research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sonochemical synthesis and crystal structure of di­methyl­ammonium bis­­[3-carb­­oxy-2-(di­methyl­amino)­propano­ato-κ2N,O1]chlorido­chromium(II) monohydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Inorganique et Environnement, Faculty of Science, University of Tlemcen, Tlemcen - 13000, Algeria, and bAix-Marseille University, Spectropole, Campus St. Jerome, 52 av. Escadrille Normandie Niemen, 13013 Marseille, France
*Correspondence e-mail: leila.bouklihacene@univ-tlemcen.dz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 March 2019; accepted 6 April 2019; online 9 April 2019)

The title complex, [(CH3)2NH2][Cr(C6H10NO4)2Cl]·H2O, was synthesized sonochemically. The complex anion consists of a chromium(II) ion ligated by two 3-carb­oxy-2-(di­methyl­amino)­propano­ate anions. They coordinate in a bidentate manner, with a carboxyl­ate oxygen atom and the nitro­gen atom cis to each other in the equatorial plane, while the apical position is occupied by a Cl ion. Hence, the chromium(II) ion is five-coordinate with a quasi-ideal square-pyramidal geometry; τ5 parameter = 0.01. The complex crystallizes as a monohydrate and in the crystal, the water mol­ecule and the di­methyl­ammonium counter-ion link the complex cations via N—H⋯O, N—H⋯Cl, Owater—H⋯O, O—H⋯Owater and O—H⋯O hydrogen bonds, forming a supra­molecular framework. There are also a number of C—H⋯O hydrogen bonds present that reinforce the framework structure. The crystal studied was refined as a racemic twin.

1. Chemical context

Fumaric acid, also known as trans-butenedioic acid, boletic acid, lichenic acid or allomaleic acid, occurs naturally in many plants and is named after Fumaria officinalis, a climbing annual plant (Felthouse et al., 2001[Felthouse, T. R., Burnett, J. C., Horrell, B., Mummey, M. J. & Kuo, Y.-J. (2001). J. ECT, 15, 893-928.]). Besides being `practically non-toxic' (European Commission, 2003[European Commission (2003). Report of the Scientific Committee on Animal Nutrition on the Safety of Fumaric Acid, pp. 1-18. https://ec.europa.eu/food/sites/food/files/safety/docs/animal-feed_additives_rules_scan-old_report_out112.pdf.]), it is used as an acidity regulator in the food industry (Linstrom & Mallard, 1998[Linstrom, P. J. & Mallard, W. G. (1998). NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom & W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi. org/10.18434/T4D303]), in medicine (Gold et al., 2012[Gold, R., Kappos, L., Arnold, D. L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M. T., Yang, M., Sheikh, S. I. & Dawson, K. T. (2012). N. Engl. J. Med. 367, 1098-1107.]), and as a raw material in the manufacture of unsaturated polyester resins (Duty & Liu, 1980[Duty, R. C. & Liu, H. F. (1980). Fuel, 59, 546-550.]).

Since the beginning of the 21st century, fumaric acid has been used to synthesize one of the first metal–organic frameworks for commercial applications (Al-MOF: A520), presenting remarkable adsorption and mechanical properties, combined with low toxicity (Gaab et al., 2012[Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. (2012). Microporous Mesoporous Mater. 157, 131-136.]). In this context, the novel title compound was obtained during an attempt to synthesize a Cr–Fum MOF.

[Scheme 1]

The reaction of fumaric acid and chromium(II)acetate dihydrate in the presence of di­methyl­amine hydro­chloride resulted in the hydro­amination of fumaric acid to form N,N-di­methyl­aspartic acid, which coordinates in a bidentate fashion to the chromium(II) ion.

2. Structural commentary

The mol­ecular structure of the title complex anion is illustrated in Fig. 1[link]. The chromium(II) ion, atom Cr1, is coordinated to two 3-carb­oxy-2-(di­methyl­amino) propano­ate anions in a bidentate manner with a carboxyl­ate oxygen atom O1 and the nitro­gen N1 cis to each other for one ligand and for the other ligand atoms O5 and N2 are cis to each other. The chloride anion, Cl1, occupies the apical position. The five-coordinate chromium ion is displaced by 0.3469 (7) Å from the mean plane through atoms O1, N1, O5 and N2. The equatorial Cu—O bond lengths are Cr1—O1 = 1.960 (5) Å and Cr1—O5 = 1.954 (5) Å, while the equatorial Cu—N bond lengths are slightly longer viz. Cr1—N1 = 2.025 (5) Å and Cr1—N2 = 2.030 (5) Å. The axial Cr1—Cl1 bond length is 2.5301 (16) Å. The C—C, C—O, and C—N bond lengths of the ligands are close to those reported for similar compounds (Zheng et al., 2003[Zheng, Y.-Q., Lin, J.-L. & Chen, B.-Y. (2003). J. Mol. Struct. 646, 151-159.]; Devereux et al., 2000[Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205-1211.]; Kim et al., 2002[Kim, J. C., Lough, A. J. & Jo, H. (2002). Inorg. Chem. Commun. 5, 616-620.]). The cisoid and transoid bond angles vary from 83.62 (19) to 100.88 (16)° and from 159.6 (2) to 160.3 (2)°, respectively. This leads to a quasi-ideal square-pyramidal geometry for atom Cr1 with a τ5 parameter of 0.01 (τ5 = 0 for an ideal square-pyramidal geometry and 1 for an ideal trigonal–bipyramidal geometry; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). An intra­molecular C6—H6C⋯O5 hydrogen bond (Table 1[link]) occurs.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1W 0.82 1.77 2.591 (8) 180
O8—H8O⋯O2i 0.82 1.91 2.585 (7) 139
N3—H3C⋯Cl1ii 0.89 2.24 3.121 (7) 172
N3—H3D⋯O3iii 0.89 1.94 2.763 (9) 153
O1W—H1WA⋯O7ii 0.86 (3) 2.17 (8) 2.895 (8) 142 (12)
O1W—H1WB⋯O6iv 0.86 (3) 2.18 (3) 3.006 (9) 160 (7)
C6—H6B⋯O8v 0.96 2.51 3.351 (9) 146
C6—H6C⋯O5 0.96 2.46 3.038 (9) 119
C12—H12C⋯O6vi 0.96 2.52 3.193 (10) 127
C13—H13B⋯O8vi 0.96 2.56 3.451 (12) 154
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1]; (iii) x+1, y, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+1]; (v) x-1, y, z-1; (vi) [-x+2, y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
The mol­ecular structure of the title complex anion, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, the di­methyl­ammonium counter-ion and the water mol­ecule of crystallization have been omitted.

3. Supra­molecular features

The crystal structure is stabilized by an extensive array of hydrogen bonds, forming a supra­molecular framework (Fig. 2[link] and Table 1[link]). Beyond metal coordination, the ligand has potential sites for hydrogen bonding. Ten of the thirteen heteroatoms are involved in strong and moderate hydrogen bonds (Fig. 2[link] and Table 1[link]). The complex crystallizes as a monohydrate and in the crystal, the water mol­ecule and the di­methyl­ammonium counter-ion link the complex cations via N—H⋯O, N—H⋯Cl, Owater—H⋯O, O—H⋯Owater and O—H⋯O hydrogen bonds, forming a supra­molecular framework. There are also a number of C—H⋯O hydrogen bonds present that reinforce the framework structure.

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title complex. The hydrogen bonds (Table 1[link]) are shown as dashed lines and, for clarity, all the C-bound H atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated that there are no reports of chromium complexes of fumaric acid and no reports of the structure of the title ligand, N,N-di­methyl­aspartic acid. There is only one report of a complex containing a similar ligand, viz. [(R,S)-dimethyl 3-(di­phenyl­phosphino)-N,N-di­methyl­aspartate]di­chloro­palla­dium(II) [CASTIB; Chen et al., 2012[Chen, K., Pullarkat, S. A., Ma, M., Li, Y. & Leung, P.-H. (2012). Dalton Trans. 41, 5391-5400.]]. This chiral P,N-ligand was synthesized by hydro­phosphination using di­phenyl­phosphine followed by hydro­amination with a secondary amine.

5. Synthesis and crystallization

A mixture of fumaric acid (25 mg, 0.22 mmol) and di­methyl­amine hydro­chloride (0.09 ml) dissolved in 20 ml methanol was stirred for 1 h. Chromium(II) acetate dihydrate [Cr2(OAc)4·2H2O; 25.2 mg, 0.11 mmol] in 10 ml of water was added with magnetic stirring for a further 30 min. The mixture was then put in an ultrasonic bath (353 K, 45 KHz, 90 W) for 2h. The solution was then left to evaporate slowly and blue prismatic crystals were collected after two months.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal was refined as a racemic twin [BASF = 0.422 (11)]. The water H atoms were located in a difference-Fourier map and refined with a distance restraint of O—H = 0.85 (2) Å with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: O—H = 0.82 Å, N—H = 0.89 Å, C—H = 0.96–0.99 Å with Uiso(H) = 1.5Ueq(O-hydroxyl, C-meth­yl) and 1.2Ueq(N, C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C2H8N)[Cr(C6H10NO4)2Cl]·H2O
Mr 471.86
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 8.2246 (2), 15.1419 (4), 8.6851 (2)
β (°) 93.339 (2)
V3) 1079.77 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.94
Crystal size (mm) 0.16 × 0.10 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.917, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11333, 3930, 3864
Rint 0.039
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.146, 1.08
No. of reflections 3930
No. of parameters 268
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.14, −0.36
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.422 (11)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Dimethylammonium bis[3-carboxy-2-(dimethylamino)propanoato-κ2N,O1]\ chloridochromium(II) monohydrate top
Crystal data top
(C2H8N)[Cr(C6H10NO4)2Cl]·H2OF(000) = 496
Mr = 471.86Dx = 1.451 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 8.2246 (2) ÅCell parameters from 7960 reflections
b = 15.1419 (4) Åθ = 5.4–68.8°
c = 8.6851 (2) ŵ = 5.94 mm1
β = 93.339 (2)°T = 298 K
V = 1079.77 (5) Å3Prism, blue
Z = 20.16 × 0.10 × 0.06 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2
diffractometer
3930 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3864 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 5.3048 pixels mm-1θmax = 69.0°, θmin = 5.1°
ω scansh = 89
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 1818
Tmin = 0.917, Tmax = 1.000l = 1010
11333 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.1071P)2 + 0.4201P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3930 reflectionsΔρmax = 1.14 e Å3
268 parametersΔρmin = 0.36 e Å3
4 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.422 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.77728 (9)0.46008 (6)0.77478 (8)0.0331 (3)
Cl10.96891 (19)0.44269 (11)0.55923 (19)0.0567 (4)
O10.7158 (5)0.5842 (3)0.7439 (5)0.0467 (10)
O20.5397 (6)0.6689 (3)0.6095 (6)0.0507 (10)
O30.2468 (7)0.6241 (5)0.2902 (6)0.0647 (16)
O40.4927 (7)0.5814 (5)0.2465 (7)0.0727 (16)
H4O0.4736200.6097970.1671580.109*
O50.7816 (6)0.3408 (3)0.8608 (6)0.0568 (12)
O60.8881 (8)0.2659 (4)1.0581 (7)0.0679 (14)
O71.2888 (7)0.2838 (4)1.0339 (6)0.0686 (15)
O81.2813 (7)0.2989 (4)1.2885 (6)0.0578 (14)
H8O1.3660240.2703331.2904990.087*
N10.5641 (6)0.4365 (3)0.6532 (6)0.0439 (11)
N20.9374 (6)0.4869 (3)0.9555 (6)0.0422 (11)
C10.6020 (7)0.5955 (4)0.6425 (7)0.0388 (12)
C20.5452 (7)0.5140 (4)0.5487 (6)0.0395 (12)
H20.6220570.5059210.4677370.047*
C30.3768 (8)0.5244 (5)0.4683 (7)0.0469 (13)
H3A0.3374580.4663210.4371550.056*
H3B0.3038020.5471950.5425770.056*
C40.3661 (8)0.5834 (4)0.3295 (7)0.0458 (13)
C50.4376 (8)0.4347 (6)0.7677 (9)0.062 (2)
H8A0.4707850.3952570.8502500.093*
H8B0.3366230.4145700.7189120.093*
H8C0.4235220.4929850.8082170.093*
C60.5626 (11)0.3524 (5)0.5675 (11)0.067 (2)
H6A0.6352920.3564190.4852270.100*
H6B0.4542270.3406000.5254370.100*
H6C0.5972070.3054320.6360400.100*
C70.8884 (8)0.3294 (4)0.9699 (7)0.0438 (12)
C81.0189 (7)0.4011 (4)0.9867 (7)0.0395 (12)
H81.0932460.3915310.9040660.047*
C91.1207 (9)0.3964 (4)1.1380 (8)0.0499 (14)
H9A1.1815800.4509481.1518650.060*
H9B1.0483330.3917041.2219190.060*
C101.2384 (7)0.3197 (4)1.1473 (7)0.0436 (12)
C110.8385 (11)0.5139 (6)1.0840 (9)0.067 (2)
H11A0.7909950.5707821.0619410.100*
H11B0.9066290.5172221.1774560.100*
H19C0.7536610.4714171.0962770.100*
C121.0545 (10)0.5576 (5)0.9208 (11)0.067 (2)
H12A1.1084720.5424900.8293520.100*
H12B1.1336300.5637421.0057900.100*
H12C0.9970480.6123310.9048080.100*
N31.0276 (9)0.7370 (4)0.4178 (8)0.0607 (15)
H3C1.0364030.7955740.4175950.073*
H3D1.1016060.7156130.3569260.073*
C131.0657 (14)0.7039 (7)0.5796 (11)0.079 (3)
H13A1.0551590.6407790.5815050.119*
H13B0.9911000.7297420.6476640.119*
H13C1.1750780.7201150.6125510.119*
C140.8635 (12)0.7125 (7)0.3526 (12)0.078 (2)
H14A0.8540760.7274750.2450840.118*
H14B0.7825810.7439830.4060170.118*
H14C0.8475000.6501150.3645190.118*
O1W0.4309 (7)0.6707 (5)0.0045 (7)0.0703 (15)
H1WA0.492 (14)0.704 (8)0.056 (13)0.105*
H1WB0.341 (10)0.699 (8)0.004 (8)0.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0310 (4)0.0267 (4)0.0401 (4)0.0011 (3)0.0118 (3)0.0011 (3)
Cl10.0540 (8)0.0532 (10)0.0636 (8)0.0009 (6)0.0104 (6)0.0049 (6)
O10.049 (2)0.033 (2)0.056 (2)0.0003 (16)0.016 (2)0.0034 (17)
O20.053 (2)0.033 (2)0.064 (3)0.0047 (18)0.017 (2)0.0016 (19)
O30.057 (3)0.079 (4)0.057 (3)0.025 (3)0.001 (2)0.010 (3)
O40.058 (3)0.094 (5)0.067 (3)0.023 (3)0.008 (2)0.022 (3)
O50.060 (3)0.040 (2)0.067 (3)0.009 (2)0.025 (2)0.009 (2)
O60.082 (4)0.047 (3)0.072 (3)0.004 (2)0.015 (3)0.019 (2)
O70.073 (3)0.077 (4)0.056 (3)0.029 (3)0.003 (2)0.005 (3)
O80.071 (4)0.048 (3)0.052 (3)0.016 (2)0.016 (2)0.000 (2)
N10.040 (2)0.035 (3)0.055 (3)0.0016 (18)0.011 (2)0.002 (2)
N20.046 (3)0.034 (3)0.045 (2)0.0006 (19)0.009 (2)0.0015 (18)
C10.038 (3)0.033 (3)0.045 (3)0.003 (2)0.005 (2)0.002 (2)
C20.037 (3)0.038 (3)0.043 (3)0.003 (2)0.006 (2)0.000 (2)
C30.040 (3)0.046 (3)0.054 (3)0.007 (2)0.011 (2)0.002 (3)
C40.046 (3)0.041 (3)0.049 (3)0.001 (3)0.010 (2)0.001 (3)
C50.044 (3)0.071 (5)0.071 (4)0.008 (3)0.003 (3)0.026 (4)
C60.071 (5)0.035 (4)0.090 (6)0.001 (3)0.035 (4)0.008 (3)
C70.051 (3)0.029 (3)0.051 (3)0.002 (2)0.005 (3)0.001 (2)
C80.044 (3)0.030 (3)0.044 (3)0.004 (2)0.004 (2)0.002 (2)
C90.061 (4)0.035 (3)0.051 (3)0.008 (3)0.016 (3)0.004 (2)
C100.042 (3)0.039 (3)0.048 (3)0.001 (2)0.010 (2)0.002 (2)
C110.080 (5)0.061 (5)0.059 (4)0.027 (4)0.001 (4)0.011 (3)
C120.063 (4)0.046 (4)0.086 (5)0.013 (3)0.039 (4)0.013 (4)
N30.069 (4)0.047 (3)0.066 (3)0.001 (3)0.008 (3)0.000 (3)
C130.101 (7)0.066 (6)0.072 (5)0.011 (5)0.010 (5)0.003 (4)
C140.072 (5)0.071 (6)0.093 (6)0.000 (4)0.008 (5)0.014 (5)
O1W0.063 (3)0.070 (4)0.080 (4)0.001 (3)0.013 (3)0.019 (3)
Geometric parameters (Å, º) top
Cr1—O51.954 (5)C5—H8C0.9600
Cr1—O11.960 (5)C6—H6A0.9600
Cr1—N12.025 (5)C6—H6B0.9600
Cr1—N22.030 (5)C6—H6C0.9600
Cr1—Cl12.5301 (16)C7—C81.527 (8)
O1—C11.259 (7)C8—C91.518 (9)
O2—C11.250 (8)C8—H80.9800
O3—C41.191 (8)C9—C101.511 (9)
O4—C41.300 (9)C9—H9A0.9700
O4—H4O0.8200C9—H9B0.9700
O5—C71.266 (8)C11—H11A0.9600
O6—C71.230 (8)C11—H11B0.9600
O7—C101.220 (9)C11—H19C0.9600
O8—C101.294 (8)C12—H12A0.9600
O8—H8O0.8200C12—H12B0.9600
N1—C61.475 (9)C12—H12C0.9600
N1—C51.481 (9)N3—C141.480 (12)
N1—C21.485 (8)N3—C131.507 (11)
N2—C111.477 (9)N3—H3C0.8900
N2—C81.480 (7)N3—H3D0.8900
N2—C121.483 (9)C13—H13A0.9600
C1—C21.536 (8)C13—H13B0.9600
C2—C31.523 (8)C13—H13C0.9600
C2—H20.9800C14—H14A0.9600
C3—C41.499 (9)C14—H14B0.9600
C3—H3A0.9700C14—H14C0.9600
C3—H3B0.9700O1W—H1WA0.86 (3)
C5—H8A0.9600O1W—H1WB0.86 (3)
C5—H8B0.9600
O5—Cr1—O1159.6 (2)N1—C6—H6C109.5
O5—Cr1—N191.9 (2)H6A—C6—H6C109.5
O1—Cr1—N183.62 (19)H6B—C6—H6C109.5
O5—Cr1—N283.8 (2)O6—C7—O5123.1 (6)
O1—Cr1—N293.71 (19)O6—C7—C8121.5 (6)
N1—Cr1—N2160.3 (2)O5—C7—C8115.3 (5)
O5—Cr1—Cl1100.87 (19)N2—C8—C9114.9 (5)
O1—Cr1—Cl199.51 (15)N2—C8—C7107.3 (5)
N1—Cr1—Cl198.83 (16)C9—C8—C7113.5 (5)
N2—Cr1—Cl1100.88 (16)N2—C8—H8106.9
C1—O1—Cr1113.7 (4)C9—C8—H8106.9
C4—O4—H4O109.5C7—C8—H8106.9
C7—O5—Cr1114.1 (4)C10—C9—C8113.7 (5)
C10—O8—H8O109.5C10—C9—H9A108.8
C6—N1—C5109.7 (6)C8—C9—H9A108.8
C6—N1—C2112.1 (6)C10—C9—H9B108.8
C5—N1—C2111.9 (5)C8—C9—H9B108.8
C6—N1—Cr1113.4 (4)H9A—C9—H9B107.7
C5—N1—Cr1105.9 (4)O7—C10—O8124.7 (6)
C2—N1—Cr1103.7 (3)O7—C10—C9123.1 (6)
C11—N2—C8111.6 (5)O8—C10—C9112.1 (6)
C11—N2—C12110.2 (7)N2—C11—H11A109.5
C8—N2—C12112.3 (5)N2—C11—H11B109.5
C11—N2—Cr1106.2 (5)H11A—C11—H11B109.5
C8—N2—Cr1103.4 (4)N2—C11—H19C109.5
C12—N2—Cr1112.8 (4)H11A—C11—H19C109.5
O2—C1—O1124.0 (6)H11B—C11—H19C109.5
O2—C1—C2119.0 (5)N2—C12—H12A109.5
O1—C1—C2116.9 (5)N2—C12—H12B109.5
N1—C2—C3115.0 (5)H12A—C12—H12B109.5
N1—C2—C1107.0 (4)N2—C12—H12C109.5
C3—C2—C1113.6 (5)H12A—C12—H12C109.5
N1—C2—H2106.9H12B—C12—H12C109.5
C3—C2—H2106.9C14—N3—C13114.1 (8)
C1—C2—H2106.9C14—N3—H3C108.7
C4—C3—C2116.1 (5)C13—N3—H3C108.7
C4—C3—H3A108.3C14—N3—H3D108.7
C2—C3—H3A108.3C13—N3—H3D108.7
C4—C3—H3B108.3H3C—N3—H3D107.6
C2—C3—H3B108.3N3—C13—H13A109.5
H3A—C3—H3B107.4N3—C13—H13B109.5
O3—C4—O4121.7 (7)H13A—C13—H13B109.5
O3—C4—C3123.2 (6)N3—C13—H13C109.5
O4—C4—C3114.9 (6)H13A—C13—H13C109.5
N1—C5—H8A109.5H13B—C13—H13C109.5
N1—C5—H8B109.5N3—C14—H14A109.5
H8A—C5—H8B109.5N3—C14—H14B109.5
N1—C5—H8C109.5H14A—C14—H14B109.5
H8A—C5—H8C109.5N3—C14—H14C109.5
H8B—C5—H8C109.5H14A—C14—H14C109.5
N1—C6—H6A109.5H14B—C14—H14C109.5
N1—C6—H6B109.5H1WA—O1W—H1WB107 (10)
H6A—C6—H6B109.5
Cr1—O1—C1—O2176.8 (5)Cr1—O5—C7—O6164.7 (6)
Cr1—O1—C1—C26.8 (7)Cr1—O5—C7—C814.7 (7)
C6—N1—C2—C370.4 (7)C11—N2—C8—C953.9 (8)
C5—N1—C2—C353.3 (7)C12—N2—C8—C970.4 (7)
Cr1—N1—C2—C3166.9 (4)Cr1—N2—C8—C9167.7 (5)
C6—N1—C2—C1162.4 (6)C11—N2—C8—C773.3 (7)
C5—N1—C2—C173.9 (6)C12—N2—C8—C7162.4 (6)
Cr1—N1—C2—C139.8 (5)Cr1—N2—C8—C740.5 (5)
O2—C1—C2—N1150.3 (5)O6—C7—C8—N2140.5 (6)
O1—C1—C2—N133.1 (7)O5—C7—C8—N238.9 (7)
O2—C1—C2—C322.4 (8)O6—C7—C8—C912.5 (9)
O1—C1—C2—C3161.1 (5)O5—C7—C8—C9166.9 (6)
N1—C2—C3—C4162.3 (5)N2—C8—C9—C10163.7 (5)
C1—C2—C3—C474.0 (7)C7—C8—C9—C1072.3 (7)
C2—C3—C4—O3150.8 (7)C8—C9—C10—O723.7 (10)
C2—C3—C4—O434.8 (9)C8—C9—C10—O8157.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O1W0.821.772.591 (8)180
O8—H8O···O2i0.821.912.585 (7)139
N3—H3C···Cl1ii0.892.243.121 (7)172
N3—H3D···O3iii0.891.942.763 (9)153
O1W—H1WA···O7ii0.86 (3)2.17 (8)2.895 (8)142 (12)
O1W—H1WB···O6iv0.86 (3)2.18 (3)3.006 (9)160 (7)
C6—H6B···O8v0.962.513.351 (9)146
C6—H6C···O50.962.463.038 (9)119
C12—H12C···O6vi0.962.523.193 (10)127
C13—H13B···O8vi0.962.563.451 (12)154
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+1; (iii) x+1, y, z; (iv) x+1, y+1/2, z+1; (v) x1, y, z1; (vi) x+2, y+1/2, z+2.
 

Funding information

The authors are grateful for the support provided by the Algerian Ministry for Education and Research.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationChen, K., Pullarkat, S. A., Ma, M., Li, Y. & Leung, P.-H. (2012). Dalton Trans. 41, 5391–5400.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDevereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuty, R. C. & Liu, H. F. (1980). Fuel, 59, 546–550.  CrossRef CAS Web of Science Google Scholar
First citationEuropean Commission (2003). Report of the Scientific Committee on Animal Nutrition on the Safety of Fumaric Acid, pp. 1–18. https://ec.europa.eu/food/sites/food/files/safety/docs/animal-feed_additives_rules_scan-old_report_out112.pdf.  Google Scholar
First citationFelthouse, T. R., Burnett, J. C., Horrell, B., Mummey, M. J. & Kuo, Y.-J. (2001). J. ECT, 15, 893–928.  Google Scholar
First citationGaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. (2012). Microporous Mesoporous Mater. 157, 131–136.  Web of Science CrossRef CAS Google Scholar
First citationGold, R., Kappos, L., Arnold, D. L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M. T., Yang, M., Sheikh, S. I. & Dawson, K. T. (2012). N. Engl. J. Med. 367, 1098–1107.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKim, J. C., Lough, A. J. & Jo, H. (2002). Inorg. Chem. Commun. 5, 616–620.  Web of Science CSD CrossRef CAS Google Scholar
First citationLinstrom, P. J. & Mallard, W. G. (1998). NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom & W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi. org/10.18434/T4D303  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y.-Q., Lin, J.-L. & Chen, B.-Y. (2003). J. Mol. Struct. 646, 151–159.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds