research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures and Hirshfeld surface analysis of 2-(adamantan-1-yl)-5-(4-fluoro­phen­yl)-1,3,4-oxa­diazole and 2-(adamantan-1-yl)-5-(4-chloro­phen­yl)-1,3,4-oxa­diazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia, bDepartment of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, and dDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
*Correspondence e-mail: olivier.blacque@chem.uzh.ch

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 March 2019; accepted 5 April 2019; online 12 April 2019)

The crystal structures of the title adamantane-oxa­diazole hybrid compounds, C18H19FN2O (I) and C18H19ClN2O (II), are built up from an adamantane unit and a halogenophenyl ring, [X = F (I), Cl (II)], in position 5 on the central 1,3,4-oxa­diazole unit. The mol­ecular structures are very similar, only the relative orientation of the halogenophenyl ring in comparison with the central five-membered ring differs slightly. In the crystals of both compounds, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with R22(12) ring motifs. In (I) the dimers are connected by C—H⋯F inter­actions, forming slabs lying parallel to the bc plane. In (II), the dimers are linked by C—H⋯π and offset ππ inter­actions [inter­planar distance = 3.4039 (9) Å], forming layers parallel to (10[\overline{1}]).

1. Chemical context

Considerable attention has been devoted to adamantane derivatives, which have long been known for their diverse biological properties (Liu et al., 2011[Liu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949-1963.]; Lamoureux & Artavia, 2010[Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967-2978.]). In view of the pronounced lipophilicity of the adamantane cage, it has been observed that adamantyl-bearing compounds are characterized by high therapeutic indices (Wanka et al., 2013[Wanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516-3604.]). Sixty years ago, the first adamantane-based drug, amantadine, was discovered to be an efficient therapy for the treatment of Influenza A infection (Davies et al., 1964[Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862-863.]; Togo et al., 1968[Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089-1094.]). As a result of intensive research based on adamantane derivatives, the adamantane nucleus was further recognized as the key pharmacophore in several biologically active compounds. Among the major biological activities displayed by adamantane derivatives, the anti-HIV (El-Emam et al., 2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]; Burstein et al., 1999[Burstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135-144.]; Balzarini et al., 2009[Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]), anti­bacterial (Protopopova et al., 2005[Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968-974.]; El-Emam et al., 2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]; Kadi et al., 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]; Al-Abdullah et al., 2014[Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505-518.]; Al-Wahaibi et al., 2017[Al-Wahaibi, L. H., Hassan, H. M., Abo-Kamar, A. M., Ghabbour, H. A. & El-Emam, A. A. (2017). Molecules, 22, 710, 1-12.]), anti­fungal (Omar et al., 2010[Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426-432.]), anti­cancer (Sun et al., 2002[Sun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430-2436.]), anti-diabetic (Villhauer et al., 2003[Villhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774-2789.]; Augeri et al., 2005[Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025-5037.]) and anti­malarial (Dong et al., 2010[Dong, Y., Wittlin, S., Sriraghavan, K., Chollet, J., Charman, S. A., Charman, W. N., Scheurer, C., Urwyler, H., Santo Tomas, J., Snyder, C., Creek, D. J., Morizzi, J., Koltun, M., Matile, H., Wang, X., Padmanilayam, M., Tang, Y., Dorn, A., Brun, R. & Vennerstrom, J. L. (2010). J. Med. Chem. 53, 481-491.]) activities are the most inter­esting. In addition, 1,3,4-oxa­diazole derivatives occupy a unique place in the field of medicinal chemistry as pharmacophores or auxophores possessing diverse pharmacological activities including anti­bacterial (Prakash et al., 2010[Prakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252-4257.]; Ogata et al., 1971[Ogata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443-451.]; Kadi et al., 2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]), anti­cancer (Zhang et al., 2014[Zhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154-5156.]), anti­viral (Wu et al., 2015[Wu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243-2246.]) and anti-inflammatory (Bansal et al., 2014[Bansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167-174.]) activities. We report herein on the crystal structure determinations of the title adamantane-oxa­diazole hybrid mol­ecules 2-(adamantan-1-yl)-5-(4-fluoro­phen­yl)-1,3,4-oxa­diazole (I)[link] and 2-(adamantan-1-yl)-5-(4-chloro­phen­yl)-1,3,4-oxa­diazole (II)[link]. The crystal structure of the 4-bromo­phenyl derivative has been reported previously (Alzoman et al., 2014[Alzoman, N. Z., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o1231-o1232.]), and after examination of the deposited CIF and transformation of the space group, from P21/c to P21/n, it is found to be isotypic with compound (II)[link].

[Scheme 1]

2. Structural commentary

Compounds (I)[link] and (II)[link], are built up from a central 1,3,4-oxa­diazole unit, an adamantane unit and a halogenophenyl group (Figs. 1[link] and 2[link], respectively). The C—N bonds in the oxa­diazole rings have double-bond character [C7=N1 = 1.279 (5) and 1.292 (3) Å, and C8=N2 = 1.288 (5) and 1.288 (3) Å in (I)[link] and (II)[link], respectively], while the N—N and C—O bonds exhibit single-bond character [N1—N2 = 1.408 (4) and 1.417 (3) Å, C7—O1 = 1.366 (4) and 1.360 (2) Å, and C8—O1 = 1.369 (4) and 1.359 (2) Å in (I)[link] and (II)[link], respectively]. These geometrical parameters are very similar to those observed for similar compounds; see §5. Database survey.

[Figure 1]
Figure 1
Mol­ecular structure of compound (I)[link], with the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of compound (II)[link], with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

As seen in Fig. 3[link], the mol­ecular structures of compounds (I)[link] and (II)[link] are very similar. The largest difference is highlighted by the structural overlay plot, and comes from the relative orientation of the halogenophenyl group with respect to the oxa­diazole ring. In compound (II)[link], the rings are almost coplanar with their mean planes being inclined to each other by 9.5 (1)°, while in compound (I)[link] the equivalent dihedral angle is 20.8 (2)°.

[Figure 3]
Figure 3
View of the structural overlay of compounds (I)[link] and (II)[link]. Compound (I)[link] is drawn according to element type, while compound (II)[link] is drawn in pale green.

3. Supra­molecular features

In the crystals of both compounds, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers with R22(12) ring motifs (Tables 1[link] and 2[link], respectively). In the crystal of (I)[link], the dimers are connected by C—H⋯F inter­actions, forming slabs lying parallel to the bc plane (Fig. 4[link] and Table 1[link]). In the crystal of (II)[link], the dimers are linked by C—H⋯π and offset ππ inter­actions, forming layers lying parallel to the (10[\overline{1}]) plane; see Fig. 5[link] and Table 2[link]. The offset ππ inter­actions involve inversion-related 4-chloro­phenyl rings (C1–C6) with an inter­centroid distance of 3.687 (1) Å, an inter­planar distance of 3.404 (1) Å, and an offset of 1.418 Å. In Fig. 5[link] these inter­actions are represented by double-headed red arrows.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.56 3.383 (5) 146
C18—H18A⋯F1ii 0.99 2.47 3.415 (5) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.61 3.386 (3) 139
C12—H12ACg1ii 0.99 2.73 3.680 (3) 160
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of compound (I)[link]. The hydrogen-bonding inter­actions (see Table 1[link]) are shown as dashed lines. For clarity, only hydrogen atoms H3 and H18A have been included.
[Figure 5]
Figure 5
A view along the b axis of the crystal packing of compound (II)[link], showing the C—H⋯N hydrogen bonds and the C—H⋯π inter­actions (see Table 2[link]) as dashed lines. The offset ππ inter­actions are indicated by double-headed red arrows. For clarity, only hydrogen atoms H3 and H12A have been included.

4. Hirshfeld surface analysis

The Hirshfeld surfaces for (I)[link] and (II)[link] mapped over dnorm were calculated using CrystalExplorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) with the default setting of arbitrary units range. The characteristic bright-red spots near atoms H3, H18A, N1 and F1 (Fig. 6[link]) confirm the previously mentioned C3—H3⋯N1i and C18—H18A⋯F1ii [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}]] inter­atomic contacts in the crystal packing of (I)[link]. As expected, the same bright-red spots are observed near atoms H3 and N1 on the Hirshfeld surface of (II)[link]; see Fig. 7[link]. The Hirshfeld surface mapped over the shape-index property elegantly illustrates the ππ stacking and the C—H⋯π inter­actions observed in the crystal packing of (II)[link]. Two views are presented in Fig. 8[link]. The ππ stacking between inversion-related 4-chloro­phenyl rings (C1–C6) is indicated by the appearance of small blue regions surrounding a bright-red triangle within the six-membered ring (Fig. 8[link]a), while the C12—H12Aπ(C1–C6)iii inter­action [symmetry code: (iii) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]] appears as a large red region within the ring (Fig. 8[link]b).

[Figure 6]
Figure 6
A view of the Hirshfeld surface mapped over dnorm for compound (I)[link] over the range −0.138 to 1.364 arbitrary units.
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm for compound (II)[link] over the range −0.203 to 1.273 arbitrary units.
[Figure 8]
Figure 8
Two views, (a) and (b), of the Hirshfeld surface mapped over the shape-index property for compound (II)[link].

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure 2-(adamantan-1-yl)-1,3,4-oxa­diazole gave five hits. The crystal structures of three very similar compounds were reported in the last decade, namely 2-(adamantan-1-yl)-5-(4-nitro­phen­yl)-1,3,4-oxa­diazole (CSD refcode LAPVOP; El-Emam et al., 2012[El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.]), which has an NO2 group on the phenyl ring (in the para position to the oxa­diazole ring), 2-(adamantan-1-yl)-5-(4-bromo­phen­yl)-1,3,4-oxa­diazole (SOSXIJ; Alzoman et al. 2014[Alzoman, N. Z., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o1231-o1232.]), which has a Br atom on the phenyl ring (same para position) and 2-(adamantan-1-yl)-5-(3-fluoro­phen­yl)-1,3,4-oxa­diazole (SIKKAA; Khan et al., 2012[Khan, M., Akhtar, T., Al-Masoudi, N. A., Stoeckli-Evans, H. & Hameed, S. (2012). Med. Chem. 8, 1190-1197.]), with a 3-fluoro­phenyl substituent at position 5 on the oxa­diazole ring. Two more recently reported structures are (5-(adamantan-1-yl)-1,3,4-oxa­diazole-2-thiol­ato)tri­phenyl­phosphinegold(I) (AZECAL; Garcia et al., 2016[Garcia, A., Machado, R. C., Grazul, R. M., Lopes, M. T. P., Corrêa, C. C., Dos Santos, H. F., de Almeida, M. V. & Silva, H. (2016). J. Biol. Inorg. Chem. 21, 275-292.]) and 2-(adamantan-1-yl)-5-[2-(2-methyl­phen­yl)-1,3-thia­zol-4-yl]-1,3,4-oxa­diazole (XARGEE­01; Khan et al., 2016[Khan, M., Hameed, S., Akhtar, T., Al-Masoudi, N. A., Al-Masoudi, W. A., Jones, P. G. & Pannecouque, C. (2016). Med. Chem. Res. 25, 2399-2409.]).

The reduced cell of SOSXIJ indicates that it is isotypic with compound (II)[link]. Compound LAPVOP resides on a mirror plane, while compound SIKKAA crystallizes with two independent mol­ecules in the asymmetric unit. The geometrical parameters of the oxa­diazole rings are similar to those reported above for the title compounds. The 4-substituted phenyl rings are inclined to the oxa­diazole ring by 0.0° in LAPVOP (as it lies in a mirror plane), 3.01 and 3.31° in the two independent mol­ecules of SIKKAA and 10.44° in SOSXIJ. In the title compounds the corresponding dihedral angle is 20.8 (2)° for compound (I)[link] and 9.5 (1)° for compound (II)[link].

6. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were synthesized via condensation of adamantane-1-carb­oxy­lic acid with 4-fluoro­benzohydrazide, or 4-chloro­benzohydrazide in the presence of phospho­rus oxychloride, as described previously (Kadi et al., 2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]). Colourless plate-like crystals of compound (I)[link] and colourless needle-like crystals of compound (II)[link] were obtained by slow evaporation of CHCl3:EtOH (1:1 v:v) solutions at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95–1.00 Å with Uiso = 1.2Ueq(C).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C18H19FN2O C18H19ClN2O
Mr 298.35 314.80
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 160 160
a, b, c (Å) 18.2525 (4), 7.07855 (16), 11.2207 (2) 13.08241 (19), 6.49259 (9), 18.5129 (3)
β (°) 98.556 (2) 105.5609 (16)
V3) 1433.59 (6) 1514.83 (4)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.78 2.25
Crystal size (mm) 0.18 × 0.15 × 0.02 0.33 × 0.12 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Pilatus 200K XtaLAB Synergy, Dualflex, Pilatus 200K
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.]) Analytical (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.])
Tmin, Tmax 0.921, 0.990 0.642, 0.870
No. of measured, independent and observed [I > 2σ(I)] reflections 13058, 2903, 2578 14318, 3217, 3052
Rint 0.030 0.023
(sin θ/λ)max−1) 0.625 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.233, 1.23 0.061, 0.167, 1.08
No. of reflections 2903 3217
No. of parameters 199 199
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.38 0.81, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(Adamantan-1-yl)-5-(4-fluorophenyl)-1,3,4-oxadiazole (I) top
Crystal data top
C18H19FN2OF(000) = 632
Mr = 298.35Dx = 1.382 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 18.2525 (4) ÅCell parameters from 7588 reflections
b = 7.07855 (16) Åθ = 4.9–78.5°
c = 11.2207 (2) ŵ = 0.78 mm1
β = 98.556 (2)°T = 160 K
V = 1433.59 (6) Å3Plate, colourless
Z = 40.18 × 0.15 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
2903 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2578 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 5.8140 pixels mm-1θmax = 74.5°, θmin = 4.9°
ω scansh = 2222
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2019)
k = 88
Tmin = 0.921, Tmax = 0.990l = 1114
13058 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080H-atom parameters constrained
wR(F2) = 0.233 w = 1/[σ2(Fo2) + (0.0572P)2 + 6.0123P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max < 0.001
2903 reflectionsΔρmax = 0.47 e Å3
199 parametersΔρmin = 0.38 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6397 (2)0.5834 (6)0.8751 (3)0.0220 (8)
C20.6287 (2)0.5485 (6)0.7528 (3)0.0218 (8)
H20.6690090.5193500.7112370.026*
C30.5568 (2)0.5574 (5)0.6928 (3)0.0189 (7)
H30.5473970.5364520.6082420.023*
C40.4979 (2)0.5973 (5)0.7558 (3)0.0178 (7)
C50.5114 (2)0.6345 (5)0.8784 (3)0.0201 (8)
H50.4714820.6647400.9204950.024*
C60.5836 (2)0.6276 (6)0.9397 (3)0.0234 (8)
H60.5937670.6526391.0237000.028*
C70.42268 (19)0.5993 (5)0.6869 (3)0.0188 (7)
C80.3054 (2)0.5755 (5)0.6523 (3)0.0194 (8)
C90.22741 (19)0.5532 (5)0.6776 (3)0.0188 (8)
C100.2034 (2)0.7286 (6)0.7450 (4)0.0229 (8)
H10A0.2359070.7426850.8233830.027*
H10B0.2081480.8438430.6967460.027*
C110.1226 (2)0.7041 (6)0.7656 (4)0.0249 (9)
H110.1070020.8169450.8092850.030*
C120.0729 (2)0.6855 (7)0.6436 (4)0.0280 (9)
H12A0.0205220.6727690.6560540.034*
H12B0.0772480.8005060.5948940.034*
C130.0958 (2)0.5124 (6)0.5766 (3)0.0261 (9)
H130.0631560.5011540.4969990.031*
C140.1769 (2)0.5336 (6)0.5561 (3)0.0241 (8)
H14A0.1918440.4216260.5126600.029*
H14B0.1819820.6466780.5060070.029*
C150.1155 (2)0.5267 (7)0.8408 (4)0.0282 (9)
H15A0.1478570.5382000.9195220.034*
H15B0.0637480.5128720.8559870.034*
C160.1378 (2)0.3532 (6)0.7743 (4)0.0264 (9)
H160.1326970.2377630.8236880.032*
C170.0881 (2)0.3342 (6)0.6516 (4)0.0282 (9)
H17A0.1028610.2216470.6085570.034*
H17B0.0358050.3181090.6638340.034*
C180.2193 (2)0.3748 (6)0.7544 (4)0.0242 (8)
H18A0.2348470.2617510.7126150.029*
H18B0.2516500.3860120.8331400.029*
F10.71024 (12)0.5714 (4)0.9363 (2)0.0321 (6)
N10.40489 (17)0.6139 (5)0.5727 (3)0.0237 (7)
N20.32721 (18)0.5975 (5)0.5493 (3)0.0245 (7)
O10.36296 (13)0.5751 (4)0.7457 (2)0.0192 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (18)0.0220 (19)0.0239 (19)0.0016 (15)0.0015 (14)0.0036 (15)
C20.0179 (17)0.0239 (19)0.0245 (19)0.0014 (15)0.0059 (14)0.0014 (15)
C30.0218 (18)0.0180 (17)0.0177 (17)0.0000 (14)0.0055 (14)0.0012 (13)
C40.0152 (16)0.0155 (16)0.0232 (17)0.0024 (13)0.0048 (13)0.0008 (14)
C50.0199 (17)0.0201 (18)0.0217 (18)0.0007 (14)0.0083 (14)0.0003 (14)
C60.028 (2)0.0220 (19)0.0204 (18)0.0023 (16)0.0029 (15)0.0004 (15)
C70.0170 (17)0.0187 (17)0.0220 (18)0.0004 (14)0.0074 (14)0.0000 (14)
C80.0182 (17)0.0217 (19)0.0178 (17)0.0005 (14)0.0014 (13)0.0002 (14)
C90.0163 (17)0.0260 (19)0.0141 (16)0.0021 (14)0.0015 (13)0.0001 (14)
C100.0163 (18)0.027 (2)0.0257 (19)0.0027 (15)0.0034 (14)0.0046 (16)
C110.0153 (17)0.034 (2)0.027 (2)0.0003 (16)0.0061 (14)0.0057 (17)
C120.0159 (18)0.039 (2)0.029 (2)0.0032 (17)0.0029 (15)0.0023 (18)
C130.0170 (18)0.041 (2)0.0191 (18)0.0018 (16)0.0021 (14)0.0039 (17)
C140.0179 (18)0.038 (2)0.0161 (17)0.0002 (16)0.0018 (14)0.0001 (16)
C150.0197 (18)0.045 (3)0.0201 (19)0.0023 (17)0.0047 (14)0.0018 (18)
C160.0197 (18)0.031 (2)0.030 (2)0.0026 (16)0.0057 (15)0.0047 (17)
C170.0205 (19)0.034 (2)0.030 (2)0.0060 (17)0.0046 (16)0.0061 (18)
C180.0211 (18)0.029 (2)0.0233 (19)0.0043 (16)0.0051 (15)0.0048 (16)
F10.0198 (11)0.0465 (16)0.0278 (12)0.0006 (10)0.0032 (9)0.0031 (11)
N10.0194 (15)0.0318 (18)0.0207 (16)0.0022 (13)0.0061 (12)0.0008 (14)
N20.0202 (16)0.0366 (19)0.0171 (15)0.0020 (14)0.0044 (12)0.0013 (14)
O10.0148 (12)0.0288 (14)0.0146 (12)0.0007 (10)0.0036 (9)0.0009 (10)
Geometric parameters (Å, º) top
C1—C21.380 (5)C11—H111.0000
C1—C61.376 (5)C11—C121.532 (6)
C1—F11.369 (4)C11—C151.529 (6)
C2—H20.9500C12—H12A0.9900
C2—C31.384 (5)C12—H12B0.9900
C3—H30.9500C12—C131.528 (6)
C3—C41.400 (5)C13—H131.0000
C4—C51.386 (5)C13—C141.539 (5)
C4—C71.472 (5)C13—C171.535 (6)
C5—H50.9500C14—H14A0.9900
C5—C61.394 (5)C14—H14B0.9900
C6—H60.9500C15—H15A0.9900
C7—N11.279 (5)C15—H15B0.9900
C7—O11.366 (4)C15—C161.523 (6)
C8—C91.500 (5)C16—H161.0000
C8—N21.288 (5)C16—C171.538 (6)
C8—O11.369 (4)C16—C181.544 (5)
C9—C101.550 (5)C17—H17A0.9900
C9—C141.534 (5)C17—H17B0.9900
C9—C181.548 (5)C18—H18A0.9900
C10—H10A0.9900C18—H18B0.9900
C10—H10B0.9900N1—N21.408 (4)
C10—C111.537 (5)
C6—C1—C2123.8 (4)H12A—C12—H12B108.2
F1—C1—C2118.3 (3)C13—C12—C11109.8 (3)
F1—C1—C6117.9 (3)C13—C12—H12A109.7
C1—C2—H2121.2C13—C12—H12B109.7
C1—C2—C3117.5 (3)C12—C13—H13109.5
C3—C2—H2121.2C12—C13—C14109.6 (3)
C2—C3—H3119.8C12—C13—C17109.6 (3)
C2—C3—C4120.5 (3)C14—C13—H13109.5
C4—C3—H3119.8C17—C13—H13109.5
C3—C4—C7117.6 (3)C17—C13—C14109.3 (3)
C5—C4—C3120.2 (3)C9—C14—C13109.9 (3)
C5—C4—C7122.2 (3)C9—C14—H14A109.7
C4—C5—H5120.1C9—C14—H14B109.7
C4—C5—C6119.9 (3)C13—C14—H14A109.7
C6—C5—H5120.1C13—C14—H14B109.7
C1—C6—C5118.1 (3)H14A—C14—H14B108.2
C1—C6—H6121.0C11—C15—H15A109.7
C5—C6—H6121.0C11—C15—H15B109.7
N1—C7—C4127.2 (3)H15A—C15—H15B108.2
N1—C7—O1113.1 (3)C16—C15—C11110.0 (3)
O1—C7—C4119.7 (3)C16—C15—H15A109.7
N2—C8—C9127.7 (3)C16—C15—H15B109.7
N2—C8—O1112.5 (3)C15—C16—H16109.4
O1—C8—C9119.8 (3)C15—C16—C17110.1 (3)
C8—C9—C10110.7 (3)C15—C16—C18108.9 (3)
C8—C9—C14107.7 (3)C17—C16—H16109.4
C8—C9—C18111.2 (3)C17—C16—C18109.5 (3)
C14—C9—C10109.3 (3)C18—C16—H16109.4
C14—C9—C18109.1 (3)C13—C17—C16109.2 (3)
C18—C9—C10108.9 (3)C13—C17—H17A109.8
C9—C10—H10A109.8C13—C17—H17B109.8
C9—C10—H10B109.8C16—C17—H17A109.8
H10A—C10—H10B108.3C16—C17—H17B109.8
C11—C10—C9109.3 (3)H17A—C17—H17B108.3
C11—C10—H10A109.8C9—C18—H18A109.8
C11—C10—H10B109.8C9—C18—H18B109.8
C10—C11—H11109.4C16—C18—C9109.6 (3)
C12—C11—C10109.2 (3)C16—C18—H18A109.8
C12—C11—H11109.4C16—C18—H18B109.8
C15—C11—C10109.7 (3)H18A—C18—H18B108.2
C15—C11—H11109.4C7—N1—N2106.2 (3)
C15—C11—C12109.6 (3)C8—N2—N1106.3 (3)
C11—C12—H12A109.7C7—O1—C8102.0 (3)
C11—C12—H12B109.7
C1—C2—C3—C41.1 (6)C11—C15—C16—C1759.2 (4)
C2—C1—C6—C51.1 (6)C11—C15—C16—C1860.8 (4)
C2—C3—C4—C52.2 (6)C12—C11—C15—C1659.0 (4)
C2—C3—C4—C7178.3 (3)C12—C13—C14—C959.4 (4)
C3—C4—C5—C61.6 (6)C12—C13—C17—C1659.5 (4)
C3—C4—C7—N118.2 (6)C14—C9—C10—C1159.8 (4)
C3—C4—C7—O1158.6 (3)C14—C9—C18—C1659.3 (4)
C4—C5—C6—C10.0 (6)C14—C13—C17—C1660.6 (4)
C4—C7—N1—N2176.5 (4)C15—C11—C12—C1359.5 (4)
C4—C7—O1—C8176.9 (3)C15—C16—C17—C1359.3 (4)
C5—C4—C7—N1161.3 (4)C15—C16—C18—C960.5 (4)
C5—C4—C7—O122.0 (5)C17—C13—C14—C960.7 (4)
C6—C1—C2—C30.5 (6)C17—C16—C18—C959.9 (4)
C7—C4—C5—C6178.9 (4)C18—C9—C10—C1159.3 (4)
C7—N1—N2—C80.4 (4)C18—C9—C14—C1359.8 (4)
C8—C9—C10—C11178.1 (3)C18—C16—C17—C1360.5 (4)
C8—C9—C14—C13179.4 (3)F1—C1—C2—C3178.7 (3)
C8—C9—C18—C16177.9 (3)F1—C1—C6—C5178.2 (3)
C9—C8—N2—N1179.3 (4)N1—C7—O1—C80.3 (4)
C9—C8—O1—C7179.6 (3)N2—C8—C9—C10111.7 (4)
C9—C10—C11—C1260.3 (4)N2—C8—C9—C147.7 (6)
C9—C10—C11—C1559.8 (4)N2—C8—C9—C18127.1 (4)
C10—C9—C14—C1359.2 (4)N2—C8—O1—C70.1 (4)
C10—C9—C18—C1659.8 (4)O1—C7—N1—N20.4 (4)
C10—C11—C12—C1360.7 (4)O1—C8—C9—C1067.8 (4)
C10—C11—C15—C1660.9 (4)O1—C8—C9—C14172.9 (3)
C11—C12—C13—C1460.0 (4)O1—C8—C9—C1853.4 (4)
C11—C12—C13—C1760.0 (4)O1—C8—N2—N10.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.563.383 (5)146
C18—H18A···F1ii0.992.473.415 (5)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+3/2.
2-(Adamantan-1-yl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (II) top
Crystal data top
C18H19ClN2OF(000) = 664
Mr = 314.80Dx = 1.380 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 13.08241 (19) ÅCell parameters from 11758 reflections
b = 6.49259 (9) Åθ = 3.7–79.0°
c = 18.5129 (3) ŵ = 2.25 mm1
β = 105.5609 (16)°T = 160 K
V = 1514.83 (4) Å3Needle, colourless
Z = 40.33 × 0.12 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, Pilatus 200K
diffractometer
3217 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3052 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 5.8140 pixels mm-1θmax = 78.9°, θmin = 3.7°
ω scansh = 1616
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2019)
k = 78
Tmin = 0.642, Tmax = 0.870l = 2323
14318 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.094P)2 + 1.5575P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3217 reflectionsΔρmax = 0.81 e Å3
199 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.42626 (17)0.6044 (4)0.35491 (12)0.0302 (5)
C20.40263 (17)0.4056 (4)0.37203 (12)0.0317 (5)
H20.3333200.3514780.3520480.038*
C30.48137 (17)0.2855 (4)0.41883 (12)0.0279 (5)
H30.4662390.1489200.4312060.034*
C40.58338 (16)0.3685 (3)0.44753 (11)0.0254 (4)
C50.60437 (17)0.5705 (3)0.43076 (12)0.0280 (5)
H50.6728840.6271660.4516440.034*
C60.52611 (17)0.6897 (4)0.38380 (13)0.0302 (5)
H60.5406170.8269210.3716880.036*
C70.66623 (17)0.2413 (3)0.49555 (12)0.0229 (4)
C80.81754 (16)0.1694 (3)0.56872 (11)0.0238 (4)
C90.92972 (16)0.2106 (3)0.61176 (11)0.0219 (4)
C100.93691 (16)0.3930 (4)0.66595 (12)0.0282 (5)
H10A0.8972370.3607380.7031680.034*
H10B0.9049310.5171240.6377220.034*
C111.05425 (18)0.4345 (4)0.70636 (13)0.0314 (5)
H111.0590320.5530030.7416100.038*
C121.1016 (2)0.2426 (4)0.75071 (13)0.0333 (5)
H12A1.0620780.2097820.7879760.040*
H12B1.1765660.2687740.7780040.040*
C131.09521 (18)0.0597 (4)0.69691 (13)0.0319 (5)
H131.1267430.0651800.7260920.038*
C140.97843 (17)0.0175 (3)0.65594 (12)0.0285 (5)
H14A0.9386500.0184390.6927560.034*
H14B0.9737100.1001890.6211810.034*
C151.11625 (17)0.4853 (3)0.64960 (14)0.0319 (5)
H15A1.1914120.5126390.6760750.038*
H15B1.0864790.6104230.6210950.038*
C161.10922 (16)0.3031 (4)0.59555 (13)0.0284 (5)
H161.1491920.3365990.5579720.034*
C171.15702 (17)0.1113 (4)0.63970 (14)0.0330 (5)
H17A1.2324750.1366050.6659440.040*
H17B1.1534640.0060470.6049850.040*
C180.99249 (17)0.2645 (3)0.55507 (12)0.0231 (4)
H18A0.9870620.1497940.5189880.028*
H18B0.9618480.3891820.5266360.028*
Cl10.32838 (4)0.75434 (10)0.29606 (3)0.0384 (2)
N10.66468 (15)0.0461 (3)0.50869 (12)0.0348 (5)
N20.76544 (15)0.0012 (3)0.55744 (12)0.0330 (4)
O10.76044 (11)0.3299 (2)0.53130 (8)0.0254 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (10)0.0423 (13)0.0245 (10)0.0028 (9)0.0060 (8)0.0015 (9)
C20.0215 (9)0.0424 (13)0.0291 (10)0.0040 (9)0.0036 (8)0.0017 (9)
C30.0218 (10)0.0354 (11)0.0263 (10)0.0056 (8)0.0060 (8)0.0019 (8)
C40.0218 (9)0.0291 (11)0.0248 (9)0.0027 (8)0.0054 (7)0.0014 (8)
C50.0232 (9)0.0290 (11)0.0307 (10)0.0028 (8)0.0050 (8)0.0010 (8)
C60.0256 (10)0.0341 (11)0.0310 (11)0.0006 (9)0.0077 (8)0.0012 (9)
C70.0186 (9)0.0250 (10)0.0244 (10)0.0048 (7)0.0045 (8)0.0021 (7)
C80.0236 (9)0.0217 (10)0.0263 (9)0.0011 (8)0.0069 (8)0.0003 (8)
C90.0200 (9)0.0223 (9)0.0233 (9)0.0016 (7)0.0055 (7)0.0007 (7)
C100.0248 (10)0.0286 (11)0.0303 (10)0.0010 (8)0.0056 (8)0.0073 (8)
C110.0292 (11)0.0290 (11)0.0311 (11)0.0009 (9)0.0001 (8)0.0078 (9)
C120.0294 (11)0.0431 (14)0.0233 (10)0.0022 (9)0.0001 (9)0.0021 (8)
C130.0289 (11)0.0258 (11)0.0349 (11)0.0003 (9)0.0018 (9)0.0083 (9)
C140.0285 (10)0.0229 (10)0.0314 (10)0.0029 (8)0.0034 (8)0.0052 (8)
C150.0238 (10)0.0234 (10)0.0432 (12)0.0052 (8)0.0004 (9)0.0036 (9)
C160.0205 (10)0.0332 (11)0.0322 (11)0.0003 (8)0.0081 (8)0.0056 (9)
C170.0251 (10)0.0296 (11)0.0413 (12)0.0057 (9)0.0036 (9)0.0000 (9)
C180.0213 (9)0.0254 (10)0.0225 (9)0.0001 (7)0.0059 (8)0.0018 (7)
Cl10.0242 (3)0.0543 (4)0.0342 (3)0.0096 (2)0.0034 (2)0.0102 (2)
N10.0268 (9)0.0279 (10)0.0437 (11)0.0052 (7)0.0007 (8)0.0024 (8)
N20.0258 (9)0.0255 (9)0.0426 (11)0.0055 (7)0.0000 (8)0.0036 (8)
O10.0203 (7)0.0236 (7)0.0300 (7)0.0035 (6)0.0030 (6)0.0005 (6)
Geometric parameters (Å, º) top
C1—C21.384 (4)C11—H111.0000
C1—C61.387 (3)C11—C121.529 (3)
C1—Cl11.740 (2)C11—C151.526 (3)
C2—H20.9500C12—H12A0.9900
C2—C31.393 (3)C12—H12B0.9900
C3—H30.9500C12—C131.538 (3)
C3—C41.405 (3)C13—H131.0000
C4—C51.391 (3)C13—C141.537 (3)
C4—C71.460 (3)C13—C171.532 (3)
C5—H50.9500C14—H14A0.9900
C5—C61.388 (3)C14—H14B0.9900
C6—H60.9500C15—H15A0.9900
C7—N11.292 (3)C15—H15B0.9900
C7—O11.360 (2)C15—C161.536 (3)
C8—C91.494 (3)C16—H161.0000
C8—N21.288 (3)C16—C171.528 (3)
C8—O11.359 (3)C16—C181.531 (3)
C9—C101.538 (3)C17—H17A0.9900
C9—C141.539 (3)C17—H17B0.9900
C9—C181.536 (3)C18—H18A0.9900
C10—H10A0.9900C18—H18B0.9900
C10—H10B0.9900N1—N21.417 (3)
C10—C111.540 (3)
C2—C1—C6122.0 (2)C11—C12—C13109.73 (18)
C2—C1—Cl1119.56 (17)H12A—C12—H12B108.2
C6—C1—Cl1118.48 (19)C13—C12—H12A109.7
C1—C2—H2120.3C13—C12—H12B109.7
C1—C2—C3119.4 (2)C12—C13—H13109.5
C3—C2—H2120.3C14—C13—C12109.36 (19)
C2—C3—H3120.3C14—C13—H13109.5
C2—C3—C4119.3 (2)C17—C13—C12109.38 (19)
C4—C3—H3120.3C17—C13—H13109.5
C3—C4—C7119.2 (2)C17—C13—C14109.69 (18)
C5—C4—C3120.1 (2)C9—C14—H14A109.8
C5—C4—C7120.68 (19)C9—C14—H14B109.8
C4—C5—H5119.7C13—C14—C9109.39 (17)
C6—C5—C4120.6 (2)C13—C14—H14A109.8
C6—C5—H5119.7C13—C14—H14B109.8
C1—C6—C5118.6 (2)H14A—C14—H14B108.2
C1—C6—H6120.7C11—C15—H15A109.8
C5—C6—H6120.7C11—C15—H15B109.8
N1—C7—C4128.6 (2)C11—C15—C16109.40 (18)
N1—C7—O1112.39 (19)H15A—C15—H15B108.2
O1—C7—C4119.03 (17)C16—C15—H15A109.8
N2—C8—C9129.94 (19)C16—C15—H15B109.8
N2—C8—O1112.47 (18)C15—C16—H16109.5
O1—C8—C9117.48 (17)C17—C16—C15109.55 (18)
C8—C9—C10111.42 (17)C17—C16—H16109.5
C8—C9—C14110.16 (17)C17—C16—C18109.88 (18)
C8—C9—C18107.76 (17)C18—C16—C15108.81 (17)
C10—C9—C14109.67 (17)C18—C16—H16109.5
C18—C9—C10108.65 (17)C13—C17—H17A109.8
C18—C9—C14109.12 (17)C13—C17—H17B109.8
C9—C10—H10A109.8C16—C17—C13109.39 (18)
C9—C10—H10B109.8C16—C17—H17A109.8
C9—C10—C11109.27 (17)C16—C17—H17B109.8
H10A—C10—H10B108.3H17A—C17—H17B108.2
C11—C10—H10A109.8C9—C18—H18A109.6
C11—C10—H10B109.8C9—C18—H18B109.6
C10—C11—H11109.3C16—C18—C9110.41 (17)
C12—C11—C10109.02 (19)C16—C18—H18A109.6
C12—C11—H11109.3C16—C18—H18B109.6
C15—C11—C10110.36 (18)H18A—C18—H18B108.1
C15—C11—H11109.3C7—N1—N2105.90 (18)
C15—C11—C12109.41 (19)C8—N2—N1106.14 (18)
C11—C12—H12A109.7C8—O1—C7103.10 (16)
C11—C12—H12B109.7
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.613.386 (3)139
C12—H12A···Cg1ii0.992.733.680 (3)160
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2.
 

Funding information

This work was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Research Group Program (grant No. RGP-1438–0010).

References

First citationAl-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518.  CAS Google Scholar
First citationAl-Wahaibi, L. H., Hassan, H. M., Abo-Kamar, A. M., Ghabbour, H. A. & El-Emam, A. A. (2017). Molecules, 22, 710, 1–12.  Google Scholar
First citationAlzoman, N. Z., El-Emam, A. A., Ghabbour, H. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o1231–o1232.  CSD CrossRef IUCr Journals Google Scholar
First citationAugeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. & Hamann, L. G. (2005). J. Med. Chem. 48, 5025–5037.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBalzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBansal, S., Bala, M., Suthar, S. K., Choudhary, S., Bhattacharya, S., Bhardwaj, V., Singla, S. & Joseph, A. (2014). Eur. J. Med. Chem. 80, 167–174.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBurstein, M. E., Serbin, A. V., Khakhulina, T. V., Alymova, I. V., Stotskaya, L. L., Bogdan, O. P., Manukchina, E. E., Jdanov, V. V., Sharova, N. K. & Bukrinskaya, A. G. (1999). Antiviral Res. 41, 135–144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDavies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., Watts, J. C., Wood, T. R., Hermann, E. C. & Hoffmann, C. E. (1964). Science, 144, 862–863.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Y., Wittlin, S., Sriraghavan, K., Chollet, J., Charman, S. A., Charman, W. N., Scheurer, C., Urwyler, H., Santo Tomas, J., Snyder, C., Creek, D. J., Morizzi, J., Koltun, M., Matile, H., Wang, X., Padmanilayam, M., Tang, Y., Dorn, A., Brun, R. & Vennerstrom, J. L. (2010). J. Med. Chem. 53, 481–491.  CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  Web of Science CAS PubMed Google Scholar
First citationEl-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.  CSD CrossRef IUCr Journals Google Scholar
First citationGarcia, A., Machado, R. C., Grazul, R. M., Lopes, M. T. P., Corrêa, C. C., Dos Santos, H. F., de Almeida, M. V. & Silva, H. (2016). J. Biol. Inorg. Chem. 21, 275–292.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M., Akhtar, T., Al-Masoudi, N. A., Stoeckli-Evans, H. & Hameed, S. (2012). Med. Chem. 8, 1190–1197.  CAS PubMed Google Scholar
First citationKhan, M., Hameed, S., Akhtar, T., Al-Masoudi, N. A., Al-Masoudi, W. A., Jones, P. G. & Pannecouque, C. (2016). Med. Chem. Res. 25, 2399–2409.  CSD CrossRef CAS Google Scholar
First citationLamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, J., Obando, D., Liao, V., Lifa, T. & Codd, R. (2011). Eur. J. Med. Chem. 46, 1949–1963.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgata, M., Atobe, H., Kushida, H. & Yamamoto, K. (1971). J. Antibiot. 24, 443–451.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOmar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Soković, M., Ćirić, A. & Glamočlija, J. (2010). Bioorg. Med. Chem. 18, 426–432.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrakash, O., Kumar, M., Kumar, R., Sharma, C. & Aneja, K. R. (2010). Eur. J. Med. Chem. 45, 4252–4257.  Web of Science CrossRef CAS PubMed Google Scholar
First citationProtopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction Ltd., Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, S. Y., Yue, P., Chen, X., Hong, W. K. & Lotan, R. (2002). Cancer Res. 62, 2430–2436.  Web of Science PubMed CAS Google Scholar
First citationTogo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094.  CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVillhauer, E. B., Brinkman, J. A., Naderi, G. B., Burkey, B. F., Dunning, B. E., Prasad, K., Mangold, B. L., Russell, M. E. & Hughes, T. E. (2003). J. Med. Chem. 46, 2774–2789.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWanka, L., Iqbal, K. & Schreiner, P. R. (2013). Chem. Rev. 113, 3516–3604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, W., Chen, Q., Tai, A., Jiang, G. & Ouyang, G. (2015). Bioorg. Med. Chem. Lett. 25, 2243–2246.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, K., Wang, P., Xuan, L.-N., Fu, X.-Y., Jing, F., Li, S., Liu, Y.-M. & Chen, B.-Q. (2014). Bioorg. Med. Chem. Lett. 24, 5154–5156.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds