research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of penta­carbon­yl(2,2-di­fluoro­propane­thio­ato-κS)manganese(I)

CROSSMARK_Color_square_no_text.svg

aLCC-CNRS, Université de Toulouse, CNRS, INPT, Toulouse, France, and bICGM CNRS, Univ Montpellier, ENSCM, Montpellier, France
*Correspondence e-mail: daran@lcc-toulouse.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 March 2019; accepted 27 March 2019; online 2 April 2019)

The title compound, [Mn{SC(O)CF2CH3}(CO)5], has been isolated as a by-product during the reaction of K[Mn(CO)5] with CH3CF2COCl. It is built up from a di­fluoro­methyl­propane­thio­ate bonded to an Mn(CO)5 moiety through the S atom. The Mn atom has an almost perfect octa­hedral coordination sphere. It is one of the rare examples of compounds containing the (CO)5MnS—C fragment. In the crystal, the methyl group occupies a pocket surrounded by the O atoms of three carbonyl groups of the Mn(CO)5 moiety; however, the H⋯O distances are rather long. These inter­actions lead to the formation of layers lying parallel to (101), which enclose R44(15) and R44(16) ring motifs. The CF2 group is disordered over two sets of sites with occupancies of 0.849 (3) and 0.151 (3).

1. Chemical context

Alkyl­penta­carbonyl­manganese(I) complexes containing fluorinated alkyl groups, [MnRF(CO)5], have been known since 1960 (Kaesz et al., 1960[Kaesz, H. D., King, R. B. & Stone, F. G. A. (1960). Z. Naturforsch. Teil B, 15, 763-764.]; Beck et al., 1961[Beck, W., Hieber, W. & Tengler, H. (1961). Chem. Ber. 94, 862-872.]) but X-ray structures have been scarcely investigated until recently (Morales-Cerrada, Fliedel, Daran et al., 2019[Morales-Cerrada, R., Fliedel, C., Daran, J.-C., Gayet, F., Ladmiral, V., Améduri, B. & Poli, R. (2019). Chem. Eur. J. 25, 296-308.]). Our inter­est in these compounds is related to a study of the homolytic Mn—C bond strength and how this is affected by the F substitution at the α and β positions of the alkyl chain (Morales-Cerrada, Fliedel, Gayet et al., 2019[Morales-Cerrada, R., Fliedel, C., Gayet, F., Ladmiral, V., Améduri, B. & Poli, R. (2019). Organometallics, 38, 1021-1030. .]). The compounds where RF stands for CH2CF3 and CF2CH3 may be considered as models for the role of [Mn(CO)5] as a radical-trapping species in the polymerization of vinyl­idene fluoride, where the Mn—C bonds may be formed and cleaved reversibly. While the synthesis of the CH2CF3 derivative could be accomplished as planned and the product could be obtained in a pure form and crystallized (Morales-Cerrada, Fliedel, Daran et al., 2019[Morales-Cerrada, R., Fliedel, C., Daran, J.-C., Gayet, F., Ladmiral, V., Améduri, B. & Poli, R. (2019). Chem. Eur. J. 25, 296-308.]), the synthesis of the CF2CH3 derivative led to the unexpected compound, [Mn{SC(O)CH3CF2}(CO)5] (1), reported here.

[Scheme 1]

2. Structural commentary

The title compound (1), is built up from a di­fluoro­methyl­propane­thio­ate bonded to an Mn(CO)5 moiety through the S atom (Fig. 1[link]). Selected bond distances and bond angles involving atom Mn1 are given in Table 1[link], and it can be seen that this atom has a nearly perfect octa­hedral coordination sphere. As expected, the Mn1—S1—C1—C2 fragment is almost planar, as shown by the value of the torsion angle of −177.98 (11)°. This plane roughly bis­ects the dihedral angle formed by the C11/Mn1/C12/S1 and C11/Mn1/C13/S1 planes with values of 50.06 (7) and 39.9 (1)°, respectively, placing the O2 atom relatively close to the O atoms of the two carbonyl groups C12=O12 and C13=O13 with distances O2⋯O12 = 3.058 (2) Å and O2⋯O13 = 3.257 (2) Å. The smallest bond angles, 86.01 (5)° for C14—Mn1—S1 and 86.14 (5)° for C15—Mn1—S1, are certainly related to steric hindrance resulting from these relatively short intra­molecular O⋯O contacts. These short inter­actions might force the Mn1—S1 bond to bend slightly towards the equatorial plane [C12/C13/C14/C15]. The shortest Mn—C(O) distance is observed for the carbonyl group trans to the S atom; Mn1—C11 = 1.8376 (17) Å

Table 1
Selected geometric parameters (Å, °)

Mn1—C11 1.8376 (17) Mn1—C14 1.8631 (17)
Mn1—C12 1.8807 (17) Mn1—C15 1.8849 (17)
Mn1—C13 1.8720 (17)    
       
C11—Mn1—C12 91.08 (7) C13—Mn1—C15 174.92 (7)
C11—Mn1—C13 90.69 (7) C13—Mn1—S1 88.91 (5)
C11—Mn1—C14 90.47 (7) C14—Mn1—C12 177.58 (7)
C11—Mn1—C15 94.32 (7) C14—Mn1—C13 90.77 (7)
C11—Mn1—S1 176.45 (5) C14—Mn1—C15 90.07 (7)
C12—Mn1—C15 87.96 (7) C14—Mn1—S1 86.01 (5)
C12—Mn1—S1 92.46 (5) C15—Mn1—S1 86.14 (5)
C13—Mn1—C12 91.07 (7)    
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (1), with the atom labelling. For clarity, only the major disordered component of the –CF2 group is shown. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the methyl group occupies a pocket surrounded by O atoms of three carbonyl groups, C11=O11, C12=O12 and C14=O14, forming a two-dimensional network that develops parallel to (101); see Table 2[link] and Fig. 2[link]. These rather weak C—H⋯O inter­actions result in the formation of two graph-set motifs, R44(15) and R44(16), as shown in Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3A—H3A1⋯O14i 0.98 2.81 3.732 (3) 158
C3A—H3A2⋯O12ii 0.98 2.79 3.753 (3) 166
C3A—H3A3⋯O11iii 0.98 2.79 3.564 (3) 136
C3B—H3B2⋯O12ii 0.98 2.81 3.777 (19) 168
C3B—H3B3⋯O11iii 0.98 2.37 3.165 (15) 138
C3B—H3B3⋯O11iii 0.98 2.37 3.165 (15) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A view of the crystal packing of compound (1). The C—H⋯O inter­actions (Table 2[link]) involving the major component of the disordered –CF2 group, are shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD, V5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a (CO)5MnS—C fragment revealed only three hits. These include, [μ2-1,2-bis­(p-fluoro­phen­yl)-ethyl­ene-1,2-di­thiol­ato-S,S′]decacarbonyldi-manganese (CSD refcode CECCES; Lindner et al., 1983[Lindner, E., Butz, I. P., Hiller, W., Fawzi, R. & Hoehne, S. (1983). Angew. Chem. Int. Ed. 22, 996-997.]), penta­carbonyl-[(N-penta­fluoro­thio)­fluoro­thio­form­imido-S]manganese (JEBNOT; Damerius et al., 1989[Damerius, R., Leopold, D., Schulze, W. & Seppelt, K. (1989). Z. Anorg. Allg. Chem. 578, 110-118.]) and μ-1,2-di­thio­oxalatobis(penta­carbon­yl)manganese (TOXCMN; Weber & Mattes, 1979[Weber, H. & Mattes, R. (1979). Chem. Ber. 112, 95-98.]). The Mn—S, S—C, Mn—C bond distances and Mn—S—C bond angles are compared to those for compound (1) in Table 3[link]. As in compound (1), the Mn—C bond trans to the S atom is significantly shorter than the four other Mn—C bonds. The longest Mn—S bond, 2.405 Å in CECCES, may be related to the presence of the bulky fluoro­phenyl group attached to the C(S) atom. For compound (1) and TOXCMN, both having an oxo group attached to the C(S) atom, the Mn—S—C angle is nearly identical, 106.26 (6) and ca 105.64°, respectively (Table 3[link]). In contrast, this angle is slightly larger for CECCES and for JEBNOT, ca 108.8 and 108.1°, respectively.

Table 3
Comparison of selected bond lengths (Å) and bond angle (°) in the title compound (1) and related compounds having an Mn(CO)5SC fragment

Parameter (1) CECCESa JEBNOTb TOXCMNc
Mn—S 2.3768 (5) 2.405 2.384 2.379
C—S 1.725 (2) 1.741 1.723 1.737
Mn—S—C 106.26 (6) 108.84 108.12 105.64
Mn—C11 1.838 (2) 1.803 1.835 1.840
Mn—C12 1.881 (2) 1.867 1.871 1.883
Mn—C13 1.872 (2) 1.861 1.891 1.857
Mn—C14 1.863 (3) 1.864 1.871 1.880
Mn—C15 1.885 (2) 1.878 1.891 1.857
Notes: (a) Lindner et al. (1983[Lindner, E., Butz, I. P., Hiller, W., Fawzi, R. & Hoehne, S. (1983). Angew. Chem. Int. Ed. 22, 996-997.]); (b) Damerius et al. (1989[Damerius, R., Leopold, D., Schulze, W. & Seppelt, K. (1989). Z. Anorg. Allg. Chem. 578, 110-118.]); (b) Weber & Mattes (1979[Weber, H. & Mattes, R. (1979). Chem. Ber. 112, 95-98.]).

5. Synthesis and crystallization

The synthesis of the target compound, [Mn(CF2CH3)(CO)5], requires transit through the corresponding acyl derivative, [Mn(COCF2CH3)(CO)5], because direct alkyl­ation of CH3CF2-X (X = Cl, Br) reagents by the powerful [Mn(CO)5] nucleophile suffers from the inverted polarity of the C—X bond, leading to [MnX(CO)5] instead (Beck et al., 1961[Beck, W., Hieber, W. & Tengler, H. (1961). Chem. Ber. 94, 862-872.]). The corresponding acyl­ation using CH3CF2COCl as acyl­ating agent was successful (Morales-Cerrada, Fliedel, Daran et al., 2019[Morales-Cerrada, R., Fliedel, C., Daran, J.-C., Gayet, F., Ladmiral, V., Améduri, B. & Poli, R. (2019). Chem. Eur. J. 25, 296-308.]). However, the pure product could only be obtained when the 2,2-di­fluoro­propanoyl chloride was synthesized by the action of oxalyl chloride on 2,2-di­fluoro­propionic acid. In a first synthetic study, 2,2-di­fluoro­propionic acid was chlorin­ated by the more common thionyl chloride reagent, SOCl2. When the resulting acyl chloride was used to acyl­ate [Mn(CO)5], the title compound crystallized as colourless single crystals. The sulfur atom must have been provided by the thionyl chloride remaining as a contaminant in the acyl chloride reagent.

2,2-Di­fluoro­propanoyl chloride was freshly prepared as follows. To a 50 ml round flask equipped with a reflux condenser, was introduced 5.28 g of 2,2-di­fluoro­propionic acid (47.97 mmol) and 10.05 g of thionyl chloride (84.48 mmol; previously purified by reflux in the presence of sulfur powder and then distilled) was added dropwise. The mixture was then heated up to 363 K over 2 h (reflux). The product was purified by distillation (b.p. 308–313 K), giving 4.85 g of a colourless liquid. The amount of thionyl chloride contaminant in the distilled product could not be estimated by NMR spectroscopy.

Synthesis of the title compound (1): To a Schlenk tube were introduced 390 mg (9.97 mmol) of metallic potassium and 358 mg (15.57 mmol) of metallic sodium under argon. They were crushed together to generate a liquid NaK alloy. A solution of dimanganese deca­carbonyl (2.00 g, 5.13 mmol) in 30 ml of dry THF was added and the resulting mixture was stirred for 3 h at room temperature, leading to the formation of K+[Mn(CO)5]. The mixture was filtered through Celite to yield a greenish brown solution, rinsing the Celite with 10 ml of dry THF. Then, 2,2-tri­fluoro­propanoyl chloride (1.31 g, 10.19 mmol), made as described above, was added dropwise at room temperature. The resulting solution was further stirred at room temperature for 3 h, followed by evaporation of the solvents under reduced pressure. The product was purified by column chromatography through a silica gel column, using n-pentane as the mobile phase. After elimination of a first yellow fraction corresponding to [Mn2(CO)10], the mobile phase polarity was increased using a mixture of n-pentane and diethyl ether (2:1). An orange band was collected, followed by evaporation to dryness under reduced pressure to afford the product as an orange–brown liquid. The product was stored in the fridge (276–277 K), leading to the growth of thin colourless plate-like crystals of the title compound which were collected after two days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The methyl H atoms were fixed geometrically and treated as riding: C—H = 0.98 Å with Uiso(H) = 1.5Ueq(CH3). The two fluorine atoms presented elongated ellipsoids, which could be related to disorder. To consider a realistic chemical disorder, we defined a model by rotation around the C1—C2 bond. Initially, the model could be refined isotropically to define the occupancy factors using a free variable. The result showed a major component with an occupancy factor of 85% and a minor one at 15%. As a result, it was impossible to freely refine the thermal ellipsoids for the disordered CF2 group. The anisotropic refinement has been realized using severe EADP restraints for the C and F atoms.

Table 4
Experimental details

Crystal data
Chemical formula [Mn(C3H3F2OS)(CO)5]
Mr 320.10
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.3503 (4), 14.9583 (9), 12.3127 (9)
β (°) 97.149 (3)
V3) 1160.49 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.36
Crystal size (mm) 0.40 × 0.26 × 0.04
 
Data collection
Diffractometer Nonius CAD-4 with APEXII CCD
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.621, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 43723, 2554, 2261
Rint 0.043
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.04
No. of reflections 2554
No. of parameters 175
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.55, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Pentacarbonyl(2,2-difluoropropanethioato-κS)manganese(I) top
Crystal data top
[Mn(C3H3F2OS)(CO)5]F(000) = 632
Mr = 320.10Dx = 1.832 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3503 (4) ÅCell parameters from 9996 reflections
b = 14.9583 (9) Åθ = 2.2–28.9°
c = 12.3127 (9) ŵ = 1.36 mm1
β = 97.149 (3)°T = 173 K
V = 1160.49 (13) Å3Thin_plate, colourless
Z = 40.40 × 0.26 × 0.04 mm
Data collection top
Nonius CAD-4 with APEXII CCD
diffractometer
2554 independent reflections
Radiation source: fine-focus sealed tube2261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.1°, θmin = 2.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 88
Tmin = 0.621, Tmax = 0.746k = 1919
43723 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.033P)2 + 0.5266P]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.55 e Å3
6 restraintsΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.43292 (4)0.29392 (2)0.45193 (2)0.01827 (8)
S10.53795 (7)0.42961 (3)0.37381 (4)0.02705 (11)
O20.6662 (2)0.32546 (9)0.22242 (11)0.0380 (3)
O110.2678 (2)0.13030 (8)0.54815 (10)0.0335 (3)
O120.8262 (2)0.19606 (9)0.40668 (12)0.0386 (3)
O130.1947 (2)0.24358 (10)0.23502 (10)0.0374 (3)
O140.0554 (2)0.39501 (10)0.50870 (13)0.0429 (3)
O150.6894 (2)0.35866 (9)0.65865 (11)0.0361 (3)
C10.6470 (3)0.40015 (11)0.25739 (14)0.0258 (3)
C110.3361 (3)0.19238 (11)0.51356 (13)0.0231 (3)
C120.6773 (3)0.23362 (11)0.41940 (14)0.0249 (3)
C130.2873 (3)0.26287 (11)0.31555 (14)0.0246 (3)
C140.1982 (3)0.35751 (11)0.48685 (14)0.0264 (3)
C150.5915 (3)0.33322 (10)0.58282 (14)0.0238 (3)
C20.7351 (3)0.47775 (12)0.19361 (16)0.0348 (4)
C3A0.9645 (4)0.4925 (2)0.2222 (2)0.0413 (6)0.849 (3)
H3A10.9934540.5102990.2992230.062*0.849 (3)
H3A21.0115150.5398930.1758220.062*0.849 (3)
H3A31.0411570.4371490.2106350.062*0.849 (3)
F1A0.6207 (3)0.55205 (11)0.2005 (2)0.0672 (7)0.849 (3)
F2A0.6999 (3)0.45454 (13)0.08233 (12)0.0604 (6)0.849 (3)
C3B0.952 (2)0.4766 (13)0.1799 (15)0.0413 (6)0.151 (3)
H3B11.0372350.4680840.2511020.062*0.151 (3)
H3B20.9904540.5334690.1480470.062*0.151 (3)
H3B30.9792640.4274490.1308630.062*0.151 (3)
F1B0.7158 (19)0.5589 (6)0.2621 (11)0.0672 (7)0.151 (3)
F2B0.5979 (18)0.4975 (8)0.1138 (8)0.0604 (6)0.151 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01945 (13)0.01603 (13)0.01948 (13)0.00083 (8)0.00298 (9)0.00078 (9)
S10.0315 (2)0.01629 (19)0.0345 (2)0.00001 (15)0.00874 (18)0.00293 (16)
O20.0568 (9)0.0261 (7)0.0341 (7)0.0052 (6)0.0176 (6)0.0000 (5)
O110.0430 (7)0.0257 (6)0.0326 (7)0.0076 (5)0.0081 (6)0.0041 (5)
O120.0318 (7)0.0426 (8)0.0422 (8)0.0146 (6)0.0076 (6)0.0002 (6)
O130.0402 (7)0.0454 (8)0.0250 (7)0.0088 (6)0.0029 (6)0.0005 (6)
O140.0294 (7)0.0434 (8)0.0570 (9)0.0104 (6)0.0106 (6)0.0062 (7)
O150.0456 (8)0.0279 (7)0.0319 (7)0.0035 (6)0.0072 (6)0.0033 (5)
C10.0239 (8)0.0256 (8)0.0276 (8)0.0028 (6)0.0021 (6)0.0077 (7)
C110.0254 (8)0.0241 (8)0.0197 (8)0.0009 (6)0.0028 (6)0.0022 (6)
C120.0285 (9)0.0223 (8)0.0238 (8)0.0002 (7)0.0025 (6)0.0010 (6)
C130.0263 (8)0.0217 (8)0.0266 (9)0.0010 (6)0.0069 (7)0.0047 (6)
C140.0265 (8)0.0247 (8)0.0279 (9)0.0010 (7)0.0026 (7)0.0008 (7)
C150.0270 (8)0.0163 (8)0.0286 (8)0.0014 (6)0.0053 (7)0.0018 (6)
C20.0370 (10)0.0293 (9)0.0384 (10)0.0031 (8)0.0065 (8)0.0118 (8)
C3A0.0401 (12)0.0418 (16)0.0438 (18)0.0138 (10)0.0117 (13)0.0001 (13)
F1A0.0639 (12)0.0365 (8)0.1106 (19)0.0244 (9)0.0482 (12)0.0455 (11)
F2A0.0864 (14)0.0664 (12)0.0267 (8)0.0336 (10)0.0003 (8)0.0110 (7)
C3B0.0401 (12)0.0418 (16)0.0438 (18)0.0138 (10)0.0117 (13)0.0001 (13)
F1B0.0639 (12)0.0365 (8)0.1106 (19)0.0244 (9)0.0482 (12)0.0455 (11)
F2B0.0864 (14)0.0664 (12)0.0267 (8)0.0336 (10)0.0003 (8)0.0110 (7)
Geometric parameters (Å, º) top
Mn1—C111.8376 (17)C1—C21.545 (2)
Mn1—C121.8807 (17)C2—F2B1.264 (9)
Mn1—C131.8720 (17)C2—F1A1.336 (2)
Mn1—C141.8631 (17)C2—F2A1.404 (3)
Mn1—C151.8849 (17)C2—C3B1.409 (13)
Mn1—S12.3768 (5)C2—C3A1.472 (3)
S1—C11.7250 (18)C2—F1B1.492 (11)
O2—C11.209 (2)C3A—H3A10.9800
O11—C111.131 (2)C3A—H3A20.9800
O12—C121.127 (2)C3A—H3A30.9800
O13—C131.126 (2)C3B—H3B10.9800
O14—C141.127 (2)C3B—H3B20.9800
O15—C151.122 (2)C3B—H3B30.9800
C11—Mn1—C1291.08 (7)F1A—C2—F2A104.25 (18)
C11—Mn1—C1390.69 (7)F2B—C2—C3B119.9 (9)
C11—Mn1—C1490.47 (7)F1A—C2—C3A112.9 (2)
C11—Mn1—C1594.32 (7)F2A—C2—C3A107.65 (19)
C11—Mn1—S1176.45 (5)F2B—C2—F1B98.7 (7)
C12—Mn1—C1587.96 (7)C3B—C2—F1B103.2 (8)
C12—Mn1—S192.46 (5)F2B—C2—C1108.2 (4)
C13—Mn1—C1291.07 (7)F1A—C2—C1110.99 (16)
C13—Mn1—C15174.92 (7)F2A—C2—C1106.65 (15)
C13—Mn1—S188.91 (5)C3B—C2—C1118.3 (8)
C14—Mn1—C12177.58 (7)C3A—C2—C1113.66 (18)
C14—Mn1—C1390.77 (7)F1B—C2—C1105.3 (4)
C14—Mn1—C1590.07 (7)C2—C3A—H3A1109.5
C14—Mn1—S186.01 (5)C2—C3A—H3A2109.5
C15—Mn1—S186.14 (5)H3A1—C3A—H3A2109.5
C1—S1—Mn1106.26 (6)C2—C3A—H3A3109.5
O2—C1—C2117.03 (16)H3A1—C3A—H3A3109.5
O2—C1—S1126.92 (13)H3A2—C3A—H3A3109.5
C2—C1—S1116.02 (13)C2—C3B—H3B1109.5
O11—C11—Mn1176.70 (15)C2—C3B—H3B2109.5
O12—C12—Mn1175.65 (15)H3B1—C3B—H3B2109.5
O13—C13—Mn1177.98 (15)C2—C3B—H3B3109.5
O14—C14—Mn1179.09 (17)H3B1—C3B—H3B3109.5
O15—C15—Mn1177.59 (15)H3B2—C3B—H3B3109.5
Mn1—S1—C1—C2177.98 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3A1···O14i0.982.813.732 (3)158
C3A—H3A2···O12ii0.982.793.753 (3)166
C3A—H3A3···O11iii0.982.793.564 (3)136
C3B—H3B2···O12ii0.982.813.777 (19)168
C3B—H3B3···O11iii0.982.373.165 (15)138
C3B—H3B3···O11iii0.982.373.165 (15)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2.
Comparison of selected bond lengths (Å) and bond angle (°) in the title compound (1) and related compounds having an Mn(CO)5SC fragment top
Parameter(1)CECCESaJEBNOTbTOXCMNc
Mn—S2.3768 (5)2.4052.3842.379
C—S1.725 (2)1.7411.7231.737
Mn—S—C106.26 (6)108.84108.12105.64
Mn—C111.838 (2)1.8031.8351.840
Mn—C121.881 (2)1.8671.8711.883
Mn—C131.872 (2)1.8611.8911.857
Mn—C141.863 (3)1.8641.8711.880
Mn—C151.885 (2)1.8781.8911.857
Notes: (a) Lindner et al. (1983); (b) Damerius et al. (1989); (b) Weber & Mattes (1979).
 

Funding information

Funding for this research was provided by: Centre National de la Recherche Scientifique and Agence Nationale de la Recherche (ANR, French National Agency) through the project FLUPOL (grant No. ANR-14-CE07-0012).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeck, W., Hieber, W. & Tengler, H. (1961). Chem. Ber. 94, 862–872.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDamerius, R., Leopold, D., Schulze, W. & Seppelt, K. (1989). Z. Anorg. Allg. Chem. 578, 110–118.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaesz, H. D., King, R. B. & Stone, F. G. A. (1960). Z. Naturforsch. Teil B, 15, 763–764.  CrossRef Google Scholar
First citationLindner, E., Butz, I. P., Hiller, W., Fawzi, R. & Hoehne, S. (1983). Angew. Chem. Int. Ed. 22, 996–997.  CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMorales-Cerrada, R., Fliedel, C., Daran, J.-C., Gayet, F., Ladmiral, V., Améduri, B. & Poli, R. (2019). Chem. Eur. J. 25, 296–308.  CAS PubMed Google Scholar
First citationMorales-Cerrada, R., Fliedel, C., Gayet, F., Ladmiral, V., Améduri, B. & Poli, R. (2019). Organometallics, 38, 1021–1030. .  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeber, H. & Mattes, R. (1979). Chem. Ber. 112, 95–98.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds