research communications
E)-2-[1-hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol
and Hirshfeld surface analysis of (aDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar-842001, India, bDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP-208016, India, and cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601, Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, igolenya@ua.fm
In the title compound, C20H19N3O3, the configuration about the azo N=N bond is E, and the central benzene ring is inclined to the pyridine ring by 31.43 (8)° and to the 4-methoxyphenyl ring by 4.73 (8)°. In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an R22(12) ring motif. The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to the ac plane. There are C—H⋯π interactions present within the layers and between the layers, leading to the formation of a supramolecular framework. The layers are also linked by offset π–π interactions, with an interplanar distance of 3.416 (2) Å.
Keywords: crystal structure; azo compounds; diazenyl; pyridine; hydrogen bonding; C—H⋯π interactions; offset π–π interactions; supramolecular framework; Hirshfeld surface analysis.
CCDC reference: 959013
1. Chemical context
; İspir, 2009). The well-known applications of azo dyes in acid–base indicators and chemical sensors and as electron-transfer catalysts have attracted the interest of many investigators (Tunçel & Serin, 2006). The versatile applications of in various fields include dyeing textile fibres, colouring different materials, plastics, biological medical studies, lasers, liquid crystalline displays, electro-optical devices and ink-jet printers in high-technology areas (Gregory, 1991). The conversion from the trans to the cis form in can lead to Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990), and for potential applications in molecular electronic devices (Martin et al., 1995). often exhibit various biological activities, including antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). The present work is part of an ongoing structural study of (Faizi et al., 2016, 2017) and proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2018; Kumar et al., 2018; Mukherjee et al., 2018). In the present work, we report the synthesis, and Hirshfeld surface analysis of the title compound, (E)-2-[1-hydroxy-2-(pyridin-2-yl)ethyl]-4-[2-(4-methoxyphenyl)diazen-1-yl]phenol.
have received much attention in fundamental and applied chemistry (Nishihara, 20042. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The configuration about the azo N=N bond is E, and the N2=N3 bond length is 1.256 (2) Å. The molecule is non-planar, with the central benzene ring (C8–C13) being inclined to the pyridine ring (N1/C1–C5) by 31.43 (8)° and to the outer 4-methoxyphenyl ring (C14–C19) by 4.73 (8)°.
3. Supramolecular features
In the crystal, molecules are linked by pairs of O—H⋯N hydrogen bonds, forming inversion dimers with an (12) ring motif (Table 1 and Fig. 2). The dimers are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming undulating layers lying parallel to the ac plane (Fig. 3 and Table 1). There are C—H⋯π interactions present within the layers and between the layers, leading to the formation of a supramolecular framework (Table 1 and Fig. 4). The layers are also linked by offset π–π interactions, involving inversion-related 4-methoxyphenol rings, which strengthen the supramolecular framework [Cg3⋯Cg3vi = 3.584 (2) Å, interplanar distance = 3.416 (2) Å, offset = 1.085 Å; Cg3 is the centroid of the C14–C19 ring; symmetry code: (vi) −x + 1, −y + 1, −z + 1].
4. Database survey
A search of the Cambridge Structural Database (CSD, V5.40, update of February 2019; Groom et al., 2016) for compounds containing the 4-[(4-methoxyphenyl)diazenyl]phenol skeleton gave 14 hits. There are five compounds that closely resemble the title compound, namely (E)-2-acetyl-4-(4-methoxyphenyldiazenyl)phenol (CSD refcode AQIDIO; Yazici et al., 2011), 2-hydroxy-5-[(E)-(4-methoxyphenyl)diazenyl]benzoic acid (FUGYIP; Basu Baul et al., 2000), 4-[(E)-(4-methoxyphenyl)diazenyl]-2-((E)-{[4-(phenylamino)phenyl]imino} methyl)phenol (MANTON; Faizi et al., 2017), 2,6-dimethyl-4-(4-methoxyphenyldiazenyl)phenol (PAHFUA; Kocaokutgen et al., 2004) and 2-methyl-4-(4-methoxyphenylazo)phenol (VEVKEN; İskeleli et al., 2006). In all five compounds, the configuration about the N=N bond is E, and the dihedral angles between the 4-methoxyphenyl ring and the other aryl ring are ca 3.04, 5.43, 11.61, 8.34 and 16.01°, respectively. In the title compound, this dihedral angle is 4.73 (8)°, similar to that in AQIDIO and FUGYIP.
5. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017). The reader is referred to a recent article by Tiekink and collaborators (Tan et al., 2019) who have published an excellent explanation of the use of Hirshfeld surface analysis and other calculations to study molecular packing.
Two views, front and back, of the Hirshfeld surface of the title compound mapped over dnorm are given in Fig. 5, and the two-dimensional fingerprint plots are given in Fig. 6. The latter reveals that the principal intermolecular contacts are, as is often the case, H⋯H at 47.4% (Fig. 6b). This is followed by the H⋯C/C⋯H contacts at 24.7% (Fig. 6c), related to the C—H⋯π interactions (see Table 1 for details). The classical O—H⋯N hydrogen bonds (Table 1) contribute, via N⋯H/H⋯N contacts (11.7%; Fig. 6d), while the classical O—H⋯O and non-classical C—H⋯O hydrogen bonds (Table 1) contribute, via O⋯H/H⋯O contacts (11.5%; Fig. 6e). The C⋯C contacts contribute only 3.3% (Fig. 6f), but are significant when analysing the offset π–π interactions in the crystal (see §3. Supramolecular features) and the formation of the supramolecular framework.
6. Synthesis and crystallization
The title compound was prepared by adding n-butyllithium (4.91 ml, 12.29 mmol, 2.5 M in cyclohexane) to a solution of 2-picoline (1 ml, 10.24 mmol) in anhydrous THF (25 ml) cooled at 195 K. The orange mixture was left to warm up to 143 K and then 5-(4-methoxyphenylazo)salicyaldehyde (MPS) (2.00 g, 8.53 mmol) dissolved in THF (10 ml) was added, giving a yellow solution. The solution was then stirred for 2 h at room temperature. The reaction was quenched by the addition of an aqueous of ammonium chloride (50 ml), and the product was extracted with diethyl ether. It was then dried over MgSO4 and purified by (cyclohexane/ethyl acetate 9/1) to give a yellow solid (1.10 g, 3.36 mmol, yield: 60%). Yellow needle-like crystals of the title compound were obtained by slow evaporation of a solution in methanol.
Spectroscopic and analytical data: Yellow solid: Rf = 0.43 (cyclohexane/ethyl acetate = 9/1); IR νmax (KBr, cm−1): 3170, 2837, 1596, 1500, 1480, 1440, 1428, 1339, 1281, 1257, 1206, 1178, 1140, 1103, 1052, 1032, 1005, 905, 869, 841, 824, 773, 730, 652, 570, 531, 493; 1H NMR (500 MHz, CDCl3) δ 3.14 (dd, 1H, J = 2.1, 15.8Hz), 3.44–3.49 (m, 1H), 3.88 (s, 3H), 5.46–5.49 (m, 1H), 6.98–7.01 (m, 3H), 7.21 (d, 1H, J = 7.6 Hz), 7.62–7.63 (m, 1H), 7.69–7.73 (m, 1H), 7.78 (dd, 1H, J =2.5, 8.6 Hz), 7.84–7.86 (m, 2H); 13C NMR (125 MHz, CDCl3) δ 42.7, 55.6,75.1, 114.2, 118.1, 121.4, 122.4, 124.1, 124.2, 124.3, 126.6, 137.7, 146.2, 147.1, 148.0, 159.2, 159.6, 161.5; HRMS (ESI) for C20H20N3O3 (M + H+): calculated 350.1504, found: 350.1507.
7. Refinement
Crystal data, data collection and structure . The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å and C—H = 0.93–0.98 Å, with Uiso(H) = 1.5Ueq(O-hydroxyl and C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 959013
https://doi.org/10.1107/S2056989019004377/su5489sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004377/su5489Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004377/su5489Isup3.cml
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C20H19N3O3 | F(000) = 736 |
Mr = 349.38 | Dx = 1.349 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.451 (5) Å | Cell parameters from 1490 reflections |
b = 8.169 (5) Å | θ = 3.7–26.0° |
c = 11.591 (5) Å | µ = 0.09 mm−1 |
β = 100.059 (5)° | T = 296 K |
V = 1720.2 (14) Å3 | Needle, yellow |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Bruker APEXII CCD area detector diffractometer | 3381 independent reflections |
Radiation source: sealed tube | 2169 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
phi and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −22→13 |
Tmin = 0.281, Tmax = 0.397 | k = −10→10 |
12516 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0428P)2 + 0.2309P] where P = (Fo2 + 2Fc2)/3 |
3381 reflections | (Δ/σ)max = 0.001 |
238 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.92494 (7) | 0.95556 (14) | 0.84820 (10) | 0.0173 (3) | |
H1 | 0.911689 | 1.038088 | 0.879019 | 0.026* | |
O2 | 0.92659 (7) | 0.63827 (16) | 1.12657 (10) | 0.0192 (3) | |
H2 | 0.917704 | 0.591870 | 1.185268 | 0.029* | |
O3 | 0.36888 (7) | 0.68602 (17) | 0.45972 (11) | 0.0273 (4) | |
N1 | 1.11161 (8) | 0.82930 (19) | 0.98278 (13) | 0.0185 (4) | |
N2 | 0.68013 (9) | 0.68483 (19) | 0.77772 (13) | 0.0211 (4) | |
N3 | 0.62436 (9) | 0.6015 (2) | 0.78765 (13) | 0.0215 (4) | |
C5 | 1.06621 (10) | 0.7859 (2) | 0.88320 (16) | 0.0165 (4) | |
C4 | 1.08607 (10) | 0.8094 (2) | 0.77434 (16) | 0.0180 (4) | |
H4 | 1.053929 | 0.778909 | 0.706776 | 0.022* | |
C1 | 1.17713 (11) | 0.8933 (2) | 0.97259 (17) | 0.0208 (5) | |
H1A | 1.209217 | 0.920515 | 1.041003 | 0.025* | |
C2 | 1.20001 (11) | 0.9212 (2) | 0.86736 (17) | 0.0220 (5) | |
H2A | 1.245666 | 0.967932 | 0.864834 | 0.026* | |
C3 | 1.15317 (10) | 0.8778 (2) | 0.76592 (16) | 0.0205 (5) | |
H3 | 1.166638 | 0.894338 | 0.693146 | 0.025* | |
C6 | 0.99387 (10) | 0.7089 (2) | 0.89526 (16) | 0.0184 (4) | |
H6A | 1.003179 | 0.620943 | 0.952107 | 0.022* | |
H6B | 0.972356 | 0.660762 | 0.820624 | 0.022* | |
C7 | 0.93790 (10) | 0.8263 (2) | 0.93306 (15) | 0.0155 (4) | |
H7 | 0.958956 | 0.873197 | 1.009369 | 0.019* | |
C8 | 0.86746 (10) | 0.7372 (2) | 0.94404 (15) | 0.0150 (4) | |
C9 | 0.80465 (10) | 0.7454 (2) | 0.85966 (16) | 0.0171 (4) | |
H9 | 0.805051 | 0.809928 | 0.793644 | 0.021* | |
C10 | 0.74100 (10) | 0.6607 (2) | 0.87024 (15) | 0.0167 (4) | |
C11 | 0.74037 (10) | 0.5601 (2) | 0.96750 (16) | 0.0200 (5) | |
H11 | 0.698601 | 0.499720 | 0.974301 | 0.024* | |
C12 | 0.80215 (10) | 0.5512 (2) | 1.05329 (15) | 0.0176 (4) | |
H12 | 0.801859 | 0.485124 | 1.118536 | 0.021* | |
C13 | 0.86500 (10) | 0.6403 (2) | 1.04309 (15) | 0.0155 (4) | |
C14 | 0.56281 (10) | 0.6283 (2) | 0.69611 (16) | 0.0199 (5) | |
C15 | 0.56281 (10) | 0.7290 (2) | 0.59953 (16) | 0.0208 (5) | |
H15 | 0.605862 | 0.782243 | 0.589646 | 0.025* | |
C16 | 0.49943 (11) | 0.7506 (2) | 0.51820 (17) | 0.0216 (5) | |
H16 | 0.499724 | 0.818338 | 0.453772 | 0.026* | |
C17 | 0.43502 (10) | 0.6707 (2) | 0.53292 (16) | 0.0213 (5) | |
C18 | 0.43565 (11) | 0.5659 (2) | 0.62726 (16) | 0.0235 (5) | |
H18 | 0.393131 | 0.509452 | 0.635834 | 0.028* | |
C19 | 0.49901 (10) | 0.5451 (2) | 0.70808 (16) | 0.0228 (5) | |
H19 | 0.499085 | 0.474861 | 0.771220 | 0.027* | |
C20 | 0.36725 (11) | 0.7824 (3) | 0.35657 (17) | 0.0298 (5) | |
H20A | 0.318289 | 0.782488 | 0.311822 | 0.045* | |
H20B | 0.400634 | 0.736834 | 0.310239 | 0.045* | |
H20C | 0.381746 | 0.892552 | 0.378279 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0236 (8) | 0.0129 (7) | 0.0162 (7) | 0.0019 (6) | 0.0053 (6) | 0.0002 (6) |
O2 | 0.0192 (7) | 0.0238 (8) | 0.0139 (7) | −0.0022 (6) | 0.0009 (6) | 0.0042 (6) |
O3 | 0.0176 (8) | 0.0376 (9) | 0.0252 (8) | −0.0018 (7) | −0.0007 (6) | 0.0062 (7) |
N1 | 0.0175 (9) | 0.0192 (9) | 0.0187 (9) | 0.0023 (7) | 0.0028 (7) | −0.0024 (7) |
N2 | 0.0180 (9) | 0.0235 (9) | 0.0221 (9) | −0.0016 (8) | 0.0044 (7) | −0.0040 (8) |
N3 | 0.0183 (9) | 0.0222 (9) | 0.0239 (9) | −0.0016 (8) | 0.0029 (8) | −0.0038 (7) |
C5 | 0.0169 (11) | 0.0125 (9) | 0.0197 (10) | 0.0038 (8) | 0.0019 (9) | −0.0002 (8) |
C4 | 0.0185 (11) | 0.0169 (10) | 0.0180 (10) | 0.0020 (9) | 0.0011 (8) | −0.0029 (8) |
C1 | 0.0178 (11) | 0.0213 (11) | 0.0214 (11) | 0.0014 (9) | −0.0020 (9) | −0.0053 (9) |
C2 | 0.0155 (11) | 0.0189 (10) | 0.0326 (12) | −0.0017 (9) | 0.0068 (10) | −0.0011 (9) |
C3 | 0.0215 (11) | 0.0195 (10) | 0.0222 (11) | 0.0026 (9) | 0.0082 (9) | 0.0030 (9) |
C6 | 0.0207 (11) | 0.0163 (10) | 0.0185 (10) | 0.0018 (9) | 0.0043 (9) | 0.0020 (8) |
C7 | 0.0168 (10) | 0.0168 (10) | 0.0125 (9) | 0.0002 (8) | 0.0014 (8) | 0.0024 (8) |
C8 | 0.0167 (11) | 0.0124 (10) | 0.0158 (10) | 0.0005 (8) | 0.0028 (9) | −0.0029 (8) |
C9 | 0.0189 (11) | 0.0182 (10) | 0.0150 (10) | 0.0018 (9) | 0.0052 (8) | −0.0007 (8) |
C10 | 0.0160 (11) | 0.0180 (10) | 0.0153 (10) | 0.0032 (9) | 0.0007 (8) | −0.0034 (8) |
C11 | 0.0160 (11) | 0.0209 (11) | 0.0241 (11) | −0.0042 (9) | 0.0063 (9) | −0.0019 (9) |
C12 | 0.0217 (11) | 0.0175 (10) | 0.0150 (10) | −0.0001 (9) | 0.0067 (9) | 0.0010 (8) |
C13 | 0.0160 (11) | 0.0150 (10) | 0.0156 (10) | 0.0036 (9) | 0.0029 (9) | −0.0027 (8) |
C14 | 0.0187 (11) | 0.0205 (10) | 0.0201 (11) | 0.0035 (9) | 0.0019 (9) | −0.0054 (9) |
C15 | 0.0166 (11) | 0.0206 (10) | 0.0263 (11) | −0.0020 (9) | 0.0066 (9) | −0.0045 (9) |
C16 | 0.0212 (11) | 0.0245 (12) | 0.0191 (11) | 0.0009 (9) | 0.0032 (9) | −0.0011 (9) |
C17 | 0.0168 (11) | 0.0268 (12) | 0.0192 (11) | 0.0002 (9) | 0.0001 (9) | −0.0068 (9) |
C18 | 0.0185 (11) | 0.0281 (11) | 0.0245 (11) | −0.0049 (9) | 0.0052 (9) | −0.0018 (9) |
C19 | 0.0229 (12) | 0.0246 (11) | 0.0215 (11) | −0.0004 (10) | 0.0059 (9) | 0.0015 (9) |
C20 | 0.0236 (12) | 0.0348 (13) | 0.0286 (12) | −0.0001 (10) | −0.0021 (10) | 0.0049 (10) |
O1—C7 | 1.435 (2) | C7—H7 | 0.9800 |
O1—H1 | 0.8200 | C8—C9 | 1.381 (2) |
O2—C13 | 1.358 (2) | C8—C13 | 1.401 (2) |
O2—H2 | 0.8200 | C9—C10 | 1.387 (3) |
O3—C17 | 1.365 (2) | C9—H9 | 0.9300 |
O3—C20 | 1.427 (2) | C10—C11 | 1.396 (3) |
N1—C1 | 1.341 (2) | C11—C12 | 1.378 (2) |
N1—C5 | 1.350 (2) | C11—H11 | 0.9300 |
N2—N3 | 1.256 (2) | C12—C13 | 1.392 (3) |
N2—C10 | 1.425 (2) | C12—H12 | 0.9300 |
N3—C14 | 1.429 (2) | C14—C19 | 1.387 (3) |
C5—C4 | 1.387 (3) | C14—C15 | 1.389 (3) |
C5—C6 | 1.504 (3) | C15—C16 | 1.379 (3) |
C4—C3 | 1.377 (3) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | C16—C17 | 1.392 (3) |
C1—C2 | 1.378 (3) | C16—H16 | 0.9300 |
C1—H1A | 0.9300 | C17—C18 | 1.388 (3) |
C2—C3 | 1.378 (3) | C18—C19 | 1.375 (3) |
C2—H2A | 0.9300 | C18—H18 | 0.9300 |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.528 (3) | C20—H20A | 0.9600 |
C6—H6A | 0.9700 | C20—H20B | 0.9600 |
C6—H6B | 0.9700 | C20—H20C | 0.9600 |
C7—C8 | 1.514 (2) | ||
C7—O1—H1 | 109.5 | C10—C9—H9 | 119.0 |
C13—O2—H2 | 109.5 | C9—C10—C11 | 119.44 (17) |
C17—O3—C20 | 117.19 (15) | C9—C10—N2 | 115.63 (17) |
C1—N1—C5 | 117.47 (16) | C11—C10—N2 | 124.93 (17) |
N3—N2—C10 | 114.01 (16) | C12—C11—C10 | 119.43 (17) |
N2—N3—C14 | 113.99 (16) | C12—C11—H11 | 120.3 |
N1—C5—C4 | 121.23 (17) | C10—C11—H11 | 120.3 |
N1—C5—C6 | 117.29 (16) | C11—C12—C13 | 120.52 (17) |
C4—C5—C6 | 121.47 (17) | C11—C12—H12 | 119.7 |
C3—C4—C5 | 120.27 (18) | C13—C12—H12 | 119.7 |
C3—C4—H4 | 119.9 | O2—C13—C12 | 122.62 (16) |
C5—C4—H4 | 119.9 | O2—C13—C8 | 116.61 (16) |
N1—C1—C2 | 124.26 (18) | C12—C13—C8 | 120.77 (16) |
N1—C1—H1A | 117.9 | C19—C14—C15 | 119.35 (17) |
C2—C1—H1A | 117.9 | C19—C14—N3 | 115.39 (17) |
C1—C2—C3 | 117.98 (18) | C15—C14—N3 | 125.25 (18) |
C1—C2—H2A | 121.0 | C16—C15—C14 | 120.48 (18) |
C3—C2—H2A | 121.0 | C16—C15—H15 | 119.8 |
C4—C3—C2 | 118.78 (18) | C14—C15—H15 | 119.8 |
C4—C3—H3 | 120.6 | C15—C16—C17 | 119.75 (18) |
C2—C3—H3 | 120.6 | C15—C16—H16 | 120.1 |
C5—C6—C7 | 114.81 (16) | C17—C16—H16 | 120.1 |
C5—C6—H6A | 108.6 | O3—C17—C18 | 115.46 (18) |
C7—C6—H6A | 108.6 | O3—C17—C16 | 124.79 (18) |
C5—C6—H6B | 108.6 | C18—C17—C16 | 119.75 (18) |
C7—C6—H6B | 108.6 | C19—C18—C17 | 120.14 (19) |
H6A—C6—H6B | 107.5 | C19—C18—H18 | 119.9 |
O1—C7—C8 | 111.64 (15) | C17—C18—H18 | 119.9 |
O1—C7—C6 | 107.77 (14) | C18—C19—C14 | 120.47 (18) |
C8—C7—C6 | 110.83 (15) | C18—C19—H19 | 119.8 |
O1—C7—H7 | 108.8 | C14—C19—H19 | 119.8 |
C8—C7—H7 | 108.8 | O3—C20—H20A | 109.5 |
C6—C7—H7 | 108.8 | O3—C20—H20B | 109.5 |
C9—C8—C13 | 117.68 (17) | H20A—C20—H20B | 109.5 |
C9—C8—C7 | 122.90 (16) | O3—C20—H20C | 109.5 |
C13—C8—C7 | 119.42 (16) | H20A—C20—H20C | 109.5 |
C8—C9—C10 | 122.10 (17) | H20B—C20—H20C | 109.5 |
C8—C9—H9 | 118.9 | ||
C10—N2—N3—C14 | 178.77 (15) | C9—C10—C11—C12 | 2.2 (3) |
C1—N1—C5—C4 | −1.1 (3) | N2—C10—C11—C12 | −177.81 (17) |
C1—N1—C5—C6 | 177.95 (16) | C10—C11—C12—C13 | −0.5 (3) |
N1—C5—C4—C3 | 0.1 (3) | C11—C12—C13—O2 | 178.50 (16) |
C6—C5—C4—C3 | −178.93 (17) | C11—C12—C13—C8 | −1.8 (3) |
C5—N1—C1—C2 | 1.8 (3) | C9—C8—C13—O2 | −177.94 (15) |
N1—C1—C2—C3 | −1.3 (3) | C7—C8—C13—O2 | 2.6 (2) |
C5—C4—C3—C2 | 0.3 (3) | C9—C8—C13—C12 | 2.3 (3) |
C1—C2—C3—C4 | 0.2 (3) | C7—C8—C13—C12 | −177.13 (16) |
N1—C5—C6—C7 | 71.7 (2) | N2—N3—C14—C19 | −176.48 (16) |
C4—C5—C6—C7 | −109.2 (2) | N2—N3—C14—C15 | 3.4 (3) |
C5—C6—C7—O1 | 58.2 (2) | C19—C14—C15—C16 | 2.2 (3) |
C5—C6—C7—C8 | −179.36 (15) | N3—C14—C15—C16 | −177.72 (18) |
O1—C7—C8—C9 | 18.4 (2) | C14—C15—C16—C17 | −0.1 (3) |
C6—C7—C8—C9 | −101.8 (2) | C20—O3—C17—C18 | −175.10 (17) |
O1—C7—C8—C13 | −162.15 (15) | C20—O3—C17—C16 | 4.5 (3) |
C6—C7—C8—C13 | 77.7 (2) | C15—C16—C17—O3 | 178.39 (17) |
C13—C8—C9—C10 | −0.6 (3) | C15—C16—C17—C18 | −2.1 (3) |
C7—C8—C9—C10 | 178.84 (17) | O3—C17—C18—C19 | −178.22 (17) |
C8—C9—C10—C11 | −1.7 (3) | C16—C17—C18—C19 | 2.2 (3) |
C8—C9—C10—N2 | 178.37 (16) | C17—C18—C19—C14 | −0.1 (3) |
N3—N2—C10—C9 | 177.37 (16) | C15—C14—C19—C18 | −2.0 (3) |
N3—N2—C10—C11 | −2.6 (3) | N3—C14—C19—C18 | 177.85 (17) |
Cg2 and Cg3 are the centroids of rings C8–C13 and C14–C19, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.82 | 2.04 | 2.801 (2) | 154 |
O2—H2···O1ii | 0.82 | 1.91 | 2.686 (2) | 158 |
C4—H4···O2iii | 0.93 | 2.47 | 3.165 (2) | 132 |
C3—H3···Cg2iv | 0.93 | 2.82 | 3.593 (3) | 141 |
C19—H19···Cg3v | 0.93 | 2.98 | 3.841 (3) | 155 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) x, −y+3/2, z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+2, y+1/2, −z+3/2; (v) −x+1, y−1/2, −z+3/2. |
Acknowledgements
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, for financial support, and the Department of Chemistry, Langat Singh College, B. R. A. Bihar University, for the X-ray data collection.
Funding information
Funding for this research was provided by: University Grants Commission.
References
Basu Baul, T. S., Dhar, S. & Tiekink, E. R. T. (2000). Acta Cryst. C56, 1280–1281. CSD CrossRef IUCr Journals Google Scholar
Bruker (2003). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dürr, H. & Bouas-Laurent, H. (1990). In Photochromism: Molecules and Systems. Amsterdam: Elsevier. Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. Web of Science CSD CrossRef CAS Google Scholar
Faizi, M. S. H., Dege, N. & Goleva, K. (2017). IUCrData, 2, x170548. Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Gregory, P. (1991). Colorants for High Technology, Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
İskeleli, N. O., Karabıyık, H., Albayrak, C., Petek, H. & Ağar, E. (2006). Struct. Chem. 17, 393–399. Google Scholar
İspir, E. (2009). Dyes Pigments, 82, 13–19. Google Scholar
Kocaokutgen, H., Gür, M., Soylu, M. S. & Lörnnecke, P. (2004). Acta Cryst. E60, o1756–o1758. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. Web of Science CrossRef CAS Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martin, P. J., Petty, M. C., Bryce, M. R. & Bloor, D. (1995). In An Introduction to Molecular Electronics, ch. 6. New York: Oxford University Press. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796. Web of Science CrossRef CAS Google Scholar
Nishihara, H. (2004). Bull. Chem. Soc. Jpn, 77, 407–428. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tunçel, M. & Serin, S. (2006). Transition Met. Chem. 31, 805–812. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yazici, S., Albayrak, C., Gümrükçüoğlu, I. E., Şenel, I. & Büyükgüngör, O. (2011). Turk. J. Chem. 35, 341–347. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.