research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures and Hirshfeld surface analysis of N′,N′′′-((1E,1′E)-{[methyl­enebis(­­oxy)]bis­­(6-bromo-3,1-phenyl­ene)}bis­­(methan­ylyl­­idene))bis­­(isonicotinohydrazide) dihydrate and N′,N′′′-((1E,1′E)-{[butane-1,4-diylbis(­­oxy)]bis­­(2,1-phenyl­ene)}bis­­(methan­ylyl­­idene))bis­­(isonicotino­hydrazide) [+ solvent]

CROSSMARK_Color_square_no_text.svg

aPG & Research Department of Physics, The New College (Autonomous), Chennai 600 014, Tamil Nadu, India, bDepartment of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India, and cDepartment of Inorganic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: mnizam.new@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 April 2019; accepted 12 April 2019; online 18 April 2019)

The title compounds, C27H20Br2N6O4·2H2O, (I), and C30H28N6O4·[+ solvent], (II), both crystallize with one half-mol­ecule in the asymmetric unit. The whole mol­ecule of (I) is generated by twofold rotation symmetry, with the twofold rotation axis bis­ecting the C atom of the –O—CH2—O– bridge. This results in a folded or U-shaped conformation of the mol­ecule. The whole mol­ecule of (II) is generated by inversion symmetry, with the central CH2—CH2 bond of the –O—(CH2)4—O– bridge being located about a center of inversion. This results in a step-like conformation of the mol­ecule. The central C(=O)N—N=C regions of the isonicotinohydrazide moieties in both compounds are planar and the configuration about the imine C=N bonds is E. In compound (I), the benzene and pyridine rings are inclined to each other by 37.60 (6)°. The two symmetry-related pyridine rings are inclined to each other by 74.24 (6)°, and the two symmetry-related benzene rings by 7.69 (6)°. In compound (II), the benzene and pyridine rings are inclined to each other by 25.56 (11)°. The symmetry-related pyridine rings are parallel, as are the two symmetry-related benzene rings. In the crystal of (I), a pair of water mol­ecules link the organic mol­ecules via Owater—H⋯O and Owater—H⋯N hydrogen bonds, forming chains along [001], and enclosing an R42(8) and two R12(5) ring motifs. The chains are linked by N—H⋯Npyridine hydrogen bonds, forming a supra­molecular framework. There are also a number of C—H⋯O hydrogen bonds, and C—H⋯π and offset ππ inter­actions [inter­planar distance = 3.294 (1) Å] present reinforcing the framework. In the crystal of (II), mol­ecules are linked by N—H⋯Npyridine hydrogen bonds, forming a supra­molecular framework. Here too there are also a number of C—H⋯O hydrogen bonds present, and a C—H⋯π inter­action, reinforcing the framework. For compound (II), a region of disordered electron density was corrected for using the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] routine in PLATON. Their formula mass and unit-cell characteristics were not taken into account during refinement.

1. Chemical context

Hydrazide-hydrazone compounds are found to be associated with a wide spectrum of biological and medicinal applications. such as anti­microbial, anti­convulsant, analgesic, anti-inflammatory (Kaplancikli et al., 2012[Kaplancikli, Z. A., Altintop, M. D., Ozdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug. Des. Discov. 9, 310-315.]), anti-platelet, anti­bacterial, anti­fungal, anti-tubercular and anti-tumor properties (Babahan et al., 2013[Babahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26-41.]; Bedia et al., 2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]). Schiff bases of the general type p-R′-C6H4—CH—N—C6H4R"-p are well-known reagents that find practical application in various areas, e.g. photography and medicinal and pharmaceutical chemistry (Sethuram et al., 2013[Sethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013). Acta Cryst. E69, o957-o958.]). Hydrazide Schiff base ligands arise owing to the presence of electron-donating nitro­gen and oxygen atoms, allowing these to act as multidentate ligands, and their transition-metal complexes have been used in the treatment of tuberculosis, in colorimetric or fluorimetric analytic determinations, as well as in applications involving catalytic processes (Torje et al., 2012[Torje, I. A., Vălean, A.-M. & Cristea, C. (2012). Rev. Roum. Chim. 57, 337-344.]) and, in some cases, function as supra­molecular building blocks in their mol­ecular assemblies (Wei et al., 2015[Wei, Z., Wang, J., Jiang, X., Li, Y., Chen, G. & Xie, Q. (2015). Chin. J. Appl. Chem. 32, 1014-1020.]). Hydrazone derivatives containing an azomethine (–CONHN=CH–) group act as cytotoxic agents with the capability to prevent cell series in cancerous cells through different mechanisms (Patil et al., 2011[Patil, B. R., Machakanur, S. S., Hunoor, R. S., Badiger, D. S., Gudasi, K. B. & Bligh, S. W. A. (2011). Pharma. Chem. 3, 377-388.]). Pyridine heterocycles and their derivatives are present in many large mol­ecules having photo-chemical, electrochemical and catalytic applications (Thirunavukkarsu et al., 2017[Thirunavukkarsu, A., Sujatha, T., Umarani, P. R., Nizam Mohideen, M., Silambarasan, A. & Kumar, R. M. (2017). J. Cryst. Growth, 460, 42-47.]; Venda et al., 2017[Venda, S., Peramaiyan, G., NizamMohideen, M., Vinitha, G. & Srinivasan, S. (2017). J. Opt. 46, 149-157.]; Jauhar et al., 2016[Jauhar, R. M., Vivek, P., Sudhakar, K., Kalainathan, S., NizamMohideen, M. & Murugakoothan, P. (2016). J. Therm. Anal. Calorim. 124, 871-879.]; Babu et al., 2014a[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014a). Acta Cryst. E70, o391-o392.],b[Babu, K. S. S., Dhavamurthy, M., NizamMohideen, M., Peramaiyan, G. & Mohan, R. (2014b). Acta Cryst. E70, o600-o601.], 2015[Babu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2015). J. Therm. Anal. Calorim. 9, 119-?.]; Rajkumar et al., 2014[Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473-o474.], 2015[Rajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231-233.]; Huq et al., 2010[Huq, C. A. M. A., Sivakumar, S. & NizamMohideen, M. (2010). Acta Cryst. E66, o2462.]). As a part of our research study, we report herein the synthesis and the crystal structures of the title compounds, (I)[link] and (II)[link], which contain several donor functions of a different nature: hydrazide and pyridine.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds (I)[link] and (II)[link] are illustrated in Figs. 1[link] and 2[link], respectively. Selected bond lengths and angles are given in Tables 1[link] and 2[link] for compounds (I)[link] and (II)[link], respectively. The conformations of the two mol­ecules differ considerably. Compound (I)[link] has a folded or U-shaped conformation, while compound (II)[link] has an open step-like conformation. In compound (I)[link], the benzene (C8–C13) and pyridine (N1/C1–C5) rings are inclined to each other by 37.60 (6)°. The two symmetry-related pyridine rings are inclined to each other by 74.24 (6)°, and the two symmetry-related benzene rings by 7.69 (6)°. In compound (II)[link], the benzene and pyridine rings are inclined to each other by 25.56 (11)°. The symmetry-related pyridine rings are parallel, as are the two symmetry-related benzene rings. In both compounds, the hydrazone mol­ecule adopts an E configuration with respect to the hydrazone bridge N3=C7, with torsion angle N2—N3—C7—C8 = 176.82 (11) ° in (I)[link] and 179.5 (2)° in (II)[link]. On the other hand, torsion angles N3—N2—C6—C1 [−179.8 (1) ° for (I)[link] and 171.5 (2)° for (II)] and C6—N2—N3—C7 [−173.8 (1) ° for (I)[link] and 179.1 (2)° for (II)], are consistent with an all-trans relationship in the central chain.

