research communications
Crystal structures and Hirshfeld surface analysis of 2-(adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole and 2-(adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole
aDepartment of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia, bDepartment of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
*Correspondence e-mail: olivier.blacque@chem.uzh.ch
The crystal structures of the title adamantane-oxadiazole hybrid compounds, C18H19FN2O (I) and C18H19ClN2O (II), are built up from an adamantane unit and a halogenophenyl ring, [X = F (I), Cl (II)], in position 5 on the central 1,3,4-oxadiazole unit. The molecular structures are very similar, only the relative orientation of the halogenophenyl ring in comparison with the central five-membered ring differs slightly. In the crystals of both compounds, molecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with R22(12) ring motifs. In (I) the dimers are connected by C—H⋯F interactions, forming slabs lying parallel to the bc plane. In (II), the dimers are linked by C—H⋯π and offset π–π interactions [interplanar distance = 3.4039 (9) Å], forming layers parallel to (10).
1. Chemical context
Considerable attention has been devoted to adamantane derivatives, which have long been known for their diverse biological properties (Liu et al., 2011; Lamoureux & Artavia, 2010). In view of the pronounced of the adamantane cage, it has been observed that adamantyl-bearing compounds are characterized by high therapeutic indices (Wanka et al., 2013). Sixty years ago, the first adamantane-based drug, amantadine, was discovered to be an efficient therapy for the treatment of Influenza A infection (Davies et al., 1964; Togo et al., 1968). As a result of intensive research based on adamantane derivatives, the adamantane nucleus was further recognized as the key pharmacophore in several biologically active compounds. Among the major biological activities displayed by adamantane derivatives, the anti-HIV (El-Emam et al., 2004; Burstein et al., 1999; Balzarini et al., 2009), antibacterial (Protopopova et al., 2005; El-Emam et al., 2013; Kadi et al., 2010; Al-Abdullah et al., 2014; Al-Wahaibi et al., 2017), antifungal (Omar et al., 2010), anticancer (Sun et al., 2002), anti-diabetic (Villhauer et al., 2003; Augeri et al., 2005) and antimalarial (Dong et al., 2010) activities are the most interesting. In addition, 1,3,4-oxadiazole derivatives occupy a unique place in the field of medicinal chemistry as pharmacophores or auxophores possessing diverse pharmacological activities including antibacterial (Prakash et al., 2010; Ogata et al., 1971; Kadi et al., 2007), anticancer (Zhang et al., 2014), antiviral (Wu et al., 2015) and anti-inflammatory (Bansal et al., 2014) activities. We report herein on the determinations of the title adamantane-oxadiazole hybrid molecules 2-(adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I) and 2-(adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II). The of the 4-bromophenyl derivative has been reported previously (Alzoman et al., 2014), and after examination of the deposited and transformation of the from P21/c to P21/n, it is found to be isotypic with compound (II).
2. Structural commentary
Compounds (I) and (II), are built up from a central 1,3,4-oxadiazole unit, an adamantane unit and a halogenophenyl group (Figs. 1 and 2, respectively). The C—N bonds in the oxadiazole rings have double-bond character [C7=N1 = 1.279 (5) and 1.292 (3) Å, and C8=N2 = 1.288 (5) and 1.288 (3) Å in (I) and (II), respectively], while the N—N and C—O bonds exhibit single-bond character [N1—N2 = 1.408 (4) and 1.417 (3) Å, C7—O1 = 1.366 (4) and 1.360 (2) Å, and C8—O1 = 1.369 (4) and 1.359 (2) Å in (I) and (II), respectively]. These geometrical parameters are very similar to those observed for similar compounds; see §5. Database survey.
As seen in Fig. 3, the molecular structures of compounds (I) and (II) are very similar. The largest difference is highlighted by the structural overlay plot, and comes from the relative orientation of the halogenophenyl group with respect to the oxadiazole ring. In compound (II), the rings are almost coplanar with their mean planes being inclined to each other by 9.5 (1)°, while in compound (I) the equivalent dihedral angle is 20.8 (2)°.
3. Supramolecular features
In the crystals of both compounds, molecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with R22(12) ring motifs (Tables 1 and 2, respectively). In the crystal of (I), the dimers are connected by C—H⋯F interactions, forming slabs lying parallel to the bc plane (Fig. 4 and Table 1). In the crystal of (II), the dimers are linked by C—H⋯π and offset π–π interactions, forming layers lying parallel to the (10) plane; see Fig. 5 and Table 2. The offset π–π interactions involve inversion-related 4-chlorophenyl rings (C1–C6) with an intercentroid distance of 3.687 (1) Å, an interplanar distance of 3.404 (1) Å, and an offset of 1.418 Å. In Fig. 5 these interactions are represented by double-headed red arrows.
|
4. Hirshfeld surface analysis
The Hirshfeld surfaces for (I) and (II) mapped over dnorm were calculated using CrystalExplorer 17 (Turner et al., 2017) with the default setting of arbitrary units range. The characteristic bright-red spots near atoms H3, H18A, N1 and F1 (Fig. 6) confirm the previously mentioned C3—H3⋯N1i and C18—H18A⋯F1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y − , −z + ] interatomic contacts in the crystal packing of (I). As expected, the same bright-red spots are observed near atoms H3 and N1 on the Hirshfeld surface of (II); see Fig. 7. The Hirshfeld surface mapped over the shape-index property elegantly illustrates the π–π stacking and the C—H⋯π interactions observed in the crystal packing of (II). Two views are presented in Fig. 8. The π–π stacking between inversion-related 4-chlorophenyl rings (C1–C6) is indicated by the appearance of small blue regions surrounding a bright-red triangle within the six-membered ring (Fig. 8a), while the C12—H12A⋯π(C1–C6)iii interaction [symmetry code: (iii) x + , −y + , z + ] appears as a large red region within the ring (Fig. 8b).
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, February 2019; Groom et al., 2016) for the 2-(adamantan-1-yl)-1,3,4-oxadiazole gave five hits. The crystal structures of three very similar compounds were reported in the last decade, namely 2-(adamantan-1-yl)-5-(4-nitrophenyl)-1,3,4-oxadiazole (CSD refcode LAPVOP; El-Emam et al., 2012), which has an NO2 group on the phenyl ring (in the para position to the oxadiazole ring), 2-(adamantan-1-yl)-5-(4-bromophenyl)-1,3,4-oxadiazole (SOSXIJ; Alzoman et al. 2014), which has a Br atom on the phenyl ring (same para position) and 2-(adamantan-1-yl)-5-(3-fluorophenyl)-1,3,4-oxadiazole (SIKKAA; Khan et al., 2012), with a 3-fluorophenyl substituent at position 5 on the oxadiazole ring. Two more recently reported structures are (5-(adamantan-1-yl)-1,3,4-oxadiazole-2-thiolato)triphenylphosphinegold(I) (AZECAL; Garcia et al., 2016) and 2-(adamantan-1-yl)-5-[2-(2-methylphenyl)-1,3-thiazol-4-yl]-1,3,4-oxadiazole (XARGEE01; Khan et al., 2016).
The . Compound LAPVOP resides on a mirror plane, while compound SIKKAA crystallizes with two independent molecules in the The geometrical parameters of the oxadiazole rings are similar to those reported above for the title compounds. The 4-substituted phenyl rings are inclined to the oxadiazole ring by 0.0° in LAPVOP (as it lies in a mirror plane), 3.01 and 3.31° in the two independent molecules of SIKKAA and 10.44° in SOSXIJ. In the title compounds the corresponding dihedral angle is 20.8 (2)° for compound (I) and 9.5 (1)° for compound (II).
of SOSXIJ indicates that it is isotypic with compound (II)6. Synthesis and crystallization
Compounds (I) and (II) were synthesized via condensation of adamantane-1-carboxylic acid with 4-fluorobenzohydrazide, or 4-chlorobenzohydrazide in the presence of phosphorus oxychloride, as described previously (Kadi et al., 2007). Colourless plate-like crystals of compound (I) and colourless needle-like crystals of compound (II) were obtained by slow evaporation of CHCl3:EtOH (1:1 v:v) solutions at room temperature.
7. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95–1.00 Å with Uiso = 1.2Ueq(C).
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989019004651/su5492sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004651/su5492Isup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004651/su5492Isup4.cml
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989019004651/su5492IIsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004651/su5492IIsup5.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C18H19FN2O | F(000) = 632 |
Mr = 298.35 | Dx = 1.382 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 18.2525 (4) Å | Cell parameters from 7588 reflections |
b = 7.07855 (16) Å | θ = 4.9–78.5° |
c = 11.2207 (2) Å | µ = 0.78 mm−1 |
β = 98.556 (2)° | T = 160 K |
V = 1433.59 (6) Å3 | Plate, colourless |
Z = 4 | 0.18 × 0.15 × 0.02 mm |
XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer | 2903 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2578 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 74.5°, θmin = 4.9° |
ω scans | h = −22→22 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2019) | k = −8→8 |
Tmin = 0.921, Tmax = 0.990 | l = −11→14 |
13058 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.080 | H-atom parameters constrained |
wR(F2) = 0.233 | w = 1/[σ2(Fo2) + (0.0572P)2 + 6.0123P] where P = (Fo2 + 2Fc2)/3 |
S = 1.23 | (Δ/σ)max < 0.001 |
2903 reflections | Δρmax = 0.47 e Å−3 |
199 parameters | Δρmin = −0.38 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6397 (2) | 0.5834 (6) | 0.8751 (3) | 0.0220 (8) | |
C2 | 0.6287 (2) | 0.5485 (6) | 0.7528 (3) | 0.0218 (8) | |
H2 | 0.669009 | 0.519350 | 0.711237 | 0.026* | |
C3 | 0.5568 (2) | 0.5574 (5) | 0.6928 (3) | 0.0189 (7) | |
H3 | 0.547397 | 0.536452 | 0.608242 | 0.023* | |
C4 | 0.4979 (2) | 0.5973 (5) | 0.7558 (3) | 0.0178 (7) | |
C5 | 0.5114 (2) | 0.6345 (5) | 0.8784 (3) | 0.0201 (8) | |
H5 | 0.471482 | 0.664740 | 0.920495 | 0.024* | |
C6 | 0.5836 (2) | 0.6276 (6) | 0.9397 (3) | 0.0234 (8) | |
H6 | 0.593767 | 0.652639 | 1.023700 | 0.028* | |
C7 | 0.42268 (19) | 0.5993 (5) | 0.6869 (3) | 0.0188 (7) | |
C8 | 0.3054 (2) | 0.5755 (5) | 0.6523 (3) | 0.0194 (8) | |
C9 | 0.22741 (19) | 0.5532 (5) | 0.6776 (3) | 0.0188 (8) | |
C10 | 0.2034 (2) | 0.7286 (6) | 0.7450 (4) | 0.0229 (8) | |
H10A | 0.235907 | 0.742685 | 0.823383 | 0.027* | |
H10B | 0.208148 | 0.843843 | 0.696746 | 0.027* | |
C11 | 0.1226 (2) | 0.7041 (6) | 0.7656 (4) | 0.0249 (9) | |
H11 | 0.107002 | 0.816945 | 0.809285 | 0.030* | |
C12 | 0.0729 (2) | 0.6855 (7) | 0.6436 (4) | 0.0280 (9) | |
H12A | 0.020522 | 0.672769 | 0.656054 | 0.034* | |
H12B | 0.077248 | 0.800506 | 0.594894 | 0.034* | |
C13 | 0.0958 (2) | 0.5124 (6) | 0.5766 (3) | 0.0261 (9) | |
H13 | 0.063156 | 0.501154 | 0.496999 | 0.031* | |
C14 | 0.1769 (2) | 0.5336 (6) | 0.5561 (3) | 0.0241 (8) | |
H14A | 0.191844 | 0.421626 | 0.512660 | 0.029* | |
H14B | 0.181982 | 0.646678 | 0.506007 | 0.029* | |
C15 | 0.1155 (2) | 0.5267 (7) | 0.8408 (4) | 0.0282 (9) | |
H15A | 0.147857 | 0.538200 | 0.919522 | 0.034* | |
H15B | 0.063748 | 0.512872 | 0.855987 | 0.034* | |
C16 | 0.1378 (2) | 0.3532 (6) | 0.7743 (4) | 0.0264 (9) | |
H16 | 0.132697 | 0.237763 | 0.823688 | 0.032* | |
C17 | 0.0881 (2) | 0.3342 (6) | 0.6516 (4) | 0.0282 (9) | |
H17A | 0.102861 | 0.221647 | 0.608557 | 0.034* | |
H17B | 0.035805 | 0.318109 | 0.663834 | 0.034* | |
C18 | 0.2193 (2) | 0.3748 (6) | 0.7544 (4) | 0.0242 (8) | |
H18A | 0.234847 | 0.261751 | 0.712615 | 0.029* | |
H18B | 0.251650 | 0.386012 | 0.833140 | 0.029* | |
F1 | 0.71024 (12) | 0.5714 (4) | 0.9363 (2) | 0.0321 (6) | |
N1 | 0.40489 (17) | 0.6139 (5) | 0.5727 (3) | 0.0237 (7) | |
N2 | 0.32721 (18) | 0.5975 (5) | 0.5493 (3) | 0.0245 (7) | |
O1 | 0.36296 (13) | 0.5751 (4) | 0.7457 (2) | 0.0192 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0185 (18) | 0.0220 (19) | 0.0239 (19) | −0.0016 (15) | −0.0015 (14) | 0.0036 (15) |
C2 | 0.0179 (17) | 0.0239 (19) | 0.0245 (19) | −0.0014 (15) | 0.0059 (14) | 0.0014 (15) |
C3 | 0.0218 (18) | 0.0180 (17) | 0.0177 (17) | 0.0000 (14) | 0.0055 (14) | −0.0012 (13) |
C4 | 0.0152 (16) | 0.0155 (16) | 0.0232 (17) | −0.0024 (13) | 0.0048 (13) | 0.0008 (14) |
C5 | 0.0199 (17) | 0.0201 (18) | 0.0217 (18) | 0.0007 (14) | 0.0083 (14) | 0.0003 (14) |
C6 | 0.028 (2) | 0.0220 (19) | 0.0204 (18) | −0.0023 (16) | 0.0029 (15) | −0.0004 (15) |
C7 | 0.0170 (17) | 0.0187 (17) | 0.0220 (18) | −0.0004 (14) | 0.0074 (14) | 0.0000 (14) |
C8 | 0.0182 (17) | 0.0217 (19) | 0.0178 (17) | 0.0005 (14) | 0.0014 (13) | −0.0002 (14) |
C9 | 0.0163 (17) | 0.0260 (19) | 0.0141 (16) | 0.0021 (14) | 0.0015 (13) | 0.0001 (14) |
C10 | 0.0163 (18) | 0.027 (2) | 0.0257 (19) | −0.0027 (15) | 0.0034 (14) | −0.0046 (16) |
C11 | 0.0153 (17) | 0.034 (2) | 0.027 (2) | 0.0003 (16) | 0.0061 (14) | −0.0057 (17) |
C12 | 0.0159 (18) | 0.039 (2) | 0.029 (2) | 0.0032 (17) | 0.0029 (15) | 0.0023 (18) |
C13 | 0.0170 (18) | 0.041 (2) | 0.0191 (18) | −0.0018 (16) | −0.0021 (14) | −0.0039 (17) |
C14 | 0.0179 (18) | 0.038 (2) | 0.0161 (17) | −0.0002 (16) | 0.0018 (14) | −0.0001 (16) |
C15 | 0.0197 (18) | 0.045 (3) | 0.0201 (19) | −0.0023 (17) | 0.0047 (14) | −0.0018 (18) |
C16 | 0.0197 (18) | 0.031 (2) | 0.030 (2) | −0.0026 (16) | 0.0057 (15) | 0.0047 (17) |
C17 | 0.0205 (19) | 0.034 (2) | 0.030 (2) | −0.0060 (17) | 0.0046 (16) | −0.0061 (18) |
C18 | 0.0211 (18) | 0.029 (2) | 0.0233 (19) | 0.0043 (16) | 0.0051 (15) | 0.0048 (16) |
F1 | 0.0198 (11) | 0.0465 (16) | 0.0278 (12) | −0.0006 (10) | −0.0032 (9) | 0.0031 (11) |
N1 | 0.0194 (15) | 0.0318 (18) | 0.0207 (16) | 0.0022 (13) | 0.0061 (12) | 0.0008 (14) |
N2 | 0.0202 (16) | 0.0366 (19) | 0.0171 (15) | 0.0020 (14) | 0.0044 (12) | 0.0013 (14) |
O1 | 0.0148 (12) | 0.0288 (14) | 0.0146 (12) | −0.0007 (10) | 0.0036 (9) | −0.0009 (10) |
C1—C2 | 1.380 (5) | C11—H11 | 1.0000 |
C1—C6 | 1.376 (5) | C11—C12 | 1.532 (6) |
C1—F1 | 1.369 (4) | C11—C15 | 1.529 (6) |
C2—H2 | 0.9500 | C12—H12A | 0.9900 |
C2—C3 | 1.384 (5) | C12—H12B | 0.9900 |
C3—H3 | 0.9500 | C12—C13 | 1.528 (6) |
C3—C4 | 1.400 (5) | C13—H13 | 1.0000 |
C4—C5 | 1.386 (5) | C13—C14 | 1.539 (5) |
C4—C7 | 1.472 (5) | C13—C17 | 1.535 (6) |
C5—H5 | 0.9500 | C14—H14A | 0.9900 |
C5—C6 | 1.394 (5) | C14—H14B | 0.9900 |
C6—H6 | 0.9500 | C15—H15A | 0.9900 |
C7—N1 | 1.279 (5) | C15—H15B | 0.9900 |
C7—O1 | 1.366 (4) | C15—C16 | 1.523 (6) |
C8—C9 | 1.500 (5) | C16—H16 | 1.0000 |
C8—N2 | 1.288 (5) | C16—C17 | 1.538 (6) |
C8—O1 | 1.369 (4) | C16—C18 | 1.544 (5) |
C9—C10 | 1.550 (5) | C17—H17A | 0.9900 |
C9—C14 | 1.534 (5) | C17—H17B | 0.9900 |
C9—C18 | 1.548 (5) | C18—H18A | 0.9900 |
C10—H10A | 0.9900 | C18—H18B | 0.9900 |
C10—H10B | 0.9900 | N1—N2 | 1.408 (4) |
C10—C11 | 1.537 (5) | ||
C6—C1—C2 | 123.8 (4) | H12A—C12—H12B | 108.2 |
F1—C1—C2 | 118.3 (3) | C13—C12—C11 | 109.8 (3) |
F1—C1—C6 | 117.9 (3) | C13—C12—H12A | 109.7 |
C1—C2—H2 | 121.2 | C13—C12—H12B | 109.7 |
C1—C2—C3 | 117.5 (3) | C12—C13—H13 | 109.5 |
C3—C2—H2 | 121.2 | C12—C13—C14 | 109.6 (3) |
C2—C3—H3 | 119.8 | C12—C13—C17 | 109.6 (3) |
C2—C3—C4 | 120.5 (3) | C14—C13—H13 | 109.5 |
C4—C3—H3 | 119.8 | C17—C13—H13 | 109.5 |
C3—C4—C7 | 117.6 (3) | C17—C13—C14 | 109.3 (3) |
C5—C4—C3 | 120.2 (3) | C9—C14—C13 | 109.9 (3) |
C5—C4—C7 | 122.2 (3) | C9—C14—H14A | 109.7 |
C4—C5—H5 | 120.1 | C9—C14—H14B | 109.7 |
C4—C5—C6 | 119.9 (3) | C13—C14—H14A | 109.7 |
C6—C5—H5 | 120.1 | C13—C14—H14B | 109.7 |
C1—C6—C5 | 118.1 (3) | H14A—C14—H14B | 108.2 |
C1—C6—H6 | 121.0 | C11—C15—H15A | 109.7 |
C5—C6—H6 | 121.0 | C11—C15—H15B | 109.7 |
N1—C7—C4 | 127.2 (3) | H15A—C15—H15B | 108.2 |
N1—C7—O1 | 113.1 (3) | C16—C15—C11 | 110.0 (3) |
O1—C7—C4 | 119.7 (3) | C16—C15—H15A | 109.7 |
N2—C8—C9 | 127.7 (3) | C16—C15—H15B | 109.7 |
N2—C8—O1 | 112.5 (3) | C15—C16—H16 | 109.4 |
O1—C8—C9 | 119.8 (3) | C15—C16—C17 | 110.1 (3) |
C8—C9—C10 | 110.7 (3) | C15—C16—C18 | 108.9 (3) |
C8—C9—C14 | 107.7 (3) | C17—C16—H16 | 109.4 |
C8—C9—C18 | 111.2 (3) | C17—C16—C18 | 109.5 (3) |
C14—C9—C10 | 109.3 (3) | C18—C16—H16 | 109.4 |
C14—C9—C18 | 109.1 (3) | C13—C17—C16 | 109.2 (3) |
C18—C9—C10 | 108.9 (3) | C13—C17—H17A | 109.8 |
C9—C10—H10A | 109.8 | C13—C17—H17B | 109.8 |
C9—C10—H10B | 109.8 | C16—C17—H17A | 109.8 |
H10A—C10—H10B | 108.3 | C16—C17—H17B | 109.8 |
C11—C10—C9 | 109.3 (3) | H17A—C17—H17B | 108.3 |
C11—C10—H10A | 109.8 | C9—C18—H18A | 109.8 |
C11—C10—H10B | 109.8 | C9—C18—H18B | 109.8 |
C10—C11—H11 | 109.4 | C16—C18—C9 | 109.6 (3) |
C12—C11—C10 | 109.2 (3) | C16—C18—H18A | 109.8 |
C12—C11—H11 | 109.4 | C16—C18—H18B | 109.8 |
C15—C11—C10 | 109.7 (3) | H18A—C18—H18B | 108.2 |
C15—C11—H11 | 109.4 | C7—N1—N2 | 106.2 (3) |
C15—C11—C12 | 109.6 (3) | C8—N2—N1 | 106.3 (3) |
C11—C12—H12A | 109.7 | C7—O1—C8 | 102.0 (3) |
C11—C12—H12B | 109.7 | ||
C1—C2—C3—C4 | −1.1 (6) | C11—C15—C16—C17 | −59.2 (4) |
C2—C1—C6—C5 | 1.1 (6) | C11—C15—C16—C18 | 60.8 (4) |
C2—C3—C4—C5 | 2.2 (6) | C12—C11—C15—C16 | 59.0 (4) |
C2—C3—C4—C7 | −178.3 (3) | C12—C13—C14—C9 | 59.4 (4) |
C3—C4—C5—C6 | −1.6 (6) | C12—C13—C17—C16 | −59.5 (4) |
C3—C4—C7—N1 | −18.2 (6) | C14—C9—C10—C11 | 59.8 (4) |
C3—C4—C7—O1 | 158.6 (3) | C14—C9—C18—C16 | −59.3 (4) |
C4—C5—C6—C1 | 0.0 (6) | C14—C13—C17—C16 | 60.6 (4) |
C4—C7—N1—N2 | 176.5 (4) | C15—C11—C12—C13 | −59.5 (4) |
C4—C7—O1—C8 | −176.9 (3) | C15—C16—C17—C13 | 59.3 (4) |
C5—C4—C7—N1 | 161.3 (4) | C15—C16—C18—C9 | −60.5 (4) |
C5—C4—C7—O1 | −22.0 (5) | C17—C13—C14—C9 | −60.7 (4) |
C6—C1—C2—C3 | −0.5 (6) | C17—C16—C18—C9 | 59.9 (4) |
C7—C4—C5—C6 | 178.9 (4) | C18—C9—C10—C11 | −59.3 (4) |
C7—N1—N2—C8 | 0.4 (4) | C18—C9—C14—C13 | 59.8 (4) |
C8—C9—C10—C11 | 178.1 (3) | C18—C16—C17—C13 | −60.5 (4) |
C8—C9—C14—C13 | −179.4 (3) | F1—C1—C2—C3 | 178.7 (3) |
C8—C9—C18—C16 | −177.9 (3) | F1—C1—C6—C5 | −178.2 (3) |
C9—C8—N2—N1 | 179.3 (4) | N1—C7—O1—C8 | 0.3 (4) |
C9—C8—O1—C7 | −179.6 (3) | N2—C8—C9—C10 | −111.7 (4) |
C9—C10—C11—C12 | −60.3 (4) | N2—C8—C9—C14 | 7.7 (6) |
C9—C10—C11—C15 | 59.8 (4) | N2—C8—C9—C18 | 127.1 (4) |
C10—C9—C14—C13 | −59.2 (4) | N2—C8—O1—C7 | −0.1 (4) |
C10—C9—C18—C16 | 59.8 (4) | O1—C7—N1—N2 | −0.4 (4) |
C10—C11—C12—C13 | 60.7 (4) | O1—C8—C9—C10 | 67.8 (4) |
C10—C11—C15—C16 | −60.9 (4) | O1—C8—C9—C14 | −172.9 (3) |
C11—C12—C13—C14 | −60.0 (4) | O1—C8—C9—C18 | −53.4 (4) |
C11—C12—C13—C17 | 60.0 (4) | O1—C8—N2—N1 | −0.2 (4) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N1i | 0.95 | 2.56 | 3.383 (5) | 146 |
C18—H18A···F1ii | 0.99 | 2.47 | 3.415 (5) | 159 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y−1/2, −z+3/2. |
C18H19ClN2O | F(000) = 664 |
Mr = 314.80 | Dx = 1.380 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 13.08241 (19) Å | Cell parameters from 11758 reflections |
b = 6.49259 (9) Å | θ = 3.7–79.0° |
c = 18.5129 (3) Å | µ = 2.25 mm−1 |
β = 105.5609 (16)° | T = 160 K |
V = 1514.83 (4) Å3 | Needle, colourless |
Z = 4 | 0.33 × 0.12 × 0.08 mm |
XtaLAB Synergy, Dualflex, Pilatus 200K diffractometer | 3217 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3052 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 5.8140 pixels mm-1 | θmax = 78.9°, θmin = 3.7° |
ω scans | h = −16→16 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2019) | k = −7→8 |
Tmin = 0.642, Tmax = 0.870 | l = −23→23 |
14318 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.061 | H-atom parameters constrained |
wR(F2) = 0.167 | w = 1/[σ2(Fo2) + (0.094P)2 + 1.5575P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3217 reflections | Δρmax = 0.81 e Å−3 |
199 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.42626 (17) | 0.6044 (4) | 0.35491 (12) | 0.0302 (5) | |
C2 | 0.40263 (17) | 0.4056 (4) | 0.37203 (12) | 0.0317 (5) | |
H2 | 0.333320 | 0.351478 | 0.352048 | 0.038* | |
C3 | 0.48137 (17) | 0.2855 (4) | 0.41883 (12) | 0.0279 (5) | |
H3 | 0.466239 | 0.148920 | 0.431206 | 0.034* | |
C4 | 0.58338 (16) | 0.3685 (3) | 0.44753 (11) | 0.0254 (4) | |
C5 | 0.60437 (17) | 0.5705 (3) | 0.43076 (12) | 0.0280 (5) | |
H5 | 0.672884 | 0.627166 | 0.451644 | 0.034* | |
C6 | 0.52611 (17) | 0.6897 (4) | 0.38380 (13) | 0.0302 (5) | |
H6 | 0.540617 | 0.826921 | 0.371688 | 0.036* | |
C7 | 0.66623 (17) | 0.2413 (3) | 0.49555 (12) | 0.0229 (4) | |
C8 | 0.81754 (16) | 0.1694 (3) | 0.56872 (11) | 0.0238 (4) | |
C9 | 0.92972 (16) | 0.2106 (3) | 0.61176 (11) | 0.0219 (4) | |
C10 | 0.93691 (16) | 0.3930 (4) | 0.66595 (12) | 0.0282 (5) | |
H10A | 0.897237 | 0.360738 | 0.703168 | 0.034* | |
H10B | 0.904931 | 0.517124 | 0.637722 | 0.034* | |
C11 | 1.05425 (18) | 0.4345 (4) | 0.70636 (13) | 0.0314 (5) | |
H11 | 1.059032 | 0.553003 | 0.741610 | 0.038* | |
C12 | 1.1016 (2) | 0.2426 (4) | 0.75071 (13) | 0.0333 (5) | |
H12A | 1.062078 | 0.209782 | 0.787976 | 0.040* | |
H12B | 1.176566 | 0.268774 | 0.778004 | 0.040* | |
C13 | 1.09521 (18) | 0.0597 (4) | 0.69691 (13) | 0.0319 (5) | |
H13 | 1.126743 | −0.065180 | 0.726092 | 0.038* | |
C14 | 0.97843 (17) | 0.0175 (3) | 0.65594 (12) | 0.0285 (5) | |
H14A | 0.938650 | −0.018439 | 0.692756 | 0.034* | |
H14B | 0.973710 | −0.100189 | 0.621181 | 0.034* | |
C15 | 1.11625 (17) | 0.4853 (3) | 0.64960 (14) | 0.0319 (5) | |
H15A | 1.191412 | 0.512639 | 0.676075 | 0.038* | |
H15B | 1.086479 | 0.610423 | 0.621095 | 0.038* | |
C16 | 1.10922 (16) | 0.3031 (4) | 0.59555 (13) | 0.0284 (5) | |
H16 | 1.149192 | 0.336599 | 0.557972 | 0.034* | |
C17 | 1.15702 (17) | 0.1113 (4) | 0.63970 (14) | 0.0330 (5) | |
H17A | 1.232475 | 0.136605 | 0.665944 | 0.040* | |
H17B | 1.153464 | −0.006047 | 0.604985 | 0.040* | |
C18 | 0.99249 (17) | 0.2645 (3) | 0.55507 (12) | 0.0231 (4) | |
H18A | 0.987062 | 0.149794 | 0.518988 | 0.028* | |
H18B | 0.961848 | 0.389182 | 0.526636 | 0.028* | |
Cl1 | 0.32838 (4) | 0.75434 (10) | 0.29606 (3) | 0.0384 (2) | |
N1 | 0.66468 (15) | 0.0461 (3) | 0.50869 (12) | 0.0348 (5) | |
N2 | 0.76544 (15) | −0.0012 (3) | 0.55744 (12) | 0.0330 (4) | |
O1 | 0.76044 (11) | 0.3299 (2) | 0.53130 (8) | 0.0254 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0236 (10) | 0.0423 (13) | 0.0245 (10) | 0.0028 (9) | 0.0060 (8) | 0.0015 (9) |
C2 | 0.0215 (9) | 0.0424 (13) | 0.0291 (10) | −0.0040 (9) | 0.0036 (8) | −0.0017 (9) |
C3 | 0.0218 (10) | 0.0354 (11) | 0.0263 (10) | −0.0056 (8) | 0.0060 (8) | −0.0019 (8) |
C4 | 0.0218 (9) | 0.0291 (11) | 0.0248 (9) | −0.0027 (8) | 0.0054 (7) | −0.0014 (8) |
C5 | 0.0232 (9) | 0.0290 (11) | 0.0307 (10) | −0.0028 (8) | 0.0050 (8) | −0.0010 (8) |
C6 | 0.0256 (10) | 0.0341 (11) | 0.0310 (11) | −0.0006 (9) | 0.0077 (8) | 0.0012 (9) |
C7 | 0.0186 (9) | 0.0250 (10) | 0.0244 (10) | −0.0048 (7) | 0.0045 (8) | −0.0021 (7) |
C8 | 0.0236 (9) | 0.0217 (10) | 0.0263 (9) | −0.0011 (8) | 0.0069 (8) | −0.0003 (8) |
C9 | 0.0200 (9) | 0.0223 (9) | 0.0233 (9) | −0.0016 (7) | 0.0055 (7) | −0.0007 (7) |
C10 | 0.0248 (10) | 0.0286 (11) | 0.0303 (10) | 0.0010 (8) | 0.0056 (8) | −0.0073 (8) |
C11 | 0.0292 (11) | 0.0290 (11) | 0.0311 (11) | −0.0009 (9) | −0.0001 (8) | −0.0078 (9) |
C12 | 0.0294 (11) | 0.0431 (14) | 0.0233 (10) | −0.0022 (9) | −0.0001 (9) | 0.0021 (8) |
C13 | 0.0289 (11) | 0.0258 (11) | 0.0349 (11) | 0.0003 (9) | −0.0018 (9) | 0.0083 (9) |
C14 | 0.0285 (10) | 0.0229 (10) | 0.0314 (10) | −0.0029 (8) | 0.0034 (8) | 0.0052 (8) |
C15 | 0.0238 (10) | 0.0234 (10) | 0.0432 (12) | −0.0052 (8) | −0.0004 (9) | 0.0036 (9) |
C16 | 0.0205 (10) | 0.0332 (11) | 0.0322 (11) | −0.0003 (8) | 0.0081 (8) | 0.0056 (9) |
C17 | 0.0251 (10) | 0.0296 (11) | 0.0413 (12) | 0.0057 (9) | 0.0036 (9) | 0.0000 (9) |
C18 | 0.0213 (9) | 0.0254 (10) | 0.0225 (9) | −0.0001 (7) | 0.0059 (8) | 0.0018 (7) |
Cl1 | 0.0242 (3) | 0.0543 (4) | 0.0342 (3) | 0.0096 (2) | 0.0034 (2) | 0.0102 (2) |
N1 | 0.0268 (9) | 0.0279 (10) | 0.0437 (11) | −0.0052 (7) | −0.0007 (8) | 0.0024 (8) |
N2 | 0.0258 (9) | 0.0255 (9) | 0.0426 (11) | −0.0055 (7) | 0.0000 (8) | 0.0036 (8) |
O1 | 0.0203 (7) | 0.0236 (7) | 0.0300 (7) | −0.0035 (6) | 0.0030 (6) | 0.0005 (6) |
C1—C2 | 1.384 (4) | C11—H11 | 1.0000 |
C1—C6 | 1.387 (3) | C11—C12 | 1.529 (3) |
C1—Cl1 | 1.740 (2) | C11—C15 | 1.526 (3) |
C2—H2 | 0.9500 | C12—H12A | 0.9900 |
C2—C3 | 1.393 (3) | C12—H12B | 0.9900 |
C3—H3 | 0.9500 | C12—C13 | 1.538 (3) |
C3—C4 | 1.405 (3) | C13—H13 | 1.0000 |
C4—C5 | 1.391 (3) | C13—C14 | 1.537 (3) |
C4—C7 | 1.460 (3) | C13—C17 | 1.532 (3) |
C5—H5 | 0.9500 | C14—H14A | 0.9900 |
C5—C6 | 1.388 (3) | C14—H14B | 0.9900 |
C6—H6 | 0.9500 | C15—H15A | 0.9900 |
C7—N1 | 1.292 (3) | C15—H15B | 0.9900 |
C7—O1 | 1.360 (2) | C15—C16 | 1.536 (3) |
C8—C9 | 1.494 (3) | C16—H16 | 1.0000 |
C8—N2 | 1.288 (3) | C16—C17 | 1.528 (3) |
C8—O1 | 1.359 (3) | C16—C18 | 1.531 (3) |
C9—C10 | 1.538 (3) | C17—H17A | 0.9900 |
C9—C14 | 1.539 (3) | C17—H17B | 0.9900 |
C9—C18 | 1.536 (3) | C18—H18A | 0.9900 |
C10—H10A | 0.9900 | C18—H18B | 0.9900 |
C10—H10B | 0.9900 | N1—N2 | 1.417 (3) |
C10—C11 | 1.540 (3) | ||
C2—C1—C6 | 122.0 (2) | C11—C12—C13 | 109.73 (18) |
C2—C1—Cl1 | 119.56 (17) | H12A—C12—H12B | 108.2 |
C6—C1—Cl1 | 118.48 (19) | C13—C12—H12A | 109.7 |
C1—C2—H2 | 120.3 | C13—C12—H12B | 109.7 |
C1—C2—C3 | 119.4 (2) | C12—C13—H13 | 109.5 |
C3—C2—H2 | 120.3 | C14—C13—C12 | 109.36 (19) |
C2—C3—H3 | 120.3 | C14—C13—H13 | 109.5 |
C2—C3—C4 | 119.3 (2) | C17—C13—C12 | 109.38 (19) |
C4—C3—H3 | 120.3 | C17—C13—H13 | 109.5 |
C3—C4—C7 | 119.2 (2) | C17—C13—C14 | 109.69 (18) |
C5—C4—C3 | 120.1 (2) | C9—C14—H14A | 109.8 |
C5—C4—C7 | 120.68 (19) | C9—C14—H14B | 109.8 |
C4—C5—H5 | 119.7 | C13—C14—C9 | 109.39 (17) |
C6—C5—C4 | 120.6 (2) | C13—C14—H14A | 109.8 |
C6—C5—H5 | 119.7 | C13—C14—H14B | 109.8 |
C1—C6—C5 | 118.6 (2) | H14A—C14—H14B | 108.2 |
C1—C6—H6 | 120.7 | C11—C15—H15A | 109.8 |
C5—C6—H6 | 120.7 | C11—C15—H15B | 109.8 |
N1—C7—C4 | 128.6 (2) | C11—C15—C16 | 109.40 (18) |
N1—C7—O1 | 112.39 (19) | H15A—C15—H15B | 108.2 |
O1—C7—C4 | 119.03 (17) | C16—C15—H15A | 109.8 |
N2—C8—C9 | 129.94 (19) | C16—C15—H15B | 109.8 |
N2—C8—O1 | 112.47 (18) | C15—C16—H16 | 109.5 |
O1—C8—C9 | 117.48 (17) | C17—C16—C15 | 109.55 (18) |
C8—C9—C10 | 111.42 (17) | C17—C16—H16 | 109.5 |
C8—C9—C14 | 110.16 (17) | C17—C16—C18 | 109.88 (18) |
C8—C9—C18 | 107.76 (17) | C18—C16—C15 | 108.81 (17) |
C10—C9—C14 | 109.67 (17) | C18—C16—H16 | 109.5 |
C18—C9—C10 | 108.65 (17) | C13—C17—H17A | 109.8 |
C18—C9—C14 | 109.12 (17) | C13—C17—H17B | 109.8 |
C9—C10—H10A | 109.8 | C16—C17—C13 | 109.39 (18) |
C9—C10—H10B | 109.8 | C16—C17—H17A | 109.8 |
C9—C10—C11 | 109.27 (17) | C16—C17—H17B | 109.8 |
H10A—C10—H10B | 108.3 | H17A—C17—H17B | 108.2 |
C11—C10—H10A | 109.8 | C9—C18—H18A | 109.6 |
C11—C10—H10B | 109.8 | C9—C18—H18B | 109.6 |
C10—C11—H11 | 109.3 | C16—C18—C9 | 110.41 (17) |
C12—C11—C10 | 109.02 (19) | C16—C18—H18A | 109.6 |
C12—C11—H11 | 109.3 | C16—C18—H18B | 109.6 |
C15—C11—C10 | 110.36 (18) | H18A—C18—H18B | 108.1 |
C15—C11—H11 | 109.3 | C7—N1—N2 | 105.90 (18) |
C15—C11—C12 | 109.41 (19) | C8—N2—N1 | 106.14 (18) |
C11—C12—H12A | 109.7 | C8—O1—C7 | 103.10 (16) |
C11—C12—H12B | 109.7 |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N1i | 0.95 | 2.61 | 3.386 (3) | 139 |
C12—H12A···Cg1ii | 0.99 | 2.73 | 3.680 (3) | 160 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2. |
Funding information
This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Research Group Program (grant No. RGP-1438–0010).
References
Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518. CAS Google Scholar
Al-Wahaibi, L. H., Hassan, H. M., Abo-Kamar, A. M., Ghabbour, H. A. & El-Emam, A. A. (2017). Molecules, 22, 710, 1–12. Google Scholar
Alzoman, N. Z., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o1231–o1232. CSD CrossRef IUCr Journals Google Scholar
Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037. Web of Science CrossRef PubMed CAS Google Scholar
Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167–174. Web of Science CrossRef CAS PubMed Google Scholar
Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144. Web of Science CrossRef PubMed CAS Google Scholar
Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863. CrossRef PubMed CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dong, Y., Wittlin, S., Sriraghavan, K., Chollet, J., Charman, S. A., Charman, W. N., Scheurer, C., Urwyler, H., Santo Tomas, J., Snyder, C., Creek, D. J., Morizzi, J., Koltun, M., Matile, H., Wang, X., Padmanilayam, M., Tang, Y., Dorn, A., Brun, R. & Vennerstrom, J. L. (2010). J. Med. Chem. 53, 481–491. CrossRef PubMed CAS Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102. Web of Science CAS PubMed Google Scholar
El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795. CSD CrossRef IUCr Journals Google Scholar
Garcia, A., Machado, R. C., Grazul, R. M., Lopes, M. T. P., Corrêa, C. C., Dos Santos, H. F., de Almeida, M. V. & Silva, H. (2016). J. Biol. Inorg. Chem. 21, 275–292. CSD CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. Web of Science CrossRef CAS PubMed Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Khan, M., Akhtar, T., Al-Masoudi, N. A., Stoeckli-Evans, H. & Hameed, S. (2012). Med. Chem. 8, 1190–1197. CAS PubMed Google Scholar
Khan, M., Hameed, S., Akhtar, T., Al-Masoudi, N. A., Al-Masoudi, W. A., Jones, P. G. & Pannecouque, C. (2016). Med. Chem. Res. 25, 2399–2409. CSD CrossRef CAS Google Scholar
Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978. Web of Science CrossRef CAS PubMed Google Scholar
Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ogata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443–451. CrossRef CAS PubMed Web of Science Google Scholar
Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432. Web of Science CrossRef PubMed CAS Google Scholar
Prakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252–4257. Web of Science CrossRef CAS PubMed Google Scholar
Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436. Web of Science PubMed CAS Google Scholar
Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094. CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516–3604. Web of Science CrossRef CAS PubMed Google Scholar
Wu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243–2246. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.