research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-2-[1-hy­dr­oxy-2-(pyridin-2-yl)eth­yl]-4-[2-(4-meth­­oxy­phen­yl)diazen-1-yl]phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India, and cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601, Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, igolenya@ua.fm

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 March 2019; accepted 31 March 2019; online 9 April 2019)

In the title compound, C20H19N3O3, the configuration about the azo N=N bond is E, and the central benzene ring is inclined to the pyridine ring by 31.43 (8)° and to the 4-meth­oxy­phenyl ring by 4.73 (8)°. In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. There are C—H⋯π inter­actions present within the layers and between the layers, leading to the formation of a supra­molecular framework. The layers are also linked by offset ππ inter­actions, with an inter­planar distance of 3.416 (2) Å.

1. Chemical context

Azo compounds have received much attention in fundamental and applied chemistry (Nishihara, 2004[Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407-428.]; İspir, 2009[İspir, E. (2009). Dyes Pigments, 82, 13-19.]). The well-known applications of azo dyes in acid–base indicators and chemical sensors and as electron-transfer catalysts have attracted the inter­est of many investigators (Tunçel & Serin, 2006[Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805-812.]). The versatile applications of azo compounds in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991[Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.]). The conversion from the trans to the cis form in azo compounds can lead to photochromism. Photochromic compounds are of great inter­est for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990[Dürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.]), and for potential applications in mol­ecular electronic devices (Martin et al., 1995[Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press.]). Schiff bases often exhibit various biological activities, including anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). The present work is part of an ongoing structural study of heterocyclic compounds (Faizi et al., 2016[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15-20.], 2017[Faizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548.]) and excited state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787-3796.]). In the present work, we report the synthesis, crystal structure and Hirshfeld surface analysis of the title compound, (E)-2-[1-hy­droxy-2-(pyridin-2-yl)eth­yl]-4-[2-(4-meth­oxy­phen­yl)diazen-1-yl]phenol.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The configuration about the azo N=N bond is E, and the N2=N3 bond length is 1.256 (2) Å. The mol­ecule is non-planar, with the central benzene ring (C8–C13) being inclined to the pyridine ring (N1/C1–C5) by 31.43 (8)° and to the outer 4-meth­oxy­phenyl ring (C14–C19) by 4.73 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an [R_{2}^{2}](12) ring motif (Table 1[link] and Fig. 2[link]). The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming undulating layers lying parallel to the ac plane (Fig. 3[link] and Table 1[link]). There are C—H⋯π inter­actions present within the layers and between the layers, leading to the formation of a supra­molecular framework (Table 1[link] and Fig. 4[link]). The layers are also linked by offset ππ inter­actions, involving inversion-related 4-meth­oxy­phenol rings, which strengthen the supra­molecular framework [Cg3⋯Cg3vi = 3.584 (2) Å, inter­planar distance = 3.416 (2) Å, offset = 1.085 Å; Cg3 is the centroid of the C14–C19 ring; symmetry code: (vi) −x + 1, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 2.04 2.801 (2) 154
O2—H2⋯O1ii 0.82 1.91 2.686 (2) 158
C4—H4⋯O2iii 0.93 2.47 3.165 (2) 132
C3—H3⋯Cg2iv 0.93 2.82 3.593 (3) 141
C19—H19⋯Cg3v 0.93 2.98 3.841 (3) 155
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A view of the inversion dimer forming an [R_{2}^{2}](12) ring motif; see Table 1[link] for details of the hydrogen-bonding (dashed lines) inter­actions involved.
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1[link]) have been omitted.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of the title compound. For clarity, H atoms not involved in hydrogen bonding (dashed lines, see Table 1[link]) have been omitted. The C—H⋯π inter­actions are represented by brown arrows and the offset ππ inter­actions by blue double arrows.

4. Database survey

A search of the Cambridge Structural Database (CSD, V5.40, update of February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing the 4-[(4-meth­oxy­phen­yl)diazen­yl]phenol skeleton gave 14 hits. There are five compounds that closely resemble the title compound, namely (E)-2-acetyl-4-(4-meth­oxy­phenyl­diazen­yl)phenol (CSD refcode AQIDIO; Yazici et al., 2011[Yazici, S., Albayrak, C., Gümrükçüoğlu, I. E., Şenel, I. & Büyükgüngör, O. (2011). Turk. J. Chem. 35, 341-347.]), 2-hy­droxy-5-[(E)-(4-meth­oxy­phen­yl)diazen­yl]benzoic acid (FUGYIP; Basu Baul et al., 2000[Basu Baul, T. S., Dhar, S. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1280-1281.]), 4-[(E)-(4-meth­oxy­phen­yl)diazen­yl]-2-((E)-{[4-(phenyl­amino)­phen­yl]imino} meth­yl)phenol (MANTON; Faizi et al., 2017[Faizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548.]), 2,6-dimethyl-4-(4-meth­oxy­phenyl­diazen­yl)phenol (PAHFUA; Kocaokutgen et al., 2004[Kocaokutgen, H., Gür, M., Soylu, M. S. & Lörnnecke, P. (2004). Acta Cryst. E60, o1756-o1758.]) and 2-methyl-4-(4-meth­oxy­phenyl­azo)phenol (VEVKEN; İskeleli et al., 2006[İskeleli, N. O., Karabıyık, H., Albayrak, C., Petek, H. & Ağar, E. (2006). Struct. Chem. 17, 393-399.]). In all five compounds, the configuration about the N=N bond is E, and the dihedral angles between the 4-meth­oxy­phenyl ring and the other aryl ring are ca 3.04, 5.43, 11.61, 8.34 and 16.01°, respectively. In the title compound, this dihedral angle is 4.73 (8)°, similar to that in AQIDIO and FUGYIP.

5. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The reader is referred to a recent article by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) who have published an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study mol­ecular packing.

Two views, front and back, of the Hirshfeld surface of the title compound mapped over dnorm are given in Fig. 5[link], and the two-dimensional fingerprint plots are given in Fig. 6[link]. The latter reveals that the principal inter­molecular contacts are, as is often the case, H⋯H at 47.4% (Fig. 6[link]b). This is followed by the H⋯C/C⋯H contacts at 24.7% (Fig. 6[link]c), related to the C—H⋯π inter­actions (see Table 1[link] for details). The classical O—H⋯N hydrogen bonds (Table 1[link]) contribute, via N⋯H/H⋯N contacts (11.7%; Fig. 6[link]d), while the classical O—H⋯O and non-classical C—H⋯O hydrogen bonds (Table 1[link]) contribute, via O⋯H/H⋯O contacts (11.5%; Fig. 6[link]e). The C⋯C contacts contribute only 3.3% (Fig. 6[link]f), but are significant when analysing the offset ππ inter­actions in the crystal (see §3. Supra­molecular features) and the formation of the supra­molecular framework.

[Figure 5]
Figure 5
Two views, (a) front and (b) back, of the Hirshfeld surface of the title compound mapped over dnorm.
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plot for the title compound, and the two-dimensional fingerprint plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) N⋯H/H⋯N, (e) O⋯H/H⋯O, (f) C⋯C contacts.

6. Synthesis and crystallization

The title compound was prepared by adding n-butyl­lithium (4.91 ml, 12.29 mmol, 2.5 M in cyclo­hexa­ne) to a solution of 2-picoline (1 ml, 10.24 mmol) in anhydrous THF (25 ml) cooled at 195 K. The orange mixture was left to warm up to 143 K and then 5-(4-meth­oxy­phenyl­azo)salicyaldehyde (MPS) (2.00 g, 8.53 mmol) dissolved in THF (10 ml) was added, giving a yellow solution. The solution was then stirred for 2 h at room temperature. The reaction was quenched by the addition of an aqueous saturated solution of ammonium chloride (50 ml), and the product was extracted with diethyl ether. It was then dried over MgSO4 and purified by column chromatography (cyclo­hexa­ne/ethyl acetate 9/1) to give a yellow solid (1.10 g, 3.36 mmol, yield: 60%). Yellow needle-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.

Spectroscopic and analytical data: Yellow solid: Rf = 0.43 (cyclo­hexa­ne/ethyl acetate = 9/1); IR νmax (KBr, cm−1): 3170, 2837, 1596, 1500, 1480, 1440, 1428, 1339, 1281, 1257, 1206, 1178, 1140, 1103, 1052, 1032, 1005, 905, 869, 841, 824, 773, 730, 652, 570, 531, 493; 1H NMR (500 MHz, CDCl3) δ 3.14 (dd, 1H, J = 2.1, 15.8Hz), 3.44–3.49 (m, 1H), 3.88 (s, 3H), 5.46–5.49 (m, 1H), 6.98–7.01 (m, 3H), 7.21 (d, 1H, J = 7.6 Hz), 7.62–7.63 (m, 1H), 7.69–7.73 (m, 1H), 7.78 (dd, 1H, J =2.5, 8.6 Hz), 7.84–7.86 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 42.7, 55.6,75.1, 114.2, 118.1, 121.4, 122.4, 124.1, 124.2, 124.3, 126.6, 137.7, 146.2, 147.1, 148.0, 159.2, 159.6, 161.5; HRMS (ESI) for C20H20N3O3 (M + H+): calculated 350.1504, found: 350.1507.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(O-hydroxyl and C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C20H19N3O3
Mr 349.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 18.451 (5), 8.169 (5), 11.591 (5)
β (°) 100.059 (5)
V3) 1720.2 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.281, 0.397
No. of measured, independent and observed [I > 2σ(I)] reflections 12516, 3381, 2169
Rint 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.100, 1.02
No. of reflections 3381
No. of parameters 238
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2003[Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-2-[1-Hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol top
Crystal data top
C20H19N3O3F(000) = 736
Mr = 349.38Dx = 1.349 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.451 (5) ÅCell parameters from 1490 reflections
b = 8.169 (5) Åθ = 3.7–26.0°
c = 11.591 (5) ŵ = 0.09 mm1
β = 100.059 (5)°T = 296 K
V = 1720.2 (14) Å3Needle, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3381 independent reflections
Radiation source: sealed tube2169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2213
Tmin = 0.281, Tmax = 0.397k = 1010
12516 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
3381 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.92494 (7)0.95556 (14)0.84820 (10)0.0173 (3)
H10.9116891.0380880.8790190.026*
O20.92659 (7)0.63827 (16)1.12657 (10)0.0192 (3)
H20.9177040.5918701.1852680.029*
O30.36888 (7)0.68602 (17)0.45972 (11)0.0273 (4)
N11.11161 (8)0.82930 (19)0.98278 (13)0.0185 (4)
N20.68013 (9)0.68483 (19)0.77772 (13)0.0211 (4)
N30.62436 (9)0.6015 (2)0.78765 (13)0.0215 (4)
C51.06621 (10)0.7859 (2)0.88320 (16)0.0165 (4)
C41.08607 (10)0.8094 (2)0.77434 (16)0.0180 (4)
H41.0539290.7789090.7067760.022*
C11.17713 (11)0.8933 (2)0.97259 (17)0.0208 (5)
H1A1.2092170.9205151.0410030.025*
C21.20001 (11)0.9212 (2)0.86736 (17)0.0220 (5)
H2A1.2456660.9679320.8648340.026*
C31.15317 (10)0.8778 (2)0.76592 (16)0.0205 (5)
H31.1666380.8943380.6931460.025*
C60.99387 (10)0.7089 (2)0.89526 (16)0.0184 (4)
H6A1.0031790.6209430.9521070.022*
H6B0.9723560.6607620.8206240.022*
C70.93790 (10)0.8263 (2)0.93306 (15)0.0155 (4)
H70.9589560.8731971.0093690.019*
C80.86746 (10)0.7372 (2)0.94404 (15)0.0150 (4)
C90.80465 (10)0.7454 (2)0.85966 (16)0.0171 (4)
H90.8050510.8099280.7936440.021*
C100.74100 (10)0.6607 (2)0.87024 (15)0.0167 (4)
C110.74037 (10)0.5601 (2)0.96750 (16)0.0200 (5)
H110.6986010.4997200.9743010.024*
C120.80215 (10)0.5512 (2)1.05329 (15)0.0176 (4)
H120.8018590.4851241.1185360.021*
C130.86500 (10)0.6403 (2)1.04309 (15)0.0155 (4)
C140.56281 (10)0.6283 (2)0.69611 (16)0.0199 (5)
C150.56281 (10)0.7290 (2)0.59953 (16)0.0208 (5)
H150.6058620.7822430.5896460.025*
C160.49943 (11)0.7506 (2)0.51820 (17)0.0216 (5)
H160.4997240.8183380.4537720.026*
C170.43502 (10)0.6707 (2)0.53292 (16)0.0213 (5)
C180.43565 (11)0.5659 (2)0.62726 (16)0.0235 (5)
H180.3931310.5094520.6358340.028*
C190.49901 (10)0.5451 (2)0.70808 (16)0.0228 (5)
H190.4990850.4748610.7712200.027*
C200.36725 (11)0.7824 (3)0.35657 (17)0.0298 (5)
H20A0.3182890.7824880.3118220.045*
H20B0.4006340.7368340.3102390.045*
H20C0.3817460.8925520.3782790.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0236 (8)0.0129 (7)0.0162 (7)0.0019 (6)0.0053 (6)0.0002 (6)
O20.0192 (7)0.0238 (8)0.0139 (7)0.0022 (6)0.0009 (6)0.0042 (6)
O30.0176 (8)0.0376 (9)0.0252 (8)0.0018 (7)0.0007 (6)0.0062 (7)
N10.0175 (9)0.0192 (9)0.0187 (9)0.0023 (7)0.0028 (7)0.0024 (7)
N20.0180 (9)0.0235 (9)0.0221 (9)0.0016 (8)0.0044 (7)0.0040 (8)
N30.0183 (9)0.0222 (9)0.0239 (9)0.0016 (8)0.0029 (8)0.0038 (7)
C50.0169 (11)0.0125 (9)0.0197 (10)0.0038 (8)0.0019 (9)0.0002 (8)
C40.0185 (11)0.0169 (10)0.0180 (10)0.0020 (9)0.0011 (8)0.0029 (8)
C10.0178 (11)0.0213 (11)0.0214 (11)0.0014 (9)0.0020 (9)0.0053 (9)
C20.0155 (11)0.0189 (10)0.0326 (12)0.0017 (9)0.0068 (10)0.0011 (9)
C30.0215 (11)0.0195 (10)0.0222 (11)0.0026 (9)0.0082 (9)0.0030 (9)
C60.0207 (11)0.0163 (10)0.0185 (10)0.0018 (9)0.0043 (9)0.0020 (8)
C70.0168 (10)0.0168 (10)0.0125 (9)0.0002 (8)0.0014 (8)0.0024 (8)
C80.0167 (11)0.0124 (10)0.0158 (10)0.0005 (8)0.0028 (9)0.0029 (8)
C90.0189 (11)0.0182 (10)0.0150 (10)0.0018 (9)0.0052 (8)0.0007 (8)
C100.0160 (11)0.0180 (10)0.0153 (10)0.0032 (9)0.0007 (8)0.0034 (8)
C110.0160 (11)0.0209 (11)0.0241 (11)0.0042 (9)0.0063 (9)0.0019 (9)
C120.0217 (11)0.0175 (10)0.0150 (10)0.0001 (9)0.0067 (9)0.0010 (8)
C130.0160 (11)0.0150 (10)0.0156 (10)0.0036 (9)0.0029 (9)0.0027 (8)
C140.0187 (11)0.0205 (10)0.0201 (11)0.0035 (9)0.0019 (9)0.0054 (9)
C150.0166 (11)0.0206 (10)0.0263 (11)0.0020 (9)0.0066 (9)0.0045 (9)
C160.0212 (11)0.0245 (12)0.0191 (11)0.0009 (9)0.0032 (9)0.0011 (9)
C170.0168 (11)0.0268 (12)0.0192 (11)0.0002 (9)0.0001 (9)0.0068 (9)
C180.0185 (11)0.0281 (11)0.0245 (11)0.0049 (9)0.0052 (9)0.0018 (9)
C190.0229 (12)0.0246 (11)0.0215 (11)0.0004 (10)0.0059 (9)0.0015 (9)
C200.0236 (12)0.0348 (13)0.0286 (12)0.0001 (10)0.0021 (10)0.0049 (10)
Geometric parameters (Å, º) top
O1—C71.435 (2)C7—H70.9800
O1—H10.8200C8—C91.381 (2)
O2—C131.358 (2)C8—C131.401 (2)
O2—H20.8200C9—C101.387 (3)
O3—C171.365 (2)C9—H90.9300
O3—C201.427 (2)C10—C111.396 (3)
N1—C11.341 (2)C11—C121.378 (2)
N1—C51.350 (2)C11—H110.9300
N2—N31.256 (2)C12—C131.392 (3)
N2—C101.425 (2)C12—H120.9300
N3—C141.429 (2)C14—C191.387 (3)
C5—C41.387 (3)C14—C151.389 (3)
C5—C61.504 (3)C15—C161.379 (3)
C4—C31.377 (3)C15—H150.9300
C4—H40.9300C16—C171.392 (3)
C1—C21.378 (3)C16—H160.9300
C1—H1A0.9300C17—C181.388 (3)
C2—C31.378 (3)C18—C191.375 (3)
C2—H2A0.9300C18—H180.9300
C3—H30.9300C19—H190.9300
C6—C71.528 (3)C20—H20A0.9600
C6—H6A0.9700C20—H20B0.9600
C6—H6B0.9700C20—H20C0.9600
C7—C81.514 (2)
C7—O1—H1109.5C10—C9—H9119.0
C13—O2—H2109.5C9—C10—C11119.44 (17)
C17—O3—C20117.19 (15)C9—C10—N2115.63 (17)
C1—N1—C5117.47 (16)C11—C10—N2124.93 (17)
N3—N2—C10114.01 (16)C12—C11—C10119.43 (17)
N2—N3—C14113.99 (16)C12—C11—H11120.3
N1—C5—C4121.23 (17)C10—C11—H11120.3
N1—C5—C6117.29 (16)C11—C12—C13120.52 (17)
C4—C5—C6121.47 (17)C11—C12—H12119.7
C3—C4—C5120.27 (18)C13—C12—H12119.7
C3—C4—H4119.9O2—C13—C12122.62 (16)
C5—C4—H4119.9O2—C13—C8116.61 (16)
N1—C1—C2124.26 (18)C12—C13—C8120.77 (16)
N1—C1—H1A117.9C19—C14—C15119.35 (17)
C2—C1—H1A117.9C19—C14—N3115.39 (17)
C1—C2—C3117.98 (18)C15—C14—N3125.25 (18)
C1—C2—H2A121.0C16—C15—C14120.48 (18)
C3—C2—H2A121.0C16—C15—H15119.8
C4—C3—C2118.78 (18)C14—C15—H15119.8
C4—C3—H3120.6C15—C16—C17119.75 (18)
C2—C3—H3120.6C15—C16—H16120.1
C5—C6—C7114.81 (16)C17—C16—H16120.1
C5—C6—H6A108.6O3—C17—C18115.46 (18)
C7—C6—H6A108.6O3—C17—C16124.79 (18)
C5—C6—H6B108.6C18—C17—C16119.75 (18)
C7—C6—H6B108.6C19—C18—C17120.14 (19)
H6A—C6—H6B107.5C19—C18—H18119.9
O1—C7—C8111.64 (15)C17—C18—H18119.9
O1—C7—C6107.77 (14)C18—C19—C14120.47 (18)
C8—C7—C6110.83 (15)C18—C19—H19119.8
O1—C7—H7108.8C14—C19—H19119.8
C8—C7—H7108.8O3—C20—H20A109.5
C6—C7—H7108.8O3—C20—H20B109.5
C9—C8—C13117.68 (17)H20A—C20—H20B109.5
C9—C8—C7122.90 (16)O3—C20—H20C109.5
C13—C8—C7119.42 (16)H20A—C20—H20C109.5
C8—C9—C10122.10 (17)H20B—C20—H20C109.5
C8—C9—H9118.9
C10—N2—N3—C14178.77 (15)C9—C10—C11—C122.2 (3)
C1—N1—C5—C41.1 (3)N2—C10—C11—C12177.81 (17)
C1—N1—C5—C6177.95 (16)C10—C11—C12—C130.5 (3)
N1—C5—C4—C30.1 (3)C11—C12—C13—O2178.50 (16)
C6—C5—C4—C3178.93 (17)C11—C12—C13—C81.8 (3)
C5—N1—C1—C21.8 (3)C9—C8—C13—O2177.94 (15)
N1—C1—C2—C31.3 (3)C7—C8—C13—O22.6 (2)
C5—C4—C3—C20.3 (3)C9—C8—C13—C122.3 (3)
C1—C2—C3—C40.2 (3)C7—C8—C13—C12177.13 (16)
N1—C5—C6—C771.7 (2)N2—N3—C14—C19176.48 (16)
C4—C5—C6—C7109.2 (2)N2—N3—C14—C153.4 (3)
C5—C6—C7—O158.2 (2)C19—C14—C15—C162.2 (3)
C5—C6—C7—C8179.36 (15)N3—C14—C15—C16177.72 (18)
O1—C7—C8—C918.4 (2)C14—C15—C16—C170.1 (3)
C6—C7—C8—C9101.8 (2)C20—O3—C17—C18175.10 (17)
O1—C7—C8—C13162.15 (15)C20—O3—C17—C164.5 (3)
C6—C7—C8—C1377.7 (2)C15—C16—C17—O3178.39 (17)
C13—C8—C9—C100.6 (3)C15—C16—C17—C182.1 (3)
C7—C8—C9—C10178.84 (17)O3—C17—C18—C19178.22 (17)
C8—C9—C10—C111.7 (3)C16—C17—C18—C192.2 (3)
C8—C9—C10—N2178.37 (16)C17—C18—C19—C140.1 (3)
N3—N2—C10—C9177.37 (16)C15—C14—C19—C182.0 (3)
N3—N2—C10—C112.6 (3)N3—C14—C19—C18177.85 (17)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.042.801 (2)154
O2—H2···O1ii0.821.912.686 (2)158
C4—H4···O2iii0.932.473.165 (2)132
C3—H3···Cg2iv0.932.823.593 (3)141
C19—H19···Cg3v0.932.983.841 (3)155
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+1/2, z+3/2; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, for financial support, and the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, for the X-ray data collection.

Funding information

Funding for this research was provided by: University Grants Commission.

References

First citationBasu Baul, T. S., Dhar, S. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1280–1281.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier.  Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548.  Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationGregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationİskeleli, N. O., Karabıyık, H., Albayrak, C., Petek, H. & Ağar, E. (2006). Struct. Chem. 17, 393–399.  Google Scholar
First citationİspir, E. (2009). Dyes Pigments, 82, 13–19.  Google Scholar
First citationKocaokutgen, H., Gür, M., Soylu, M. S. & Lörnnecke, P. (2004). Acta Cryst. E60, o1756–o1758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.  Web of Science CrossRef CAS Google Scholar
First citationNishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805–812.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYazici, S., Albayrak, C., Gümrükçüoğlu, I. E., Şenel, I. & Büyükgüngör, O. (2011). Turk. J. Chem. 35, 341–347.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds