli et al., 1976[Aeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436-438.]), anti­spasmodic (Nunes et al., 1995[Nunes, R., Calixto, J. B. & Yunes, R. A. (1995). Pharm. Pharmacol. Commun. 1, 399-401.]), cytostatic (Crider et al., 1980[Crider, A. M., Kolczynski, T. M. & Yates, K. M. (1980). J. Med. Chem. 23, 324-326.]), analgesic (Correa et al., 1997[Correa, R., Rosa, P. W., Pereira, C. I., Schlemper, V. & Nunes, R. J. (1997). Pharm. Pharm. Commun. 3, 67-71.]), anti­bacterial (Zentz et al., 2002[Zentz, F., Valla, A., Le Guillou, R., Labia, R., Mathot, A. G. & Sirot, D. (2002). II Farmaco, 57, 421-426.]), anti­cancer (Hall et al., 1995[Hall, I. H., Wong, O. T. & Scovill, J. P. (1995). Biomed. Pharmacother. 49, 251-258.]), anorectic (Rich & Gardner, 1983[Rich, D. H. & Gardner, J. H. (1983). Tetrahedron Lett. 24, 5305-5308.]), hypotensive (Coram & Brezenoff, 1983[Coram, W. M. & Brezenoff, H. E. (1983). Drug Dev. Res. 3, 503-516.]), nerve conduction blocking (Kaczorowski et al., 2008[Kaczorowski, G. J., McManus, O. B., Priest, B. T. & Garcia, M. L. (2008). J. Gen. Physiol. 131, 399-405.]), bacteriostatic (Piper et al., 1971[Piper, J. R., Stringfellow, C. R. & Johnston, T. P. (1971). J. Med. Chem. 14, 350-354.]), anti-convulsant (Kornet et al., 1977[Kornet, M. J., Crider, A. M. & Magarian, E. O. (1977). J. Med. Chem. 20, 405-409.]) and muscle relaxant (Musso et al., 2003[Musso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399-408.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The six-membered ring of the norbornene moiety (C2/C3/C5/C7–C9) adopts a boat conformation [puckering parameters: amplitude Q = 0.939 (2) Å, θ = 90.00 (12)°, φ = 299.27 (14)°]. The two five-membered rings, A (C2/C3/C5–C7) and B (C5–C9), have envelope conformations with atom C6 as the flap: puckering parameters and the smallest displacement asymmetric parameters are Q2 = 0.619 (2) Å, φ2 = 108.6 (2)° and Δs = 1.09° for ring A, and Q2 = 0.582 (2) Å, φ2 = 215.5 (2)° and Δs = 0.74° for ring B. Atom C6 is displaced from the mean plane through the other four atoms by 0.908 (2) Å in ring A and 0.875 (2) Å in ring B. The dihedral angle between the pyrrolidine ring (N1/C1–C4) and the benzene ring (C12–C17) is 14.83 (12)°, with the torsion angle N1—C10—C11—C12 being 175.8 (3)°. The lengths of the C—Cl bonds involving the chlorine atoms attached to the C8=C9 double bond are 1.692 (2) Å for C8—Cl2 and 1.692 (2) Å for C9—Cl3. The lengths of the bonds to chlorine atoms attached to the single C—C bonds vary from 1.744 (2) to 1.768 (2) Å. These value are close to those found in similar compounds; see §4 Database survey.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at 30% probability level.

3. Supra­molecular features

In the crystal, weak C19—H19A⋯O2i hydrogen bonds link the molecules to form a cyclic R44(48) ring motif (Table 1[link] and Fig. 2[link]). The mol­ecules are stacked in layers held together by offset ππ inter­actions (Fig. 2[link]), with an inter­centroid distance Cg1⋯Cg5iii of 3.564 (1) Å [Cg1 and Cg5 are the centroids of the pyrrolidine (N1/C1–C4) and benzene (C12–C17) rings, respectively, α = 9.80 (12)°, inter­planar distances are 3.448 (1) and 3.547 (1) Å, offset = 0.353 Å; symmetry code: (iii) −y + [{3\over 4}], x − [{1\over 4}], −z + [{3\over 4}]]. There is also an inter­molecular C—Cl⋯π inter­action present, involving atom Cl6 and the centroid of the benzene ring (C12–C17); see Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C12–C17 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯O2i 0.96 2.57 3.408 (4) 146
C6—Cl6⋯Cg5ii 1.77 (1) 3.41 (1) 4.894 (2) 140 (1)
Symmetry codes: (i) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z+{\script{7\over 4}}]; (ii) [-y+{\script{3\over 4}}, x-{\script{1\over 4}}, -z+{\script{3\over 4}}].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds (thin black lines; Table 1[link]) generate an R44(48) ring motif. The offset ππ inter­action is shown as a thin red line. For clarity, H atoms not involved in hydrogen bonding have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, V 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4,5,6,7,8,8-hexa­chloro-3a,4,7,7a-tetra­hydro-1H-4,7-methano­iso­indole-1,3(2H)-dione skeleton yielded 17 hits (see supporting information). The majority of these compounds have thio­phene substituents. One compound, 1,7,8,9,10,10-hexa­chloro-4-(2-phenyl­eth­yl)-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione (CSD refcode EVEDIT; Manohar et al., 2011[Manohar, R., Harikrishna, M., Ramanathan, C. R., SureshKumar, M. & Gunasekaran, K. (2011). Acta Cryst. E67, o1708.]), closely resembles the title compound but has a 2-phenethyl substit­uent rather than the 2-(3,4-di­methyl­pheneth­yl) group in the title compound. Here, the aryl ring is inclined to the pyrrolidine ring by 7.43 (16)° compared to 14.83 (12)° in the title compound, and the N—C—C—Car torsion angle is −169.3 (3)° compared to 175.8 (3)° in the title compound.

In all 17 structures, the five-membered ring has envelope conformations and the six-membered ring a boat conformation. The bond lengths and bond angles are very similar to those reported here for the title compound. For example, the Csp2—Cl bond lengths are shorter than the Csp3—Cl bond lengths; the former vary from ca 1.681 to 1.717 Å, while the latter vary from ca 1.725 to 1.798 Å. In the title compound these bond lengths are 1.691 (2)–1.692 (2) Å and 1.744 (2)–1.768 (2) Å, respectively.

5. Synthesis and crystallization

2-(3,4-Di­meth­oxy­phen­yl) ethanamine (1 equiv.) and 1,4,5,6,7,7-hexa­chloro-5- norbornene −2,3-di­carb­oxy­lic anhydride (1 equiv.) were stirred at room temperature in dry ethyl acetate for 30 min. The ethyl acetate was removed under reduced pressure and the resulting residue was dissolved in toluene. To this reaction mixture was added acetyl chloride (5 equiv.) and refluxed for 1 h. The reaction mixture was brought to room temperature and washed with aqueous Na2CO3 and dried over anhydrous Na2SO4. It was then filtered and the filtrate was concentrated under reduced pressure followed by silica gel column purification to afford the title compound in 82% yield. Colourless block-shaped crystals were obtained by slow evaporation of a solution in ethanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were placed in calculated positions and refined using a riding model: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The contribution of the disordered solvent to the scattering was removed using the SQUEEZE routine of PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The solvent contribution was not included in the reported mol­ecular weight and density. Further details are given in the archived CIF.

Table 2
Experimental details

Crystal data
Chemical formula C19H15Cl6NO4[+solvent]
Mr 534.02
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 29.6250 (9), 10.2427 (4)
V3) 8989.4 (6)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.26 × 0.21 × 0.15
 
Data collection
Diffractometer Bruker SMART APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.752, 0.863
No. of measured, independent and observed [I > 2σ(I)] reflections 10728, 5181, 3330
Rint 0.021
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.04
No. of reflections 5181
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and PLATON (Spek, 2009).

4,5,6,7,8,8-Hexachloro-2-(3,4-dimethoxyphenethyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione top
Crystal data top
C19H15Cl6NO4[+solvent]Dx = 1.578 Mg m3
Mr = 534.02Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 5181 reflections
a = 29.6250 (9) Åθ = 2.8–29.2°
c = 10.2427 (4) ŵ = 0.79 mm1
V = 8989.4 (6) Å3T = 293 K
Z = 16Block, colourless
F(000) = 43200.26 × 0.21 × 0.15 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3330 reflections with I > 2σ(I)
ω and φ scansRint = 0.021
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 29.2°, θmin = 2.8°
Tmin = 0.752, Tmax = 0.863h = 3224
10728 measured reflectionsk = 4024
5181 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.046P)2 + 2.6033P]
where P = (Fo2 + 2Fc2)/3
5181 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64197 (3)0.18131 (2)0.50159 (7)0.0609 (2)
Cl20.53878 (2)0.16505 (2)0.39238 (6)0.05182 (19)
Cl30.51735 (2)0.05095 (2)0.39790 (6)0.04926 (18)
Cl40.60427 (3)0.00099 (2)0.52552 (7)0.0560 (2)
Cl50.68772 (2)0.07881 (3)0.59849 (7)0.0604 (2)
Cl60.65299 (2)0.08158 (2)0.33757 (6)0.05024 (19)
O10.55317 (7)0.18699 (7)0.73520 (19)0.0638 (6)
O20.51935 (7)0.03730 (7)0.74848 (17)0.0583 (5)
O30.29789 (7)0.07109 (6)0.78565 (19)0.0606 (5)
O40.26332 (6)0.14834 (6)0.75279 (18)0.0512 (5)
N10.52660 (7)0.11436 (8)0.74800 (18)0.0436 (5)
C10.55897 (9)0.14695 (10)0.7253 (2)0.0452 (6)
C20.60172 (8)0.12358 (8)0.6826 (2)0.0374 (6)
H20.6272060.1312730.7393490.045*
C30.59071 (7)0.07269 (8)0.6881 (2)0.0345 (5)
H30.6106470.0565940.7486160.041*
C40.54179 (9)0.07055 (10)0.7313 (2)0.0419 (6)
C50.59788 (8)0.05717 (7)0.5446 (2)0.0321 (5)
C60.63858 (7)0.08698 (9)0.5043 (2)0.0359 (6)
C70.61330 (8)0.13120 (8)0.5366 (2)0.0353 (5)
C80.57030 (7)0.12315 (8)0.45795 (19)0.0304 (5)
C90.56157 (7)0.07940 (8)0.46217 (19)0.0291 (5)
C100.47983 (9)0.12501 (11)0.7835 (2)0.0561 (8)
H10A0.4787740.1540420.8271790.067*
H10B0.4684750.1023350.8434010.067*
C110.45025 (10)0.12635 (15)0.6621 (3)0.0885 (13)
H11A0.4607510.1503720.6053830.106*
H11B0.4535460.0980900.6152450.106*
C120.40091 (10)0.13382 (14)0.6918 (3)0.0630 (9)
C130.37364 (10)0.09809 (11)0.7279 (2)0.0580 (8)
H130.3863800.0696070.7378940.070*
C140.32777 (9)0.10361 (9)0.7495 (2)0.0439 (6)
C150.30858 (8)0.14660 (9)0.7326 (2)0.0396 (6)
C160.33546 (9)0.18220 (10)0.6993 (2)0.0519 (7)
H160.3229560.2108060.6896460.062*
C170.38163 (10)0.17583 (13)0.6796 (3)0.0641 (9)
H170.3996610.2004070.6579590.077*
C180.31333 (14)0.02580 (11)0.7890 (4)0.0954 (13)
H18A0.3236890.0171670.7037450.143*
H18B0.2890570.0063370.8151470.143*
H18C0.3377110.0232320.8502810.143*
C190.24021 (10)0.18878 (10)0.7231 (3)0.0670 (9)
H19A0.2499220.2121920.7815350.101*
H19B0.2083130.1841500.7329200.101*
H19C0.2466800.1974810.6348160.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0617 (5)0.0460 (4)0.0751 (5)0.0269 (4)0.0008 (4)0.0089 (3)
Cl20.0569 (4)0.0473 (4)0.0512 (4)0.0131 (3)0.0095 (3)0.0098 (3)
Cl30.0436 (4)0.0551 (4)0.0491 (4)0.0167 (3)0.0143 (3)0.0023 (3)
Cl40.0691 (5)0.0336 (3)0.0652 (4)0.0060 (3)0.0037 (4)0.0058 (3)
Cl50.0315 (3)0.0879 (6)0.0618 (4)0.0052 (4)0.0120 (3)0.0078 (4)
Cl60.0448 (4)0.0656 (5)0.0404 (3)0.0024 (3)0.0122 (3)0.0030 (3)
O10.0729 (15)0.0533 (13)0.0651 (13)0.0064 (11)0.0032 (11)0.0172 (10)
O20.0576 (12)0.0645 (13)0.0527 (11)0.0226 (11)0.0096 (9)0.0062 (10)
O30.0659 (13)0.0456 (11)0.0703 (13)0.0102 (11)0.0031 (11)0.0087 (10)
O40.0419 (11)0.0452 (10)0.0664 (12)0.0106 (9)0.0006 (9)0.0052 (9)
N10.0363 (12)0.0636 (15)0.0310 (10)0.0031 (11)0.0025 (9)0.0060 (10)
C10.0504 (17)0.0571 (17)0.0282 (12)0.0019 (15)0.0080 (11)0.0082 (12)
C20.0345 (13)0.0465 (15)0.0312 (12)0.0078 (11)0.0062 (10)0.0023 (11)
C30.0310 (12)0.0449 (14)0.0275 (11)0.0035 (11)0.0047 (10)0.0076 (10)
C40.0439 (15)0.0561 (17)0.0258 (12)0.0064 (14)0.0029 (11)0.0023 (12)
C50.0362 (13)0.0293 (12)0.0309 (11)0.0027 (10)0.0018 (10)0.0053 (10)
C60.0280 (12)0.0471 (15)0.0326 (12)0.0034 (11)0.0031 (10)0.0063 (11)
C70.0341 (13)0.0352 (13)0.0366 (12)0.0143 (11)0.0020 (10)0.0025 (11)
C80.0272 (12)0.0397 (13)0.0245 (10)0.0003 (10)0.0018 (9)0.0029 (10)
C90.0261 (11)0.0379 (13)0.0234 (10)0.0044 (10)0.0026 (9)0.0002 (10)
C100.0403 (15)0.089 (2)0.0392 (14)0.0055 (15)0.0103 (12)0.0088 (14)
C110.0425 (17)0.181 (4)0.0419 (17)0.017 (2)0.0052 (14)0.009 (2)
C120.0434 (17)0.115 (3)0.0300 (14)0.006 (2)0.0000 (12)0.0106 (16)
C130.0549 (18)0.086 (2)0.0331 (14)0.0287 (18)0.0063 (13)0.0089 (14)
C140.0463 (16)0.0576 (17)0.0278 (12)0.0119 (14)0.0041 (11)0.0027 (12)
C150.0411 (15)0.0490 (15)0.0288 (12)0.0042 (13)0.0035 (11)0.0023 (11)
C160.0534 (18)0.0598 (18)0.0426 (14)0.0016 (15)0.0002 (13)0.0013 (14)
C170.0541 (19)0.094 (3)0.0438 (16)0.0127 (19)0.0066 (14)0.0035 (17)
C180.114 (3)0.056 (2)0.116 (3)0.029 (2)0.003 (3)0.021 (2)
C190.0515 (18)0.0576 (19)0.092 (2)0.0157 (16)0.0160 (17)0.0047 (17)
Geometric parameters (Å, º) top
Cl1—C71.748 (2)C6—C71.545 (3)
Cl2—C81.692 (2)C7—C81.526 (3)
Cl3—C91.691 (2)C8—C91.322 (3)
Cl4—C51.744 (2)C10—C111.522 (4)
Cl5—C61.763 (2)C10—H10A0.9700
Cl6—C61.768 (2)C10—H10B0.9700
O1—C11.203 (3)C11—C121.509 (4)
O2—C41.201 (3)C11—H11A0.9700
O3—C141.360 (3)C11—H11B0.9700
O3—C181.418 (3)C12—C171.375 (4)
O4—C151.358 (3)C12—C131.382 (4)
O4—C191.413 (3)C13—C141.386 (4)
N1—C11.380 (3)C13—H130.9300
N1—C41.384 (3)C14—C151.405 (4)
N1—C101.467 (3)C15—C161.365 (4)
C1—C21.508 (3)C16—C171.395 (4)
C2—C31.543 (3)C16—H160.9300
C2—C71.550 (3)C17—H170.9300
C2—H20.9800C18—H18A0.9600
C3—C41.516 (3)C18—H18B0.9600
C3—C51.554 (3)C18—H18C0.9600
C3—H30.9800C19—H19A0.9600
C5—C91.518 (3)C19—H19B0.9600
C5—C61.551 (3)C19—H19C0.9600
C14—O3—C18117.8 (2)C8—C9—Cl3128.85 (18)
C15—O4—C19118.6 (2)C5—C9—Cl3123.33 (17)
C1—N1—C4114.1 (2)N1—C10—C11110.3 (2)
C1—N1—C10123.2 (2)N1—C10—H10A109.6
C4—N1—C10122.6 (2)C11—C10—H10A109.6
O1—C1—N1125.2 (3)N1—C10—H10B109.6
O1—C1—C2126.7 (3)C11—C10—H10B109.6
N1—C1—C2108.1 (2)H10A—C10—H10B108.1
C1—C2—C3105.1 (2)C12—C11—C10113.4 (2)
C1—C2—C7113.51 (19)C12—C11—H11A108.9
C3—C2—C7102.98 (18)C10—C11—H11A108.9
C1—C2—H2111.6C12—C11—H11B108.9
C3—C2—H2111.6C10—C11—H11B108.9
C7—C2—H2111.6H11A—C11—H11B107.7
C4—C3—C2104.7 (2)C17—C12—C13118.3 (3)
C4—C3—C5113.19 (18)C17—C12—C11121.1 (4)
C2—C3—C5103.01 (17)C13—C12—C11120.5 (3)
C4—C3—H3111.8C12—C13—C14121.7 (3)
C2—C3—H3111.8C12—C13—H13119.2
C5—C3—H3111.8C14—C13—H13119.2
O2—C4—N1124.8 (2)O3—C14—C13126.7 (3)
O2—C4—C3127.3 (3)O3—C14—C15114.3 (2)
N1—C4—C3107.9 (2)C13—C14—C15118.9 (3)
C9—C5—C698.95 (17)O4—C15—C16125.8 (2)
C9—C5—C3107.51 (18)O4—C15—C14114.5 (2)
C6—C5—C3100.94 (17)C16—C15—C14119.7 (3)
C9—C5—Cl4116.28 (16)C15—C16—C17120.2 (3)
C6—C5—Cl4116.64 (17)C15—C16—H16119.9
C3—C5—Cl4114.41 (15)C17—C16—H16119.9
C7—C6—C592.81 (17)C12—C17—C16121.1 (3)
C7—C6—Cl5113.55 (16)C12—C17—H17119.4
C5—C6—Cl5114.70 (15)C16—C17—H17119.4
C7—C6—Cl6113.64 (16)O3—C18—H18A109.5
C5—C6—Cl6113.18 (16)O3—C18—H18B109.5
Cl5—C6—Cl6108.47 (12)H18A—C18—H18B109.5
C8—C7—C699.14 (18)O3—C18—H18C109.5
C8—C7—C2107.55 (17)H18A—C18—H18C109.5
C6—C7—C2100.98 (18)H18B—C18—H18C109.5
C8—C7—Cl1115.47 (16)O4—C19—H19A109.5
C6—C7—Cl1116.16 (16)O4—C19—H19B109.5
C2—C7—Cl1115.42 (16)H19A—C19—H19B109.5
C9—C8—C7107.41 (19)O4—C19—H19C109.5
C9—C8—Cl2128.61 (18)H19A—C19—H19C109.5
C7—C8—Cl2123.74 (17)H19B—C19—H19C109.5
C8—C9—C5107.74 (19)
C4—N1—C1—O1179.4 (2)C1—C2—C7—C847.0 (3)
C10—N1—C1—O12.1 (4)C3—C2—C7—C866.0 (2)
C4—N1—C1—C22.3 (3)C1—C2—C7—C6150.4 (2)
C10—N1—C1—C2176.2 (2)C3—C2—C7—C637.3 (2)
O1—C1—C2—C3179.7 (2)C1—C2—C7—Cl183.5 (2)
N1—C1—C2—C32.1 (2)C3—C2—C7—Cl1163.44 (16)
O1—C1—C2—C768.6 (3)C6—C7—C8—C934.4 (2)
N1—C1—C2—C7109.7 (2)C2—C7—C8—C970.2 (2)
C1—C2—C3—C41.1 (2)Cl1—C7—C8—C9159.29 (17)
C7—C2—C3—C4117.95 (19)C6—C7—C8—Cl2150.73 (16)
C1—C2—C3—C5119.72 (18)C2—C7—C8—Cl2104.6 (2)
C7—C2—C3—C50.6 (2)Cl1—C7—C8—Cl225.9 (3)
C1—N1—C4—O2178.5 (2)C7—C8—C9—C50.7 (2)
C10—N1—C4—O23.0 (4)Cl2—C8—C9—C5173.78 (16)
C1—N1—C4—C31.6 (3)C7—C8—C9—Cl3177.45 (17)
C10—N1—C4—C3176.95 (19)Cl2—C8—C9—Cl33.0 (3)
C2—C3—C4—O2180.0 (2)C6—C5—C9—C835.4 (2)
C5—C3—C4—O268.6 (3)C3—C5—C9—C869.1 (2)
C2—C3—C4—N10.1 (2)Cl4—C5—C9—C8161.17 (16)
C5—C3—C4—N1111.3 (2)C6—C5—C9—Cl3147.60 (17)
C4—C3—C5—C945.4 (3)C3—C5—C9—Cl3107.85 (19)
C2—C3—C5—C967.1 (2)Cl4—C5—C9—Cl321.9 (2)
C4—C3—C5—C6148.5 (2)C1—N1—C10—C1194.0 (3)
C2—C3—C5—C636.1 (2)C4—N1—C10—C1184.4 (3)
C4—C3—C5—Cl485.4 (2)N1—C10—C11—C12175.8 (3)
C2—C3—C5—Cl4162.17 (16)C10—C11—C12—C1799.6 (4)
C9—C5—C6—C752.57 (18)C10—C11—C12—C1382.5 (4)
C3—C5—C6—C757.35 (18)C17—C12—C13—C141.1 (4)
Cl4—C5—C6—C7178.05 (15)C11—C12—C13—C14176.8 (2)
C9—C5—C6—Cl5170.14 (16)C18—O3—C14—C137.2 (4)
C3—C5—C6—Cl560.2 (2)C18—O3—C14—C15172.3 (3)
Cl4—C5—C6—Cl564.4 (2)C12—C13—C14—O3179.7 (2)
C9—C5—C6—Cl664.7 (2)C12—C13—C14—C150.8 (4)
C3—C5—C6—Cl6174.59 (15)C19—O4—C15—C167.7 (4)
Cl4—C5—C6—Cl660.8 (2)C19—O4—C15—C14172.6 (2)
C5—C6—C7—C852.15 (18)O3—C14—C15—O41.2 (3)
Cl5—C6—C7—C8170.68 (14)C13—C14—C15—O4178.4 (2)
Cl6—C6—C7—C864.71 (19)O3—C14—C15—C16178.5 (2)
C5—C6—C7—C257.87 (18)C13—C14—C15—C161.9 (3)
Cl5—C6—C7—C260.66 (19)O4—C15—C16—C17179.2 (2)
Cl6—C6—C7—C2174.73 (15)C14—C15—C16—C171.2 (4)
C5—C6—C7—Cl1176.50 (15)C13—C12—C17—C161.9 (4)
Cl5—C6—C7—Cl165.0 (2)C11—C12—C17—C16176.0 (2)
Cl6—C6—C7—Cl159.6 (2)C15—C16—C17—C120.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C12–C17 benzene ring.
D—H···AD—HH···AD···AD—H···A
C19—H19A···O2i0.962.573.408 (4)146
C6—Cl6···Cg5ii1.77 (1)3.41 (1)4.894 (2)140 (1)
Symmetry codes: (i) y+1/4, x+3/4, z+7/4; (ii) y+3/4, x1/4, z+3/4.
 

Footnotes

Current address: Center for Cellular Biology and Pharmacology Herbert Werthiem College of Medicine, Florida International University, ZIP-33199, FL, USA.

Funding information

RM thanks the UGC, Government of India for an SRF fellowship.

References

First citationAeberli, P., Gogerty, J. H., Houlihan, W. J. & Iorio, L. C. (1976). J. Med. Chem. 19, 436–438.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAhire, M. M. & Mhaske, S. B. (2017). ACS Omega, 2, 6598-6604.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoram, W. M. & Brezenoff, H. E. (1983). Drug Dev. Res. 3, 503–516.  CrossRef CAS Web of Science Google Scholar
First citationCorrea, R., Rosa, P. W., Pereira, C. I., Schlemper, V. & Nunes, R. J. (1997). Pharm. Pharm. Commun. 3, 67–71.  Google Scholar
First citationCrider, A. M., Kolczynski, T. M. & Yates, K. M. (1980). J. Med. Chem. 23, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHall, I. H., Wong, O. T. & Scovill, J. P. (1995). Biomed. Pharmacother. 49, 251–258.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHargreaves, M. K., Pritchard, J. G. & Dave, H. R. (1970). Chem. Rev. 70, 439–469.  CrossRef CAS Web of Science Google Scholar
First citationHazra, B., Pore, V., Dey, S., Datta, S., Darokar, M., Saikia, D., Khanuja, S. P. S. & Thakur, A. (2004). Bioorg. Med. Chem. Lett. 14, 773–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsaka, M., Prathumpai, W., Wongsa, P. & Tanticharoen, M. (2006). Org. Lett. 8, 2815–2817.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaczorowski, G. J., McManus, O. B., Priest, B. T. & Garcia, M. L. (2008). J. Gen. Physiol. 131, 399–405.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKornet, M. J., Crider, A. M. & Magarian, E. O. (1977). J. Med. Chem. 20, 405–409.  CrossRef CAS PubMed Web of Science Google Scholar
First citationManohar, R., Harikrishna, M., Ramanathan, C. R., SureshKumar, M. & Gunasekaran, K. (2011). Acta Cryst. E67, o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMusso, D. L., Cochran, F. R., Kelley, J. L., McLean, E. W., Selph, J. L., Rigdon, G. C., Orr, G. F., Davis, R. G., Cooper, B. R., Styles, V. L., Thompson, J. B. & Hall, W. R. (2003). J. Med. Chem. 46, 399–408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNunes, R., Calixto, J. B. & Yunes, R. A. (1995). Pharm. Pharmacol. Commun. 1, 399–401.  Google Scholar
First citationPatil, M. M. & Rajput, S. S. (2014). Int. J. Pharm. Pharm. Sci. 6, 8–14.  CAS Google Scholar
First citationPiper, J. R., Stringfellow, C. R. & Johnston, T. P. (1971). J. Med. Chem. 14, 350–354.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRich, D. H. & Gardner, J. H. (1983). Tetrahedron Lett. 24, 5305–5308.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZentz, F., Valla, A., Le Guillou, R., Labia, R., Mathot, A. G. & Sirot, D. (2002). II Farmaco, 57, 421–426.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds