research communications
Sonochemical synthesis and κ2N,O1]chloridochromium(II) monohydrate
of dimethylammonium bis[3-carboxy-2-(dimethylamino)propanoato-aLaboratoire de Chimie Inorganique et Environnement, Faculty of Science, University of Tlemcen, Tlemcen - 13000, Algeria, and bAix-Marseille University, Spectropole, Campus St. Jerome, 52 av. Escadrille Normandie Niemen, 13013 Marseille, France
*Correspondence e-mail: leila.bouklihacene@univ-tlemcen.dz
The title complex, [(CH3)2NH2][Cr(C6H10NO4)2Cl]·H2O, was synthesized sonochemically. The complex anion consists of a chromium(II) ion ligated by two 3-carboxy-2-(dimethylamino)propanoate anions. They coordinate in a bidentate manner, with a carboxylate oxygen atom and the nitrogen atom cis to each other in the equatorial plane, while the apical position is occupied by a Cl− ion. Hence, the chromium(II) ion is five-coordinate with a quasi-ideal square-pyramidal geometry; τ5 parameter = 0.01. The complex crystallizes as a monohydrate and in the crystal, the water molecule and the dimethylammonium counter-ion link the complex cations via N—H⋯O, N—H⋯Cl, Owater—H⋯O, O—H⋯Owater and O—H⋯O hydrogen bonds, forming a supramolecular framework. There are also a number of C—H⋯O hydrogen bonds present that reinforce the framework structure. The crystal studied was refined as a racemic twin.
Keywords: crystal structure; sonochemical synthesis; chromium(II) complex anion; dimethylammonium; hydrogen bonding; supramolecular framework.
CCDC reference: 1892216
1. Chemical context
Fumaric acid, also known as trans-butenedioic acid, boletic acid, lichenic acid or allomaleic acid, occurs naturally in many plants and is named after Fumaria officinalis, a climbing annual plant (Felthouse et al., 2001). Besides being `practically non-toxic' (European Commission, 2003), it is used as an acidity regulator in the food industry (Linstrom & Mallard, 1998), in medicine (Gold et al., 2012), and as a raw material in the manufacture of unsaturated polyester resins (Duty & Liu, 1980).
Since the beginning of the 21st century, fumaric acid has been used to synthesize one of the first metal–organic frameworks for commercial applications (Al-MOF: A520), presenting remarkable adsorption and mechanical properties, combined with low toxicity (Gaab et al., 2012). In this context, the novel title compound was obtained during an attempt to synthesize a Cr–Fum MOF.
The reaction of fumaric acid and chromium(II)acetate dihydrate in the presence of dimethylamine hydrochloride resulted in the hydroamination of fumaric acid to form N,N-dimethylaspartic acid, which coordinates in a bidentate fashion to the chromium(II) ion.
2. Structural commentary
The molecular structure of the title complex anion is illustrated in Fig. 1. The chromium(II) ion, atom Cr1, is coordinated to two 3-carboxy-2-(dimethylamino) propanoate anions in a bidentate manner with a carboxylate oxygen atom O1 and the nitrogen N1 cis to each other for one ligand and for the other ligand atoms O5 and N2 are cis to each other. The chloride anion, Cl1, occupies the apical position. The five-coordinate chromium ion is displaced by 0.3469 (7) Å from the mean plane through atoms O1, N1, O5 and N2. The equatorial Cu—O bond lengths are Cr1—O1 = 1.960 (5) Å and Cr1—O5 = 1.954 (5) Å, while the equatorial Cu—N bond lengths are slightly longer viz. Cr1—N1 = 2.025 (5) Å and Cr1—N2 = 2.030 (5) Å. The axial Cr1—Cl1 bond length is 2.5301 (16) Å. The C—C, C—O, and C—N bond lengths of the ligands are close to those reported for similar compounds (Zheng et al., 2003; Devereux et al., 2000; Kim et al., 2002). The cisoid and transoid bond angles vary from 83.62 (19) to 100.88 (16)° and from 159.6 (2) to 160.3 (2)°, respectively. This leads to a quasi-ideal square-pyramidal geometry for atom Cr1 with a τ5 parameter of 0.01 (τ5 = 0 for an ideal square-pyramidal geometry and 1 for an ideal trigonal–bipyramidal geometry; Addison et al., 1984). An intramolecular C6—H6C⋯O5 hydrogen bond (Table 1) occurs.
3. Supramolecular features
The and Table 1). Beyond metal coordination, the ligand has potential sites for hydrogen bonding. Ten of the thirteen heteroatoms are involved in strong and moderate hydrogen bonds (Fig. 2 and Table 1). The complex crystallizes as a monohydrate and in the crystal, the water molecule and the dimethylammonium counter-ion link the complex cations via N—H⋯O, N—H⋯Cl, Owater—H⋯O, O—H⋯Owater and O—H⋯O hydrogen bonds, forming a supramolecular framework. There are also a number of C—H⋯O hydrogen bonds present that reinforce the framework structure.
is stabilized by an extensive array of hydrogen bonds, forming a supramolecular framework (Fig. 24. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.40, update February 2019; Groom et al., 2016) indicated that there are no reports of chromium complexes of fumaric acid and no reports of the structure of the title ligand, N,N-dimethylaspartic acid. There is only one report of a complex containing a similar ligand, viz. [(R,S)-dimethyl 3-(diphenylphosphino)-N,N-dimethylaspartate]dichloropalladium(II) [CASTIB; Chen et al., 2012]. This chiral P,N-ligand was synthesized by hydrophosphination using diphenylphosphine followed by hydroamination with a secondary amine.
5. Synthesis and crystallization
A mixture of fumaric acid (25 mg, 0.22 mmol) and dimethylamine hydrochloride (0.09 ml) dissolved in 20 ml methanol was stirred for 1 h. Chromium(II) acetate dihydrate [Cr2(OAc)4·2H2O; 25.2 mg, 0.11 mmol] in 10 ml of water was added with magnetic stirring for a further 30 min. The mixture was then put in an ultrasonic bath (353 K, 45 KHz, 90 W) for 2h. The solution was then left to evaporate slowly and blue prismatic crystals were collected after two months.
6. Refinement
Crystal data, data collection and structure . The crystal was refined as a racemic twin [BASF = 0.422 (11)]. The water H atoms were located in a difference-Fourier map and refined with a distance restraint of O—H = 0.85 (2) Å with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: O—H = 0.82 Å, N—H = 0.89 Å, C—H = 0.96–0.99 Å with Uiso(H) = 1.5Ueq(O-hydroxyl, C-methyl) and 1.2Ueq(N, C) for other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1892216
https://doi.org/10.1107/S2056989019004717/su5493sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004717/su5493Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).(C2H8N)[Cr(C6H10NO4)2Cl]·H2O | F(000) = 496 |
Mr = 471.86 | Dx = 1.451 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 8.2246 (2) Å | Cell parameters from 7960 reflections |
b = 15.1419 (4) Å | θ = 5.4–68.8° |
c = 8.6851 (2) Å | µ = 5.94 mm−1 |
β = 93.339 (2)° | T = 298 K |
V = 1079.77 (5) Å3 | Prism, blue |
Z = 2 | 0.16 × 0.10 × 0.06 mm |
Rigaku Oxford Diffraction SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer | 3930 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 3864 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.039 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 69.0°, θmin = 5.1° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −18→18 |
Tmin = 0.917, Tmax = 1.000 | l = −10→10 |
11333 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.146 | w = 1/[σ2(Fo2) + (0.1071P)2 + 0.4201P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3930 reflections | Δρmax = 1.14 e Å−3 |
268 parameters | Δρmin = −0.36 e Å−3 |
4 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.422 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.77728 (9) | 0.46008 (6) | 0.77478 (8) | 0.0331 (3) | |
Cl1 | 0.96891 (19) | 0.44269 (11) | 0.55923 (19) | 0.0567 (4) | |
O1 | 0.7158 (5) | 0.5842 (3) | 0.7439 (5) | 0.0467 (10) | |
O2 | 0.5397 (6) | 0.6689 (3) | 0.6095 (6) | 0.0507 (10) | |
O3 | 0.2468 (7) | 0.6241 (5) | 0.2902 (6) | 0.0647 (16) | |
O4 | 0.4927 (7) | 0.5814 (5) | 0.2465 (7) | 0.0727 (16) | |
H4O | 0.473620 | 0.609797 | 0.167158 | 0.109* | |
O5 | 0.7816 (6) | 0.3408 (3) | 0.8608 (6) | 0.0568 (12) | |
O6 | 0.8881 (8) | 0.2659 (4) | 1.0581 (7) | 0.0679 (14) | |
O7 | 1.2888 (7) | 0.2838 (4) | 1.0339 (6) | 0.0686 (15) | |
O8 | 1.2813 (7) | 0.2989 (4) | 1.2885 (6) | 0.0578 (14) | |
H8O | 1.366024 | 0.270333 | 1.290499 | 0.087* | |
N1 | 0.5641 (6) | 0.4365 (3) | 0.6532 (6) | 0.0439 (11) | |
N2 | 0.9374 (6) | 0.4869 (3) | 0.9555 (6) | 0.0422 (11) | |
C1 | 0.6020 (7) | 0.5955 (4) | 0.6425 (7) | 0.0388 (12) | |
C2 | 0.5452 (7) | 0.5140 (4) | 0.5487 (6) | 0.0395 (12) | |
H2 | 0.622057 | 0.505921 | 0.467737 | 0.047* | |
C3 | 0.3768 (8) | 0.5244 (5) | 0.4683 (7) | 0.0469 (13) | |
H3A | 0.337458 | 0.466321 | 0.437155 | 0.056* | |
H3B | 0.303802 | 0.547195 | 0.542577 | 0.056* | |
C4 | 0.3661 (8) | 0.5834 (4) | 0.3295 (7) | 0.0458 (13) | |
C5 | 0.4376 (8) | 0.4347 (6) | 0.7677 (9) | 0.062 (2) | |
H8A | 0.470785 | 0.395257 | 0.850250 | 0.093* | |
H8B | 0.336623 | 0.414570 | 0.718912 | 0.093* | |
H8C | 0.423522 | 0.492985 | 0.808217 | 0.093* | |
C6 | 0.5626 (11) | 0.3524 (5) | 0.5675 (11) | 0.067 (2) | |
H6A | 0.635292 | 0.356419 | 0.485227 | 0.100* | |
H6B | 0.454227 | 0.340600 | 0.525437 | 0.100* | |
H6C | 0.597207 | 0.305432 | 0.636040 | 0.100* | |
C7 | 0.8884 (8) | 0.3294 (4) | 0.9699 (7) | 0.0438 (12) | |
C8 | 1.0189 (7) | 0.4011 (4) | 0.9867 (7) | 0.0395 (12) | |
H8 | 1.093246 | 0.391531 | 0.904066 | 0.047* | |
C9 | 1.1207 (9) | 0.3964 (4) | 1.1380 (8) | 0.0499 (14) | |
H9A | 1.181580 | 0.450948 | 1.151865 | 0.060* | |
H9B | 1.048333 | 0.391704 | 1.221919 | 0.060* | |
C10 | 1.2384 (7) | 0.3197 (4) | 1.1473 (7) | 0.0436 (12) | |
C11 | 0.8385 (11) | 0.5139 (6) | 1.0840 (9) | 0.067 (2) | |
H11A | 0.790995 | 0.570782 | 1.061941 | 0.100* | |
H11B | 0.906629 | 0.517222 | 1.177456 | 0.100* | |
H19C | 0.753661 | 0.471417 | 1.096277 | 0.100* | |
C12 | 1.0545 (10) | 0.5576 (5) | 0.9208 (11) | 0.067 (2) | |
H12A | 1.108472 | 0.542490 | 0.829352 | 0.100* | |
H12B | 1.133630 | 0.563742 | 1.005790 | 0.100* | |
H12C | 0.997048 | 0.612331 | 0.904808 | 0.100* | |
N3 | 1.0276 (9) | 0.7370 (4) | 0.4178 (8) | 0.0607 (15) | |
H3C | 1.036403 | 0.795574 | 0.417595 | 0.073* | |
H3D | 1.101606 | 0.715613 | 0.356926 | 0.073* | |
C13 | 1.0657 (14) | 0.7039 (7) | 0.5796 (11) | 0.079 (3) | |
H13A | 1.055159 | 0.640779 | 0.581505 | 0.119* | |
H13B | 0.991100 | 0.729742 | 0.647664 | 0.119* | |
H13C | 1.175078 | 0.720115 | 0.612551 | 0.119* | |
C14 | 0.8635 (12) | 0.7125 (7) | 0.3526 (12) | 0.078 (2) | |
H14A | 0.854076 | 0.727475 | 0.245084 | 0.118* | |
H14B | 0.782581 | 0.743983 | 0.406017 | 0.118* | |
H14C | 0.847500 | 0.650115 | 0.364519 | 0.118* | |
O1W | 0.4309 (7) | 0.6707 (5) | −0.0045 (7) | 0.0703 (15) | |
H1WA | 0.492 (14) | 0.704 (8) | −0.056 (13) | 0.105* | |
H1WB | 0.341 (10) | 0.699 (8) | 0.004 (8) | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.0310 (4) | 0.0267 (4) | 0.0401 (4) | −0.0011 (3) | −0.0118 (3) | 0.0011 (3) |
Cl1 | 0.0540 (8) | 0.0532 (10) | 0.0636 (8) | −0.0009 (6) | 0.0104 (6) | −0.0049 (6) |
O1 | 0.049 (2) | 0.033 (2) | 0.056 (2) | −0.0003 (16) | −0.016 (2) | −0.0034 (17) |
O2 | 0.053 (2) | 0.033 (2) | 0.064 (3) | 0.0047 (18) | −0.017 (2) | 0.0016 (19) |
O3 | 0.057 (3) | 0.079 (4) | 0.057 (3) | 0.025 (3) | −0.001 (2) | 0.010 (3) |
O4 | 0.058 (3) | 0.094 (5) | 0.067 (3) | 0.023 (3) | 0.008 (2) | 0.022 (3) |
O5 | 0.060 (3) | 0.040 (2) | 0.067 (3) | −0.009 (2) | −0.025 (2) | 0.009 (2) |
O6 | 0.082 (4) | 0.047 (3) | 0.072 (3) | −0.004 (2) | −0.015 (3) | 0.019 (2) |
O7 | 0.073 (3) | 0.077 (4) | 0.056 (3) | 0.029 (3) | 0.003 (2) | 0.005 (3) |
O8 | 0.071 (4) | 0.048 (3) | 0.052 (3) | 0.016 (2) | −0.016 (2) | 0.000 (2) |
N1 | 0.040 (2) | 0.035 (3) | 0.055 (3) | 0.0016 (18) | −0.011 (2) | 0.002 (2) |
N2 | 0.046 (3) | 0.034 (3) | 0.045 (2) | −0.0006 (19) | −0.009 (2) | 0.0015 (18) |
C1 | 0.038 (3) | 0.033 (3) | 0.045 (3) | −0.003 (2) | −0.005 (2) | −0.002 (2) |
C2 | 0.037 (3) | 0.038 (3) | 0.043 (3) | −0.003 (2) | −0.006 (2) | 0.000 (2) |
C3 | 0.040 (3) | 0.046 (3) | 0.054 (3) | −0.007 (2) | −0.011 (2) | 0.002 (3) |
C4 | 0.046 (3) | 0.041 (3) | 0.049 (3) | −0.001 (3) | −0.010 (2) | −0.001 (3) |
C5 | 0.044 (3) | 0.071 (5) | 0.071 (4) | −0.008 (3) | −0.003 (3) | 0.026 (4) |
C6 | 0.071 (5) | 0.035 (4) | 0.090 (6) | −0.001 (3) | −0.035 (4) | −0.008 (3) |
C7 | 0.051 (3) | 0.029 (3) | 0.051 (3) | 0.002 (2) | −0.005 (3) | −0.001 (2) |
C8 | 0.044 (3) | 0.030 (3) | 0.044 (3) | 0.004 (2) | −0.004 (2) | −0.002 (2) |
C9 | 0.061 (4) | 0.035 (3) | 0.051 (3) | 0.008 (3) | −0.016 (3) | −0.004 (2) |
C10 | 0.042 (3) | 0.039 (3) | 0.048 (3) | 0.001 (2) | −0.010 (2) | 0.002 (2) |
C11 | 0.080 (5) | 0.061 (5) | 0.059 (4) | 0.027 (4) | 0.001 (4) | −0.011 (3) |
C12 | 0.063 (4) | 0.046 (4) | 0.086 (5) | −0.013 (3) | −0.039 (4) | 0.013 (4) |
N3 | 0.069 (4) | 0.047 (3) | 0.066 (3) | 0.001 (3) | 0.008 (3) | 0.000 (3) |
C13 | 0.101 (7) | 0.066 (6) | 0.072 (5) | 0.011 (5) | 0.010 (5) | 0.003 (4) |
C14 | 0.072 (5) | 0.071 (6) | 0.093 (6) | 0.000 (4) | 0.008 (5) | −0.014 (5) |
O1W | 0.063 (3) | 0.070 (4) | 0.080 (4) | 0.001 (3) | 0.013 (3) | 0.019 (3) |
Cr1—O5 | 1.954 (5) | C5—H8C | 0.9600 |
Cr1—O1 | 1.960 (5) | C6—H6A | 0.9600 |
Cr1—N1 | 2.025 (5) | C6—H6B | 0.9600 |
Cr1—N2 | 2.030 (5) | C6—H6C | 0.9600 |
Cr1—Cl1 | 2.5301 (16) | C7—C8 | 1.527 (8) |
O1—C1 | 1.259 (7) | C8—C9 | 1.518 (9) |
O2—C1 | 1.250 (8) | C8—H8 | 0.9800 |
O3—C4 | 1.191 (8) | C9—C10 | 1.511 (9) |
O4—C4 | 1.300 (9) | C9—H9A | 0.9700 |
O4—H4O | 0.8200 | C9—H9B | 0.9700 |
O5—C7 | 1.266 (8) | C11—H11A | 0.9600 |
O6—C7 | 1.230 (8) | C11—H11B | 0.9600 |
O7—C10 | 1.220 (9) | C11—H19C | 0.9600 |
O8—C10 | 1.294 (8) | C12—H12A | 0.9600 |
O8—H8O | 0.8200 | C12—H12B | 0.9600 |
N1—C6 | 1.475 (9) | C12—H12C | 0.9600 |
N1—C5 | 1.481 (9) | N3—C14 | 1.480 (12) |
N1—C2 | 1.485 (8) | N3—C13 | 1.507 (11) |
N2—C11 | 1.477 (9) | N3—H3C | 0.8900 |
N2—C8 | 1.480 (7) | N3—H3D | 0.8900 |
N2—C12 | 1.483 (9) | C13—H13A | 0.9600 |
C1—C2 | 1.536 (8) | C13—H13B | 0.9600 |
C2—C3 | 1.523 (8) | C13—H13C | 0.9600 |
C2—H2 | 0.9800 | C14—H14A | 0.9600 |
C3—C4 | 1.499 (9) | C14—H14B | 0.9600 |
C3—H3A | 0.9700 | C14—H14C | 0.9600 |
C3—H3B | 0.9700 | O1W—H1WA | 0.86 (3) |
C5—H8A | 0.9600 | O1W—H1WB | 0.86 (3) |
C5—H8B | 0.9600 | ||
O5—Cr1—O1 | 159.6 (2) | N1—C6—H6C | 109.5 |
O5—Cr1—N1 | 91.9 (2) | H6A—C6—H6C | 109.5 |
O1—Cr1—N1 | 83.62 (19) | H6B—C6—H6C | 109.5 |
O5—Cr1—N2 | 83.8 (2) | O6—C7—O5 | 123.1 (6) |
O1—Cr1—N2 | 93.71 (19) | O6—C7—C8 | 121.5 (6) |
N1—Cr1—N2 | 160.3 (2) | O5—C7—C8 | 115.3 (5) |
O5—Cr1—Cl1 | 100.87 (19) | N2—C8—C9 | 114.9 (5) |
O1—Cr1—Cl1 | 99.51 (15) | N2—C8—C7 | 107.3 (5) |
N1—Cr1—Cl1 | 98.83 (16) | C9—C8—C7 | 113.5 (5) |
N2—Cr1—Cl1 | 100.88 (16) | N2—C8—H8 | 106.9 |
C1—O1—Cr1 | 113.7 (4) | C9—C8—H8 | 106.9 |
C4—O4—H4O | 109.5 | C7—C8—H8 | 106.9 |
C7—O5—Cr1 | 114.1 (4) | C10—C9—C8 | 113.7 (5) |
C10—O8—H8O | 109.5 | C10—C9—H9A | 108.8 |
C6—N1—C5 | 109.7 (6) | C8—C9—H9A | 108.8 |
C6—N1—C2 | 112.1 (6) | C10—C9—H9B | 108.8 |
C5—N1—C2 | 111.9 (5) | C8—C9—H9B | 108.8 |
C6—N1—Cr1 | 113.4 (4) | H9A—C9—H9B | 107.7 |
C5—N1—Cr1 | 105.9 (4) | O7—C10—O8 | 124.7 (6) |
C2—N1—Cr1 | 103.7 (3) | O7—C10—C9 | 123.1 (6) |
C11—N2—C8 | 111.6 (5) | O8—C10—C9 | 112.1 (6) |
C11—N2—C12 | 110.2 (7) | N2—C11—H11A | 109.5 |
C8—N2—C12 | 112.3 (5) | N2—C11—H11B | 109.5 |
C11—N2—Cr1 | 106.2 (5) | H11A—C11—H11B | 109.5 |
C8—N2—Cr1 | 103.4 (4) | N2—C11—H19C | 109.5 |
C12—N2—Cr1 | 112.8 (4) | H11A—C11—H19C | 109.5 |
O2—C1—O1 | 124.0 (6) | H11B—C11—H19C | 109.5 |
O2—C1—C2 | 119.0 (5) | N2—C12—H12A | 109.5 |
O1—C1—C2 | 116.9 (5) | N2—C12—H12B | 109.5 |
N1—C2—C3 | 115.0 (5) | H12A—C12—H12B | 109.5 |
N1—C2—C1 | 107.0 (4) | N2—C12—H12C | 109.5 |
C3—C2—C1 | 113.6 (5) | H12A—C12—H12C | 109.5 |
N1—C2—H2 | 106.9 | H12B—C12—H12C | 109.5 |
C3—C2—H2 | 106.9 | C14—N3—C13 | 114.1 (8) |
C1—C2—H2 | 106.9 | C14—N3—H3C | 108.7 |
C4—C3—C2 | 116.1 (5) | C13—N3—H3C | 108.7 |
C4—C3—H3A | 108.3 | C14—N3—H3D | 108.7 |
C2—C3—H3A | 108.3 | C13—N3—H3D | 108.7 |
C4—C3—H3B | 108.3 | H3C—N3—H3D | 107.6 |
C2—C3—H3B | 108.3 | N3—C13—H13A | 109.5 |
H3A—C3—H3B | 107.4 | N3—C13—H13B | 109.5 |
O3—C4—O4 | 121.7 (7) | H13A—C13—H13B | 109.5 |
O3—C4—C3 | 123.2 (6) | N3—C13—H13C | 109.5 |
O4—C4—C3 | 114.9 (6) | H13A—C13—H13C | 109.5 |
N1—C5—H8A | 109.5 | H13B—C13—H13C | 109.5 |
N1—C5—H8B | 109.5 | N3—C14—H14A | 109.5 |
H8A—C5—H8B | 109.5 | N3—C14—H14B | 109.5 |
N1—C5—H8C | 109.5 | H14A—C14—H14B | 109.5 |
H8A—C5—H8C | 109.5 | N3—C14—H14C | 109.5 |
H8B—C5—H8C | 109.5 | H14A—C14—H14C | 109.5 |
N1—C6—H6A | 109.5 | H14B—C14—H14C | 109.5 |
N1—C6—H6B | 109.5 | H1WA—O1W—H1WB | 107 (10) |
H6A—C6—H6B | 109.5 | ||
Cr1—O1—C1—O2 | 176.8 (5) | Cr1—O5—C7—O6 | 164.7 (6) |
Cr1—O1—C1—C2 | −6.8 (7) | Cr1—O5—C7—C8 | −14.7 (7) |
C6—N1—C2—C3 | 70.4 (7) | C11—N2—C8—C9 | −53.9 (8) |
C5—N1—C2—C3 | −53.3 (7) | C12—N2—C8—C9 | 70.4 (7) |
Cr1—N1—C2—C3 | −166.9 (4) | Cr1—N2—C8—C9 | −167.7 (5) |
C6—N1—C2—C1 | −162.4 (6) | C11—N2—C8—C7 | 73.3 (7) |
C5—N1—C2—C1 | 73.9 (6) | C12—N2—C8—C7 | −162.4 (6) |
Cr1—N1—C2—C1 | −39.8 (5) | Cr1—N2—C8—C7 | −40.5 (5) |
O2—C1—C2—N1 | −150.3 (5) | O6—C7—C8—N2 | −140.5 (6) |
O1—C1—C2—N1 | 33.1 (7) | O5—C7—C8—N2 | 38.9 (7) |
O2—C1—C2—C3 | −22.4 (8) | O6—C7—C8—C9 | −12.5 (9) |
O1—C1—C2—C3 | 161.1 (5) | O5—C7—C8—C9 | 166.9 (6) |
N1—C2—C3—C4 | −162.3 (5) | N2—C8—C9—C10 | −163.7 (5) |
C1—C2—C3—C4 | 74.0 (7) | C7—C8—C9—C10 | 72.3 (7) |
C2—C3—C4—O3 | −150.8 (7) | C8—C9—C10—O7 | 23.7 (10) |
C2—C3—C4—O4 | 34.8 (9) | C8—C9—C10—O8 | −157.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4O···O1W | 0.82 | 1.77 | 2.591 (8) | 180 |
O8—H8O···O2i | 0.82 | 1.91 | 2.585 (7) | 139 |
N3—H3C···Cl1ii | 0.89 | 2.24 | 3.121 (7) | 172 |
N3—H3D···O3iii | 0.89 | 1.94 | 2.763 (9) | 153 |
O1W—H1WA···O7ii | 0.86 (3) | 2.17 (8) | 2.895 (8) | 142 (12) |
O1W—H1WB···O6iv | 0.86 (3) | 2.18 (3) | 3.006 (9) | 160 (7) |
C6—H6B···O8v | 0.96 | 2.51 | 3.351 (9) | 146 |
C6—H6C···O5 | 0.96 | 2.46 | 3.038 (9) | 119 |
C12—H12C···O6vi | 0.96 | 2.52 | 3.193 (10) | 127 |
C13—H13B···O8vi | 0.96 | 2.56 | 3.451 (12) | 154 |
Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) −x+2, y+1/2, −z+1; (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+1; (v) x−1, y, z−1; (vi) −x+2, y+1/2, −z+2. |
Funding information
The authors are grateful for the support provided by the Algerian Ministry for Education and Research.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Chen, K., Pullarkat, S. A., Ma, M., Li, Y. & Leung, P.-H. (2012). Dalton Trans. 41, 5391–5400. Web of Science CSD CrossRef CAS PubMed Google Scholar
Devereux, M., McCann, M., Leon, V., Geraghty, M., McKee, V. & Wikaira, J. (2000). Polyhedron, 19, 1205–1211. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duty, R. C. & Liu, H. F. (1980). Fuel, 59, 546–550. CrossRef CAS Web of Science Google Scholar
European Commission (2003). Report of the Scientific Committee on Animal Nutrition on the Safety of Fumaric Acid, pp. 1–18. https://ec.europa.eu/food/sites/food/files/safety/docs/animal-feed_additives_rules_scan-old_report_out112.pdf. Google Scholar
Felthouse, T. R., Burnett, J. C., Horrell, B., Mummey, M. J. & Kuo, Y.-J. (2001). J. ECT, 15, 893–928. Google Scholar
Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R. & Müller, U. (2012). Microporous Mesoporous Mater. 157, 131–136. Web of Science CrossRef CAS Google Scholar
Gold, R., Kappos, L., Arnold, D. L., Bar-Or, A., Giovannoni, G., Selmaj, K., Tornatore, C., Sweetser, M. T., Yang, M., Sheikh, S. I. & Dawson, K. T. (2012). N. Engl. J. Med. 367, 1098–1107. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kim, J. C., Lough, A. J. & Jo, H. (2002). Inorg. Chem. Commun. 5, 616–620. Web of Science CSD CrossRef CAS Google Scholar
Linstrom, P. J. & Mallard, W. G. (1998). NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom & W. G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi. org/10.18434/T4D303 Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, Y.-Q., Lin, J.-L. & Chen, B.-Y. (2003). J. Mol. Struct. 646, 151–159. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.