Table 1
Selected geometric parameters (Å, °) for (I)[link]

O1—C6 1.2300 (16) N3—C7 1.2820 (16)
N2—C6 1.3512 (16) C1—C6 1.4976 (17)
N2—N3 1.3857 (15) C7—C8 1.4677 (17)
       
C6—N2—N3 117.46 (11) O1—C6—C1 120.81 (11)
C7—N3—N2 114.86 (11) N2—C6—C1 115.38 (11)
O1—C6—N2 123.81 (12)    
       
C6—N2—N3—C7 −173.82 (11) N3—N2—C6—C1 −179.82 (10)
N3—N2—C6—O1 0.24 (19) N2—N3—C7—C8 176.82 (11)

Table 2
Selected geometric parameters (Å, °) for (II)[link]

O1—C6 1.223 (2) N3—C7 1.278 (2)
N2—C6 1.355 (2) C1—C6 1.501 (3)
N2—N3 1.388 (2) C7—C8 1.463 (3)
       
C6—N2—N3 118.93 (15) O1—C6—C1 120.65 (16)
C7—N3—N2 115.07 (15) N2—C6—C1 115.29 (15)
O1—C6—N2 124.00 (17)    
       
C6—N2—N3—C7 179.08 (17) N3—N2—C6—C1 171.51 (15)
N3—N2—C6—O1 −5.6 (3) N2—N3—C7—C8 179.54 (15)
[Figure 1]
Figure 1
View of the mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by a twofold rotation axis [symmetry code (i): −x + 1, y, −z + [{3\over 2}]]. For clarity, the two water mol­ecules of crystallization have been omitted.
[Figure 2]
Figure 2
View of the mol­ecular structure of compound (II)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by inversion symmetry [symmetry code (i): −x, −y + 1, −z].

The bond lengths and angles in the carbohydrazide group of the title compounds can be compared with the values reported for related structures (Prabhu et al., 2011[Prabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716.]; Bikas et al., 2010[Bikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.]). The N3—N2—C6—O1 torsion angle of 0.2 (2) and −5.6 (3)° for (I)[link] and (II)[link], respectively, indicates the cis configuration of the O1 atom with respect to the hydrazine nitro­gen atom N3. The C6—N2 and C7=N3 bond lengths differ by 0.068 (2) Å in (I)[link] and by 0.077 (2) Å in (II)[link], hence these two bonds are properly assigned as single and double bonds, respectively. Bond lengths in the amide unit of aroyl hydrazones are in the ranges 1.218–1.292 Å for C=O bonds and 1.313–1.365 Å for C—N bonds in the keto tautomeric form, and 1.284—1.314 Å for C=O bonds and 1.291–1.331 Å for C—N bonds in the enol tautomeric form (Hosseini-Monfared et al., 2013[Hosseini-Monfared, H., Farrokhi, A., Alavi, S. & Mayer, P. (2013). Transition Met. Chem. 38, 267-273.]). Hence, compounds (I)[link] and (II)[link] are in the keto tautomeric form, which can be verified from the C=O and C—NH bond lengths of the amide unit: O1=C6 [1.230 (2) Å for (I)[link] and 1.223 (2) Å for (II)] and N2—C6 [1.351 (2) Å for (I)[link] and 1.355 (2) Å for (II)]. The bond distances C7=N3 [1.282 (2) Å for (I)[link] and 1.278 (2) Å for (II)] and C6=O1 [1.229 (2) Å for (I)[link] and 1.220 (2) Å for (II)], are very close to the recognized double C=N and C=O bond lengths (Prasanna et al., 2013[Prasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881.]; Wang et al., 2010[Wang, P., Li, C. & Su, Y.-Q. (2010). Acta Cryst. E66, o542.]), confirming that the carbohydrazide exists as an amido tautomer in the solid state. In the two compounds, the three bond angles around atom C6 (see Tables 1[link] and 2[link]) differ from 120°, probably in order to decrease the repulsion between the lone pairs present on atoms N2 and O1.

3. Supra­molecular features

In the crystal of (I)[link], a pair of water mol­ecules link the organic mol­ecules via Owater—H⋯O and Owater—H⋯N hydrogen bonds, forming chains along [001] and enclosing an R42(8) and two R12(5) ring motifs (Table 3[link] and Fig. 3[link]). The chains are linked by N—H⋯Npyridine hydrogen bonds, forming a supra­molecular framework. There are also a number of C—H⋯O hydrogen bonds, and C—H⋯π and offset ππ inter­actions [inter­planar distance = 3.294 (1) Å] present, reinforcing the framework (Table 3[link]). The offset π-π- inter­actions involve inversion-related C8–C13 benzene rings, centroid Cg2. The inter­centroid distance Cg2⋯Cg2(−x + 1, −y + 1, −z + 1) is 3.766 (1) Å, α = 0.00 (6)°, β = 29°, inter­planar distance = 3.294 (1) Å, offset of 1.824 Å.

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of N1/C1–C5 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯N1i 0.85 (2) 2.179 (19) 3.0261 (16) 174 (2)
O1W—H1W⋯O1 0.86 (2) 2.06 (2) 2.8756 (15) 158 (2)
O1W—H1W⋯N3 0.86 (2) 2.61 (2) 3.2476 (16) 131.3 (19)
O1W—H2W⋯O1ii 0.83 (3) 2.19 (3) 3.0244 (16) 174 (2)
C3—H3⋯O1Wiii 0.93 2.56 3.4450 (17) 159
C4—H4⋯Br1iv 0.93 2.94 3.8554 (13) 169
C10—H10⋯O1v 0.93 2.56 3.4123 (17) 152
C13—H13⋯O1W 0.93 2.59 3.5148 (18) 171
C14—H14ACg1v 0.97 2.74 3.594 (1) 144
C14—H14BCg1vi 0.97 2.74 3.594 (1) 144
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x+1, y-1, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
The crystal packing of compound (I)[link], viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 3[link] for details). For clarity, the C-bound H atoms have been omitted.

In the crystal of (II)[link], mol­ecules are linked by N—H⋯Npyridine hydrogen bonds, forming a supra­molecular framework (Table 4[link] and Fig. 4[link]). Here too there are also a number of C—H⋯O hydrogen bonds present, and a C—H⋯π inter­action (Table 4[link]), reinforcing the framework, but no ππ inter­actions are observed.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1i 0.91 (2) 2.04 (2) 2.907 (2) 159 (2)
C3—H3⋯O1ii 0.93 2.60 3.449 (3) 153
C3—H3⋯N3ii 0.93 2.55 3.223 (3) 129
C7—H7⋯N1i 0.93 2.63 3.372 (3) 137
C12—H12⋯O1iii 0.93 2.43 3.331 (2) 163
C15—H15ACg2iv 0.97 2.91 3.748 (2) 145
Symmetry codes: (i) [y-{\script{1\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (ii) [x-y+{\script{2\over 3}}, x+{\script{1\over 3}}, -z+{\script{4\over 3}}]; (iii) [-y+{\script{1\over 3}}, x-y+{\script{2\over 3}}, z-{\script{1\over 3}}]; (iv) x, y, z-1.
[Figure 4]
Figure 4
The crystal packing of compound (II)[link], viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 4[link] for details). For clarity, the C-bound H atoms have been omitted. The cylindrical cavities are shown in yellow and brown (Mercury; Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

For compound (II)[link] a region of disordered electron density with a potential solvent-accessible void of volume 1220 Å3 with an electron count of 357 per unit cell was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The voids in the crystal structure of (II)[link] are illustrated in Fig. 4[link].

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), were calculated to analyse the inter­molecular contacts in the crystals. The various calculations were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The use of such calculations to analyse inter­molecular contacts in crystals has been reported on recently by Tiekink and collaborators (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]).

The Hirshfeld surfaces of compounds (I)[link] and (II)[link] mapped over dnorm are given in Figs. 5[link] and 6[link], respectively. For (I)[link] the inter­molecular contacts are illustrated in Fig. 7[link], and for (II)[link] in Fig. 8[link]. They are colour-mapped with the normalized contact distance, dnorm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The dnorm surface was mapped over a fixed colour scale of −0.512 (red) to 1.285 (blue) for compound (I)[link] and −0.490 (red) to 4.945 (blue) for compound (II)[link], where the red spots indicate the inter­molecular contacts involved in hydrogen bonding (remembering that the disordered solvent in the channels of (II)[link] have been SQUEEZED out).

[Figure 5]
Figure 5
The Hirshfeld surfaces of compound (I)[link], mapped over dnorm; fixed colour scale of −0.512 (red) to 1.285 (blue) arbitrary units.
[Figure 6]
Figure 6
The Hirshfeld surfaces of compound (II)[link], mapped over dnorm; fixed colour scale of −0.490 (red) to 4.945 (blue) arbitrary units.
[Figure 7]
Figure 7
A view of the Hirshfeld surface mapped over dnorm of compound (I)[link], showing the various inter­molecular contacts in the crystal.
[Figure 8]
Figure 8
A view of the Hirshfeld surface mapped over dnorm of compound (II)[link], showing the various inter­molecular contacts in the crystal.

The fingerprint plots are given in Figs. 9[link] and 10[link], for compounds (I)[link] and (II)[link], respectively. For compound (I)[link], the principal inter­molecular contacts are H⋯H at 28.9% (Fig. 9[link]b), O⋯H/H⋯O at 13.8% (Fig. 9[link]c), N⋯H/H⋯N at 11.3% (Fig. 9[link]d), Br⋯H/H⋯Br at 14.3% (Fig. 9[link]e) and C⋯H/H⋯C contacts at 13.6% (Fig. 9[link]f). C⋯C contacts account for 8.4%, while C⋯Br are 3.0%, C⋯N are 3.0%, and finally C⋯O contacts amount to 1.4%.

[Figure 9]
Figure 9
The full two-dimensional fingerprint plot for compound (I)[link], and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) N⋯H/H⋯N, (e) Br⋯H/H⋯Br and (f) C⋯H/H⋯C contacts.
[Figure 10]
Figure 10
The full two-dimensional fingerprint plot for compound (II)[link], and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) N⋯H/H⋯N, (e) C⋯H/H⋯C contacts.

For compound (II)[link], the fingerprint plots reveal that the principal inter­molecular contacts are H⋯H at 35.0% (Fig. 10[link]b), O⋯H/H⋯O at 13.3% (Fig. 10[link]c), N⋯H/H⋯N at 16.2% (Fig. 10[link]d), and C⋯H/H⋯C at 33.6% (Fig. 10[link]e). The remaining contacts are extremely weak, ca 1% each.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.40, February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds with an O atom in position 3 of the benzyl­idene ring, i.e. (3-OR-benzyl­idene)isonicotinohydrazide (R = C) skeleton gave 51 hits (supporting information file S1). The majority of these compounds were with an OMe or an OEt substituent.

A search for compounds with an O atom in position 2 of the benzyl­idene ring, i.e. (2-OR-benzyl­idene)isonicotinohydrazide (R = C) skeleton gave 23 hits (supporting information file S2). Again, the majority of these compounds have an OMe or an OEt substituent. However, here the most inter­esting and relevant compound concerns the ligand N′,N′′-[ethane-1,2-diylbis(­oxy-2,1-phenyl­ene­methylyl­idene)]bis­(pyridine-4-carbohydrazide), in which a 1,2-di­oxy­ethane bridge links two N′-benzyl­ideneisonicotinohydrazide units. The crystal structures of two polymorphs have been described: a monoclinic P21 polymorph that crystallizes as a methanol disolvate (BAXLAQ; Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E. A., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322-3330.]) and a triclinic P[\overline{1}] polymorph (FIXJIG; Tai et al., 2004[Tai, X.-S., Wang, L.-H., Li, Y.-Z. & Tan, M.-Y. (2004). Z. Kristallogr. New Cryst. Struct. 219, 407-408.]). The conformation of both compounds is U-shaped, similar to that of compound (I)[link]. The mol­ecular structures of compounds (I)[link], BAXLAQ and FIXJIG are compared in Fig. 11[link]. The principal difference in the conformation of the three mol­ecules is reflected in the dihedral angle involving the benzene rings, which are inclined to each other by 7.69 (6)° in (I)[link], by 25.0 (2)° in BAXLAQ and by 55.27 (7)° in FIXJIG.

[Figure 11]
Figure 11
The mol­ecular structures of compounds (I)[link], BAXLAQ (Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E. A., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322-3330.]) and FIXJIG (Tai et al., 2004[Tai, X.-S., Wang, L.-H., Li, Y.-Z. & Tan, M.-Y. (2004). Z. Kristallogr. New Cryst. Struct. 219, 407-408.]).

An inter­esting HgI2 complex of this ligand, bis­(μ-{N′,N′′-[ethane-1,2-diylbis(­oxy-2,1-phenyl­ene­methylyl­idene)] bis(pyridine-4-carbohydrazide)})tetra­kis­(iodo)­dimercury meth­anol disolvate (BAXKUJ; Mahmoudi et al., 2017[Mahmoudi, G., Zangrando, E. A., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322-3330.]), has a metallamacrocyclic architecture.

6. Synthesis and crystallization

Compound I: To 2-hy­droxy­benzaldehyde (5 mmol), in a 250 ml round-bottom (RB) flask was added DMF (30 ml) and potassium carbonate (12.5 mmol). The mixture was stirred at room temperature and then 1,1-di­iodo­butane (2.5 mmol) was added dropwise and the reaction mixture was stirred for 12 h. It was then partitioned between water and ethyl acetate. The ethyl acetate layer was collected and concentrated under reduced pressure. To 1,4-bis­(2-carb­oxy­aldehyde­phen­oxy)butane (2 mmol) and isonicotinic acid hydrazide (4 mmol) in a 250 ml RB flask was added 100 ml of methanol and two drops of glacial acetic acid. The reaction mixture was stirred at room temperature and within 5 min a white-coloured product had formed. The reaction was continued for a further 30 min. The title compound was isolated by filtration and washed with methanol, then chloro­form and followed by acetone. The final product was recrystallized using DMSO and yielded colourless block-like crystals of compound (I)[link].

Compound I: To 5-bromo-2-hy­droxy­benzaldehyde (5 mmol), in a 250 ml RB flask, was added 50 ml of DMF and potassium carbonate (12.5 mmol). The mixture was stirred at room temperature and then 1,1-di­iodo­methane (2.5 mmol) was added dropwise. Then, the reaction mixture was stirred for 12 h. The product obtained was extracted in ethyl acetate medium. Methanol (100 ml) and two drops of glacial acetic acid were added to a mixture of 6,6′-[methyl­enebis(­oxy)] bis­(3-bromo­benzaldehyde) (2 mmol) and isoniazid (4 mmol) in a 250 ml RB flask. The reaction mixture was stirred at room temperature and within 5 min a white-coloured product had formed and the reaction was continued for a further 30 min. The solid obtained was washed with methanol, then chloro­form and followed by acetone. The final product was recrystallized using DMSO and yielded colourless block-like crystals of compound (II)[link].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The NH H atoms for both compounds, and the water mol­ecule H atoms for compound (I)[link], were located in difference-Fourier maps and refined freely. For both compounds the C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.93-0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C27H20Br2N6O4·2H2O C30H28N6O4[+solvent]
Mr 688.34 536.58
Crystal system, space group Monoclinic, C2/c Trigonal, R[\overline{3}]:H
Temperature (K) 293 293
a, b, c (Å) 15.1206 (2), 10.1497 (2), 18.0253 (3) 34.3186 (2), 34.3186 (2), 6.7855 (3)
α, β, γ (°) 90, 100.7960 (4), 90 90, 90, 120
V3) 2717.37 (8) 6921.0 (3)
Z 4 9
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.04 0.08
Crystal size (mm) 0.38 × 0.28 × 0.21 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.499, 0.746 0.630, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29418, 3387, 3202 22262, 3805, 2619
Rint 0.033 0.076
(sin θ/λ)max−1) 0.668 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.05 0.057, 0.142, 1.05
No. of reflections 3387 3805
No. of parameters 199 185
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.32 0.47, −0.34
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2018 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

For compound (II)[link], a region of disordered electron density with a potential solvent accessible void of volume 1220 Å3 with an electron count of 357 per unit cell was corrected for using the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Their formula mass and unit-cell characteristics were not taken into account during refinement.

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

N',N'''-((1E,1'E)-{[Methylenebis(oxy)]bis(6-bromo-3,1-phenylene)}bis(methanylylidene))bis(isonicotinohydrazide) dihydrate (I) top
Crystal data top
C27H20Br2N6O4·2H2OF(000) = 1384
Mr = 688.34Dx = 1.683 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.1206 (2) ÅCell parameters from 3387 reflections
b = 10.1497 (2) Åθ = 1.8–26.9°
c = 18.0253 (3) ŵ = 3.04 mm1
β = 100.7960 (4)°T = 293 K
V = 2717.37 (8) Å3Block, colourless
Z = 40.38 × 0.28 × 0.21 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3202 reflections with I > 2σ(I)
ω and φ scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.4°, θmin = 2.8°
Tmin = 0.499, Tmax = 0.746h = 2020
29418 measured reflectionsk = 1313
3387 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0247P)2 + 3.4271P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3387 reflectionsΔρmax = 0.49 e Å3
199 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: (SHELXL2018; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00152 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.70412 (2)0.52186 (2)0.47663 (2)0.01933 (6)
O10.45281 (7)1.00457 (9)0.61053 (6)0.0176 (2)
O20.45956 (6)0.35751 (9)0.68829 (5)0.01363 (18)
N10.22417 (8)1.19161 (11)0.75048 (7)0.0152 (2)
N20.41385 (7)0.82530 (10)0.67331 (6)0.0115 (2)
HN20.3760 (12)0.7919 (18)0.6974 (10)0.019 (4)*
N30.47208 (7)0.74664 (10)0.64190 (6)0.0120 (2)
C10.34534 (8)1.03494 (11)0.68973 (7)0.0105 (2)
C20.30431 (9)1.14287 (12)0.65037 (7)0.0125 (2)
H20.3172441.1655500.6035610.015*
C30.24360 (9)1.21635 (13)0.68217 (7)0.0144 (2)
H30.2147681.2866680.6546150.017*
C40.26812 (9)1.09117 (13)0.78941 (8)0.0160 (3)
H40.2576541.0748830.8378010.019*
C50.32847 (9)1.00994 (12)0.76160 (8)0.0135 (2)
H50.3568240.9406160.7903870.016*
C60.40899 (9)0.95414 (12)0.65410 (7)0.0111 (2)
C70.46797 (8)0.62336 (12)0.65637 (7)0.0105 (2)
H70.4300770.5939950.6880110.013*
C80.52265 (8)0.52824 (12)0.62335 (7)0.0101 (2)
C90.51576 (8)0.39410 (12)0.63961 (7)0.0114 (2)
C100.55993 (9)0.29921 (13)0.60449 (8)0.0154 (3)
H100.5520150.2102500.6137490.018*
C110.61571 (9)0.33760 (14)0.55570 (8)0.0164 (3)
H110.6466930.2751090.5327900.020*
C120.62469 (9)0.47104 (13)0.54149 (7)0.0136 (2)
C130.57828 (8)0.56652 (13)0.57324 (7)0.0118 (2)
H130.5839380.6549650.5614770.014*
C140.5000000.27859 (17)0.7500000.0157 (4)
H14A0.4547240.2224420.7653440.019*0.5
H14B0.5452780.2224470.7346540.019*0.5
O1W0.60456 (7)0.90764 (12)0.55169 (7)0.0256 (2)
H1W0.5551 (16)0.914 (2)0.5685 (12)0.037 (6)*
H2W0.5926 (16)0.934 (2)0.5072 (14)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01383 (9)0.03079 (10)0.01546 (8)0.00484 (5)0.00808 (5)0.00590 (5)
O10.0203 (5)0.0125 (4)0.0235 (5)0.0021 (4)0.0133 (4)0.0048 (4)
O20.0142 (4)0.0126 (4)0.0148 (4)0.0007 (3)0.0046 (3)0.0048 (3)
N10.0150 (5)0.0127 (5)0.0192 (6)0.0003 (4)0.0067 (4)0.0031 (4)
N20.0114 (5)0.0095 (5)0.0158 (5)0.0010 (4)0.0080 (4)0.0013 (4)
N30.0116 (5)0.0108 (5)0.0147 (5)0.0021 (4)0.0052 (4)0.0003 (4)
C10.0095 (6)0.0082 (5)0.0143 (6)0.0016 (4)0.0035 (4)0.0019 (4)
C20.0138 (6)0.0123 (5)0.0115 (5)0.0001 (4)0.0024 (4)0.0008 (4)
C30.0144 (6)0.0122 (5)0.0163 (6)0.0023 (5)0.0020 (5)0.0008 (5)
C40.0204 (7)0.0135 (6)0.0167 (6)0.0017 (5)0.0099 (5)0.0003 (5)
C50.0164 (6)0.0097 (5)0.0154 (6)0.0013 (4)0.0055 (5)0.0015 (4)
C60.0104 (6)0.0106 (5)0.0125 (6)0.0000 (4)0.0027 (4)0.0000 (4)
C70.0091 (5)0.0116 (5)0.0108 (5)0.0003 (4)0.0023 (4)0.0008 (4)
C80.0080 (6)0.0104 (5)0.0112 (6)0.0006 (4)0.0003 (4)0.0000 (4)
C90.0098 (6)0.0117 (5)0.0124 (5)0.0006 (4)0.0012 (4)0.0012 (4)
C100.0176 (6)0.0112 (6)0.0169 (6)0.0028 (5)0.0020 (5)0.0006 (5)
C110.0144 (6)0.0178 (6)0.0170 (6)0.0044 (5)0.0030 (5)0.0044 (5)
C120.0087 (6)0.0211 (6)0.0118 (6)0.0007 (5)0.0036 (5)0.0018 (5)
C130.0095 (6)0.0128 (5)0.0128 (6)0.0004 (4)0.0014 (4)0.0000 (4)
C140.0271 (10)0.0076 (7)0.0118 (8)0.0000.0019 (7)0.000
O1W0.0151 (5)0.0396 (7)0.0241 (6)0.0057 (5)0.0085 (4)0.0119 (5)
Geometric parameters (Å, º) top
Br1—C121.8978 (13)C4—H40.9300
O1—C61.2300 (16)C5—H50.9300
O2—C91.3818 (16)C7—C81.4677 (17)
O2—C141.4134 (13)C7—H70.9300
N1—C41.3412 (18)C8—C131.3997 (18)
N1—C31.3421 (18)C8—C91.4007 (17)
N2—C61.3512 (16)C9—C101.3904 (18)
N2—N31.3857 (15)C10—C111.384 (2)
N2—HN20.851 (18)C10—H100.9300
N3—C71.2820 (16)C11—C121.3897 (19)
C1—C21.3869 (17)C11—H110.9300
C1—C51.3898 (18)C12—C131.3818 (18)
C1—C61.4976 (17)C13—H130.9300
C2—C31.3873 (18)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—H30.9300O1W—H1W0.86 (2)
C4—C51.3910 (19)O1W—H2W0.83 (3)
C9—O2—C14115.16 (8)C8—C7—H7119.8
C4—N1—C3116.75 (11)C13—C8—C9118.83 (12)
C6—N2—N3117.46 (11)C13—C8—C7122.10 (11)
C6—N2—HN2120.5 (12)C9—C8—C7119.00 (11)
N3—N2—HN2121.2 (12)O2—C9—C10120.53 (11)
C7—N3—N2114.86 (11)O2—C9—C8118.22 (11)
C2—C1—C5118.58 (12)C10—C9—C8121.14 (12)
C2—C1—C6118.36 (11)C11—C10—C9119.76 (12)
C5—C1—C6123.00 (11)C11—C10—H10120.1
C1—C2—C3118.72 (12)C9—C10—H10120.1
C1—C2—H2120.6C10—C11—C12118.94 (12)
C3—C2—H2120.6C10—C11—H11120.5
N1—C3—C2123.64 (12)C12—C11—H11120.5
N1—C3—H3118.2C13—C12—C11122.17 (12)
C2—C3—H3118.2C13—C12—Br1119.57 (10)
N1—C4—C5123.79 (13)C11—C12—Br1118.26 (10)
N1—C4—H4118.1C12—C13—C8119.06 (12)
C5—C4—H4118.1C12—C13—H13120.5
C1—C5—C4118.37 (12)C8—C13—H13120.5
C1—C5—H5120.8O2i—C14—O2110.96 (14)
C4—C5—H5120.8O2i—C14—H14A109.4
O1—C6—N2123.81 (12)O2—C14—H14A109.4
O1—C6—C1120.81 (11)O2i—C14—H14B109.4
N2—C6—C1115.38 (11)O2—C14—H14B109.4
N3—C7—C8120.47 (11)H14A—C14—H14B108.0
N3—C7—H7119.8H1W—O1W—H2W106 (2)
C6—N2—N3—C7173.82 (11)N3—C7—C8—C9179.26 (12)
C5—C1—C2—C34.17 (18)C14—O2—C9—C1057.04 (16)
C6—C1—C2—C3178.46 (11)C14—O2—C9—C8126.67 (12)
C4—N1—C3—C21.2 (2)C13—C8—C9—O2179.05 (11)
C1—C2—C3—N12.3 (2)C7—C8—C9—O22.05 (17)
C3—N1—C4—C52.8 (2)C13—C8—C9—C102.79 (18)
C2—C1—C5—C42.71 (19)C7—C8—C9—C10174.21 (12)
C6—C1—C5—C4179.95 (12)O2—C9—C10—C11179.78 (11)
N1—C4—C5—C10.9 (2)C8—C9—C10—C113.60 (19)
N3—N2—C6—O10.24 (19)C9—C10—C11—C121.5 (2)
N3—N2—C6—C1179.82 (10)C10—C11—C12—C131.4 (2)
C2—C1—C6—O129.80 (18)C10—C11—C12—Br1178.26 (10)
C5—C1—C6—O1147.44 (13)C11—C12—C13—C82.17 (19)
C2—C1—C6—N2150.15 (12)Br1—C12—C13—C8177.48 (9)
C5—C1—C6—N232.61 (18)C9—C8—C13—C120.08 (18)
N2—N3—C7—C8176.82 (11)C7—C8—C13—C12176.98 (11)
N3—C7—C8—C132.37 (19)C9—O2—C14—O2i87.86 (9)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of N1/C1–C5 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—HN2···N1ii0.85 (2)2.179 (19)3.0261 (16)174 (2)
O1W—H1W···O10.86 (2)2.06 (2)2.8756 (15)158 (2)
O1W—H1W···N30.86 (2)2.61 (2)3.2476 (16)131.3 (19)
O1W—H2W···O1iii0.83 (3)2.19 (3)3.0244 (16)174 (2)
C3—H3···O1Wiv0.932.563.4450 (17)159
C4—H4···Br1v0.932.943.8554 (13)169
C10—H10···O1vi0.932.563.4123 (17)152
C13—H13···O1W0.932.593.5148 (18)171
C14—H14A···Cg1vi0.972.743.594 (1)144
C14—H14B···Cg1vii0.972.743.594 (1)144
Symmetry codes: (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+2, z+1; (iv) x1/2, y+1/2, z; (v) x1/2, y+3/2, z+1/2; (vi) x, y1, z; (vii) x+1, y1, z+3/2.
N',N'''-((1E,1'E)-{[Butane-1,4-diylbis(oxy)]\ bis(2,1-phenylene)}bis(methanylylidene))bis(isonicotinohydrazide) (II) top
Crystal data top
C30H28N6O4[+solvent]Dx = 1.159 Mg m3
Mr = 536.58Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:HCell parameters from 3792 reflections
a = 34.3186 (2) Åθ = 1.8–26.9°
c = 6.7855 (3) ŵ = 0.08 mm1
V = 6921.0 (3) Å3T = 293 K
Z = 9Block, colourless
F(000) = 25380.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2619 reflections with I > 2σ(I)
ω and φ scansRint = 0.076
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.630, Tmax = 0.746h = 4536
22262 measured reflectionsk = 2945
3805 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0533P)2 + 11.1328P]
where P = (Fo2 + 2Fc2)/3
3805 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20009 (4)0.45231 (5)0.72823 (18)0.0262 (3)
O20.02621 (4)0.46026 (4)0.34035 (18)0.0214 (3)
N10.31092 (6)0.49292 (7)0.1812 (2)0.0346 (4)
N20.16142 (5)0.46016 (5)0.4732 (2)0.0218 (3)
H2N0.1653 (8)0.4749 (8)0.358 (3)0.033 (6)*
N30.12211 (5)0.44325 (5)0.5828 (2)0.0210 (3)
C10.23686 (6)0.47415 (6)0.4186 (3)0.0223 (4)
C20.27559 (8)0.47786 (10)0.4947 (3)0.0471 (7)
H20.2777530.4741610.6292690.056*
C30.31139 (8)0.48705 (10)0.3729 (3)0.0480 (7)
H30.3371260.4892030.4289240.058*
C40.27280 (9)0.48779 (11)0.1061 (3)0.0538 (8)
H40.2713460.4909220.0293630.065*
C50.23528 (8)0.47810 (10)0.2170 (3)0.0457 (7)
H50.2092890.4742980.1564580.055*
C60.19813 (6)0.46179 (6)0.5561 (3)0.0201 (4)
C70.08925 (6)0.44343 (6)0.4950 (3)0.0207 (4)
H70.0931190.4546270.3673740.025*
C80.04564 (6)0.42628 (6)0.5923 (3)0.0197 (4)
C90.03514 (7)0.40109 (6)0.7662 (3)0.0240 (4)
H90.0563660.3951930.8224470.029*
C100.00624 (7)0.38487 (7)0.8553 (3)0.0243 (4)
H100.0129150.3682080.9709830.029*
C110.03787 (6)0.39371 (6)0.7700 (3)0.0216 (4)
H110.0657580.3828990.8301430.026*
C120.02860 (6)0.41838 (6)0.5968 (3)0.0188 (4)
H120.0501410.4238460.5408460.023*
C130.01323 (6)0.43478 (6)0.5082 (2)0.0177 (4)
C140.00685 (6)0.46611 (6)0.2364 (2)0.0178 (4)
H14A0.0187190.4805680.3206250.021*
H14B0.0315460.4371790.1952190.021*
C150.01615 (6)0.49521 (6)0.0585 (3)0.0186 (4)
H15A0.0273150.4800950.0256580.022*
H15B0.0416790.5234110.1014270.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (7)0.0348 (8)0.0211 (6)0.0142 (6)0.0014 (5)0.0027 (6)
O20.0183 (6)0.0283 (7)0.0212 (6)0.0143 (6)0.0004 (5)0.0057 (5)
N10.0244 (9)0.0535 (12)0.0251 (9)0.0188 (9)0.0017 (7)0.0010 (8)
N20.0211 (8)0.0262 (9)0.0211 (8)0.0142 (7)0.0002 (6)0.0028 (7)
N30.0177 (8)0.0254 (8)0.0232 (8)0.0132 (7)0.0008 (6)0.0005 (6)
C10.0206 (9)0.0237 (9)0.0228 (9)0.0113 (8)0.0012 (7)0.0003 (7)
C20.0322 (12)0.094 (2)0.0212 (10)0.0365 (14)0.0023 (9)0.0105 (12)
C30.0279 (12)0.092 (2)0.0276 (11)0.0325 (13)0.0028 (9)0.0021 (12)
C40.0447 (15)0.110 (2)0.0207 (10)0.0492 (17)0.0037 (10)0.0085 (13)
C50.0340 (13)0.087 (2)0.0291 (11)0.0399 (14)0.0010 (10)0.0054 (12)
C60.0206 (9)0.0199 (9)0.0205 (9)0.0108 (8)0.0020 (7)0.0010 (7)
C70.0232 (9)0.0244 (10)0.0186 (8)0.0149 (8)0.0006 (7)0.0017 (7)
C80.0202 (9)0.0204 (9)0.0206 (8)0.0118 (8)0.0023 (7)0.0034 (7)
C90.0255 (10)0.0283 (10)0.0233 (9)0.0174 (9)0.0037 (8)0.0000 (8)
C100.0298 (10)0.0259 (10)0.0203 (9)0.0162 (9)0.0024 (8)0.0045 (8)
C110.0204 (9)0.0228 (9)0.0223 (9)0.0113 (8)0.0009 (7)0.0027 (7)
C120.0178 (9)0.0194 (9)0.0206 (8)0.0103 (7)0.0043 (7)0.0043 (7)
C130.0204 (9)0.0169 (8)0.0172 (8)0.0103 (7)0.0024 (7)0.0027 (7)
C140.0157 (8)0.0215 (9)0.0193 (8)0.0116 (7)0.0022 (7)0.0004 (7)
C150.0173 (9)0.0198 (9)0.0199 (8)0.0102 (8)0.0011 (7)0.0003 (7)
Geometric parameters (Å, º) top
O1—C61.223 (2)C7—C81.463 (3)
O2—C131.368 (2)C7—H70.9300
O2—C141.433 (2)C8—C91.399 (3)
N1—C31.318 (3)C8—C131.405 (2)
N1—C41.331 (3)C9—C101.379 (3)
N2—C61.355 (2)C9—H90.9300
N2—N31.388 (2)C10—C111.391 (3)
N2—H2N0.91 (2)C10—H100.9300
N3—C71.278 (2)C11—C121.389 (3)
C1—C21.371 (3)C11—H110.9300
C1—C51.379 (3)C12—C131.390 (2)
C1—C61.501 (3)C12—H120.9300
C2—C31.380 (3)C14—C151.513 (2)
C2—H20.9300C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.381 (3)C15—C15i1.527 (3)
C4—H40.9300C15—H15A0.9700
C5—H50.9300C15—H15B0.9700
C13—O2—C14118.16 (13)C13—C8—C7119.36 (16)
C3—N1—C4116.33 (19)C10—C9—C8120.95 (17)
C6—N2—N3118.93 (15)C10—C9—H9119.5
C6—N2—H2N117.6 (15)C8—C9—H9119.5
N3—N2—H2N122.5 (15)C9—C10—C11119.22 (17)
C7—N3—N2115.07 (15)C9—C10—H10120.4
C2—C1—C5116.64 (18)C11—C10—H10120.4
C2—C1—C6118.21 (17)C12—C11—C10121.25 (17)
C5—C1—C6124.87 (17)C12—C11—H11119.4
C1—C2—C3120.44 (19)C10—C11—H11119.4
C1—C2—H2119.8C11—C12—C13119.25 (17)
C3—C2—H2119.8C11—C12—H12120.4
N1—C3—C2123.3 (2)C13—C12—H12120.4
N1—C3—H3118.4O2—C13—C12124.04 (16)
C2—C3—H3118.4O2—C13—C8115.63 (15)
N1—C4—C5124.1 (2)C12—C13—C8120.32 (16)
N1—C4—H4118.0O2—C14—C15107.28 (13)
C5—C4—H4118.0O2—C14—H14A110.3
C1—C5—C4119.1 (2)C15—C14—H14A110.3
C1—C5—H5120.4O2—C14—H14B110.3
C4—C5—H5120.4C15—C14—H14B110.3
O1—C6—N2124.00 (17)H14A—C14—H14B108.5
O1—C6—C1120.65 (16)C14—C15—C15i111.20 (18)
N2—C6—C1115.29 (15)C14—C15—H15A109.4
N3—C7—C8121.04 (16)C15i—C15—H15A109.4
N3—C7—H7119.5C14—C15—H15B109.4
C8—C7—H7119.5C15i—C15—H15B109.4
C9—C8—C13119.01 (17)H15A—C15—H15B108.0
C9—C8—C7121.63 (16)
C6—N2—N3—C7179.08 (17)N3—C7—C8—C13167.81 (17)
C5—C1—C2—C32.7 (4)C13—C8—C9—C100.3 (3)
C6—C1—C2—C3176.9 (2)C7—C8—C9—C10179.49 (17)
C4—N1—C3—C22.6 (4)C8—C9—C10—C110.2 (3)
C1—C2—C3—N10.3 (5)C9—C10—C11—C120.2 (3)
C3—N1—C4—C51.8 (4)C10—C11—C12—C130.5 (3)
C2—C1—C5—C43.4 (4)C14—O2—C13—C127.6 (2)
C6—C1—C5—C4177.2 (2)C14—O2—C13—C8173.57 (15)
N1—C4—C5—C11.2 (5)C11—C12—C13—O2178.45 (16)
N3—N2—C6—O15.6 (3)C11—C12—C13—C80.4 (3)
N3—N2—C6—C1171.51 (15)C9—C8—C13—O2178.94 (16)
C2—C1—C6—O14.9 (3)C7—C8—C13—O21.8 (2)
C5—C1—C6—O1168.8 (2)C9—C8—C13—C120.0 (3)
C2—C1—C6—N2177.9 (2)C7—C8—C13—C12179.25 (16)
C5—C1—C6—N28.4 (3)C13—O2—C14—C15179.86 (14)
N2—N3—C7—C8179.54 (15)O2—C14—C15—C15i178.00 (17)
N3—C7—C8—C913.0 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2N···N1ii0.91 (2)2.04 (2)2.907 (2)159 (2)
C3—H3···O1iii0.932.603.449 (3)153
C3—H3···N3iii0.932.553.223 (3)129
C7—H7···N1ii0.932.633.372 (3)137
C12—H12···O1iv0.932.433.331 (2)163
C15—H15A···Cg2v0.972.913.748 (2)145
Symmetry codes: (ii) y1/3, x+y+1/3, z+1/3; (iii) xy+2/3, x+1/3, z+4/3; (iv) y+1/3, xy+2/3, z1/3; (v) x, y, z1.
 

Acknowledgements

The authors are grateful to the SAIF, IIT, Madras, India, for the data collection.

References

First citationKaplancikli, Z. A., Altintop, M. D., Ozdemir, A., Turan-Zitouni, G., Khan, S. I. & Tabanca, N. (2012). Lett. Drug. Des. Discov. 9, 310–315.  CAS Google Scholar
First citationBabahan, I., Coban, E. P. & Biyik, H. (2013). Maejo Int. J. Sci. Technol. 7, 26–41.  CAS Google Scholar
First citationBabu, K. S. S., Dhavamurthy, M., NizamMohideen, M., Peramaiyan, G. & Mohan, R. (2014b). Acta Cryst. E70, o600–o601.  CSD CrossRef IUCr Journals Google Scholar
First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2014a). Acta Cryst. E70, o391–o392.  CSD CrossRef IUCr Journals Google Scholar
First citationBabu, K. S. S., Peramaiyan, G., NizamMohideen, M. & Mohan, R. (2015). J. Therm. Anal. Calorim. 9, 119–?.  Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBikas, R., Hosseini Monfared, H., Kazak, C., Arslan, N. B. & Bijanzad, K. (2010). Acta Cryst. E66, o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHosseini-Monfared, H., Farrokhi, A., Alavi, S. & Mayer, P. (2013). Transition Met. Chem. 38, 267–273.  CAS Google Scholar
First citationHuq, C. A. M. A., Sivakumar, S. & NizamMohideen, M. (2010). Acta Cryst. E66, o2462.  CSD CrossRef IUCr Journals Google Scholar
First citationJauhar, R. M., Vivek, P., Sudhakar, K., Kalainathan, S., NizamMohideen, M. & Murugakoothan, P. (2016). J. Therm. Anal. Calorim. 124, 871–879.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Zangrando, E. A., Bauzá, A., Maniukiewicz, W., Carballo, R., Gurbanov, A. V. & Frontera, A. (2017). CrystEngComm, 19, 3322–3330.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPatil, B. R., Machakanur, S. S., Hunoor, R. S., Badiger, D. S., Gudasi, K. B. & Bligh, S. W. A. (2011). Pharma. Chem. 3, 377–388.  CAS Google Scholar
First citationPrabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrasanna, M. K., Sithambaresan, M., Pradeepkumar, K. & Kurup, M. R. P. (2013). Acta Cryst. E69, o881.  CSD CrossRef IUCr Journals Google Scholar
First citationRajkumar, M. A., NizamMohideen, M., Xavier, S. S. J., Anbarasu, S. & Devarajan, D. P. A. (2015). Acta Cryst. E71, 231–233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajkumar, M. A., Xavier, S. S. J., Anbarasu, S., Devarajan, P. A. & NizamMohideen, M. (2014). Acta Cryst. E70, o473–o474.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSethuram, M., Rajasekharan, M. V., Dhandapani, M., Amirthaganesan, G. & NizamMohideen, M. (2013). Acta Cryst. E69, o957–o958.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Wang, L.-H., Li, Y.-Z. & Tan, M.-Y. (2004). Z. Kristallogr. New Cryst. Struct. 219, 407–408.  CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThirunavukkarsu, A., Sujatha, T., Umarani, P. R., Nizam Mohideen, M., Silambarasan, A. & Kumar, R. M. (2017). J. Cryst. Growth, 460, 42–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationTorje, I. A., Vălean, A.-M. & Cristea, C. (2012). Rev. Roum. Chim. 57, 337–344.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationVenda, S., Peramaiyan, G., NizamMohideen, M., Vinitha, G. & Srinivasan, S. (2017). J. Opt. 46, 149–157.  CrossRef Google Scholar
First citationWang, P., Li, C. & Su, Y.-Q. (2010). Acta Cryst. E66, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Z., Wang, J., Jiang, X., Li, Y., Chen, G. & Xie, Q. (2015). Chin. J. Appl. Chem. 32, 1014–1020.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds