research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-[(ethane-1,2-di­yl)bis­­(aza­nediylcarbono­thio­yl)]bis­­(benzamide)

CROSSMARK_Color_square_no_text.svg

aDépartement de Chimie, UFR SATIC, Université Alioune Diop, Bambey, Senegal, bDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal, and cInstitut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 av. de la Terrasse, 91198 Gif-sur-Yvette, France
*Correspondence e-mail: i6thiam@yahoo.fr

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 28 March 2019; accepted 11 April 2019; online 18 April 2019)

The reaction of benzoyl chloride and ethyl­endi­amine in the presence of potassium thio­cyanate yielded a white solid, C18H18N4O2S2, which consists of two benzoyl­thio­ureido moieties connected by an ethyl­ene chain. The asymmetric unit consists of one half of the mol­ecule, the complete mol­ecule being generated by crystallographic inversion symmetry. Both thio­urea moieties are in a trans conformation. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, C—H⋯S and C—H⋯O hydrogen bonds link the molecules, forming layers parallel to the ac plane.

1. Chemical context

Thio­urea derivatives have been successfully used in the extraction of some transition metals (i.e. CuII, NiII and CoII) from acidic media. Thio­urea derivatives have also been shown to possess anti­bacterial, anti­fungal, anti­tubercular, anti­thyroid and insecticidal properties (Arslan et al., 2004[Arslan, H., Ulrich, F. & Külcü, N. (2004). Acta Chim. Slov. 51, 787-792.]; Cunha et al., 2007[Cunha, S., Macedo, F. C. Jr, Costa, G. A. N., Rodrigues, M. T. Jr, Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sá, F. P. (2007). Monatsh. Chem. 138, 511-516.]). The structures of several types of thio­urea derivatives and its metal complexes have been determined in recent decades. These compounds possess two arms which can act as a tetra­dentate ligand coordinating through the S atom and the benzoyl O atom of each arm. Urea and thio­urea derivatives can behave as catalysts through double inter­action by hydrogen bonding with the substrate (Sigman & Jacobsen, 1998[Sigman, M. S. & Jacobsen, E. N. (1998). J. Am. Chem. Soc. 120, 4901-4902.]; Cortes-Clerget et al., 2016[Cortes-Clerget, M., Gager, O., Monteil, M., Pirat, J.-L., Migianu-Griffoni, E., Deschamp, J. & Lecouvey, M. (2016). Adv. Synth. Catal. 358, 34-40.]). Thio­urea derivatives with alkyl bridges can adopt diverse conformations (Thiam et al., 2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]; Pansuriya et al., 2011[Pansuriya, P., Naidu, H., Friedrich, H. B. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2552.]). We have recently begun to examine the coordination behaviour of a series of substituted benzoyl­thio­urea derivatives that possess a number of inter­esting properties and reported a thio­ureido ligand in which the two thio­ureido moieties are bridged by a 1,2-phenylene ring (Thiam et al., 2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]). In this paper, we report the synthesis and the characterization of a mol­ecule where the two thio­ureidos are bridged by an ethane-1,2-diyl group.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is a half-mol­ecule with the other half being generated by an inversion centre located at the mid-point of the C1—C1a bond [Fig. 1[link]; symmetry code: (a) −x + 2, −y + 1, −z + 1]. The benzoyl groups of each thio­urea subunit are trans with respect to the thiono S atoms across the respective C2—N2 bonds. The 1-benzoyl-3-ethyl­thio­urea fragments adopt a cis conformation with respect to the thiono S atom across the respective C2—N1 bonds. The S1—C2 [1.6626 (15) Å] and O1—C3 [1.2209 (16) Å] distances indicate that these correspond to double bonds and are comparable to those observed for 1,2-bis­(N-benzoyl­thio­ureido)benzene [1.6574 (18) Å for S—C and 1.222 (2) Å for O7—C16] (Thiam et al., 2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]). The C—N bond lengths [1.3744 (17)–1.3971 (17) Å] are in the normal range observed for a single C—N bond. The thio­urea fragments S1/N1/N2/C1/C2 are planar, with a maximum deviation from the least-squares plane of 0.015 (1) Å for the N1 atom. The dihedral angle between this plane and that of the benzene ring (r.m.s. deviation = 0.006 Å) is 26.97 (5)° versus ca 34° when the benzene ring is chlorinated (Abusaadiya et al., 2016[Abusaadiya, S. M., Yamin, B. M., Ngatiman, F. & Hasbullah, S. A. (2016). IUCrData, 1, x160927.]). As regularly noticed with carbonyl­urea derivatives, the mol­ecule also forms intra­molecular N1—H1 hydrogen bonds between the carbonyl O and thio­amide H atoms producing S(6) rings (N1—H1⋯O1, Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O1 0.86 (2) 1.95 (2) 2.6528 (16) 138 (2)
C5—H5⋯O1i 0.93 2.58 3.478 (16) 162
C9—H9⋯O1ii 0.93 2.52 3.311 (16) 143
C1—H1A⋯S1iii 0.97 2.97 3.8375 (16) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme and intra­molecular contacts. Displacement ellipsoids are plotted at the 50% probability level. [Symmetry code: (a) −x + 2, −y + 1, −z + 1]

3. Supra­molecular features

In the crystal, the mol­ecules, which feature an overall Z-form, have both halves roughly parallel to the ac plane, whereas the mid-point of the C1—C1a bond lies orthogonally parallel to the (100) plane. Mol­ecular layers running almost parallel to the ac plane are formed by inter­molecular C—H⋯O and C—H⋯S inter­actions (Table 1[link] and Fig. 2[link]). These layers stack along the b direction. Despite the presence of phenyl rings, no ππ inter­actions are observed in the crystal packing. However, the carbonyl function C3=O1 stacks on phenyl group C4–C9 of a neighbouring layer [O1⋯Cg1iv = 3.5543 (14) Å; Cg1 is the centroid of ring C4–C9; symmetry code: (iv) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]].

[Figure 2]
Figure 2
Partial crystal packing of the title compound, showing C—H⋯O (red dashed lines) and C—H⋯S (yellow dashed lines) inter­actions (see Table 1[link] for details).

4. Database survey

Reflecting the inter­est in compounds similar to the title compound, no less than 35 associated structures are included in the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The match APALEK (Abusaadiya et al., 2016[Abusaadiya, S. M., Yamin, B. M., Ngatiman, F. & Hasbullah, S. A. (2016). IUCrData, 1, x160927.]) is the most similar structure to the title compound, the only difference being the substitution of the phenyl ring on the C3 position by a Cl atom. In both cases, the benzoyl functions of each thio­urea subunit are trans with respect to the thiono S atom across the C—N bond. The 1-benzoyl-3-ethyl­thio­urea fragment adopts a cis conformation with respect to the thiono S atom across the respective C—N bond. Six structures in which the spacer is different from the spacer in the symmetrical bis­(thio­ureido) mol­ecule studied here appear in the literature. The angles between the phenyl rings are: 63.1° for DAVHOZ (Aydın et al., 2012[Aydın, F., Aykaç, D., Ünver, H. & İskeleli, N. O. (2012). J. Chem. Crystallogr. 42, 381-387.]), 10.2° for EGUYAH (Sow et al., 2009[Sow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569.]), 35.4° for NEWJIL (Light, 2018[Light, M. E. (2018). CSD Communication, https://doi:10.5517/ccdc.csd.cc1zr8bb.]), 0.0° for QIXQUK (Ding et al., 2008[Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.]), 3.2° for TIFQAD (Oyeka et al., 2018[Oyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153-164.]) and 0.0° for XIQPAP (Dong et al., 2007[Dong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G.-L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279-280.]). In addition, 23 structures which contain only one arm with a thio­ureido moiety similar to the studied mol­ecules are reported, while the other arm consists of diverse moieties: CIGDAZ (Karipcin et al., 2013[Karipcin, F., Atis, M., Sariboga, B., Celik, H. & Tas, M. (2013). J. Mol. Struct. 1048, 69-77.]), DELMUD (Ngah et al., 2006[Ngah, N., Darman, N. & Yamin, B. M. (2006). Acta Cryst. E62, o3369-o3371.]), EYACIQ (Shutalev et al., 2004[Shutalev, A. D., Zhukhlistova, N. E. & Gurskaya, G. V. (2004). Mendeleev Commun. 14, 31-33.]), GIHMIV (Haynes et al., 2014[Haynes, C. J. E., Busschaert, N., Kirby, I. L., Herniman, J., Light, M. E., Wells, N. J., Marques, I., Félix, V. & Gale, P. A. (2014). Org. Biomol. Chem. 12, 62-72.]), GIHMOB (Haynes et al., 2014[Haynes, C. J. E., Busschaert, N., Kirby, I. L., Herniman, J., Light, M. E., Wells, N. J., Marques, I., Félix, V. & Gale, P. A. (2014). Org. Biomol. Chem. 12, 62-72.]), IFUZOZ (Hassan et al., 2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o2083.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2167.]), NIQROV (Yamin & Malik, 2007[Yamin, B. M. & Malik, Z. M. (2007). Acta Cryst. E63, o4842.]), NIQROV01 (Nguyen & Abram, 2008[Nguyen, H. H. & Abram, U. (2008). Inorg. Chem. Commun. 11, 1478-1480.]), POFKIG (Ngah et al., 2014[Ngah, N., Mohamed, N. A., Yamin, B. M. & Mohd Zaki, H. (2014). Acta Cryst. E70, o705.]), QEWHUY (Rakhshani et al., 2018[Rakhshani, S., Rezvani, A. R., Dušek, M. & Eigner, V. (2018). Appl. Organomet. Chem. 32, e4342.]), RUGKOU (Hassan et al., 2009[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.]), SAFPAT (Wei, 2016[Wei, H. (2016). CSD Communication, https://doi:10.5517/cc1khnrg.]), SITKUC (Yamin et al., 2008[Yamin, B. M., Deris, H., Malik, Z. M. & Yousuf, S. (2008). Acta Cryst. E64, o360.]), TADSIB (Zhang et al., 2003[Zhang, Y.-M., Xian, L., Wei, T.-B. & Cai, L.-X. (2003). Acta Cryst. E59, o817-o819.]), TADTEY (Yusof & Yamin, 2003[Yusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, o828-o829.]), TIBLEW (Khawar Rauf et al., 2007[Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1679-o1680.]). TIHJAW (Yusof et al., 2007[Yusof, M. S. M., Roslan, R., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o3591.]), UNUBAH (Hassan et al., 2011[Hassan, I. N., Yi, C. Y. & Kassim, M. B. (2011). Acta Cryst. E67, o780.]), WOGTUI (Hassan et al., 2008a[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o2083.],b[Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2167.]), XEBQOM (Adan et al., 2012[Adan, D., Sapari, S., Halim, S. N. & Yamin, B. M. (2012). Acta Cryst. E68, o2226.]), YICDEU (Othman et al., 2007[Othman, E. A., Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o2436-o2437.]), YUPYEO (Zheng et al., 2010[Zheng, X., Li, B., Wang, Q. & Guo, L. (2010). Acta Cryst. E66, o1774.]) and YUPYEO01 (Khan et al., 2018[Khan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354-362.]).

5. Synthesis and crystallization

All purchased chemicals and solvents were of reagent grade and were used without further purification. Melting points were determined with a Büchi 570 melting-point apparatus and were uncorrected. To a mixture of 7.02 g (72 mmol) of potassium thio­cyanate and 100 ml of acetone was added dropwise a solution of 10.116 g (72 mmol) of benzoyl chloride in 50 ml of acetone. The resulting mixture was stirred under reflux for 1 h and cooled to room temperature. A solution of 2.2 g (36.6 mmol) of 1,2-ethyl­enedi­amine in 20 ml of acetone was added. The yellow solution obtained was stirred at room temperature during 2 h. Hydro­chloric acid (0.1 N, 300 ml) was added and a white solid appeared after a few minutes. The compound was filtered off, washed with 3 × 50 ml of water and dried under vacuum. The solid product was washed with water and purified by recrystallization from an ethanol/di­chloro­methane mixture (1:1 v/v). 12.3 g of the title compound were obtained (yield 88.5%). A small qu­antity of powder was recrystallized from 5 ml of DMF. Colourless single crystals suitable to XRD grew within six days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Aromatic H atoms were first located by HFIX and other H atoms were located in the difference Fourier map, positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 (CarH) or 0.97 Å (CH2). The NH H atoms were located in a difference Fourier map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C18H18N4O2S2
Mr 386.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.2250 (6), 7.2547 (5), 11.1397 (6)
β (°) 100.978 (5)
V3) 890.55 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.36 × 0.14 × 0.11
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.513, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7264, 2328, 1942
Rint 0.040
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.05
No. of reflections 2325
No. of parameters 124
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

N,N'-[(Ethane-1,2-diyl)bis(azanediylcarbonothioyl)]bis(benzamide) top
Crystal data top
C18H18N4O2S2F(000) = 404
Mr = 386.48Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.2250 (6) ÅCell parameters from 3377 reflections
b = 7.2547 (5) Åθ = 4.7–30.2°
c = 11.1397 (6) ŵ = 0.32 mm1
β = 100.978 (5)°T = 293 K
V = 890.55 (9) Å3Prism, colourless
Z = 20.36 × 0.14 × 0.11 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa single
diffractometer
2328 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Mo)mm03 X-ray Source1942 reflections with I > 2σ(I)
Rigaku MaxFlux mirror monochromatorRint = 0.040
ω scansθmax = 30.0°, θmin = 3.7°
Absorption correction: multi-scan
CrysAlis PRO (Rigaku OD, 2018)
h = 1514
Tmin = 0.513, Tmax = 1.000k = 109
7264 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.1222P]
where P = (Fo2 + 2Fc2)/3
2325 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.36 e Å3
2 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85736 (10)0.61198 (19)0.41958 (11)0.0399 (3)
HN10.8022 (15)0.636 (3)0.4606 (15)0.048*
O10.62565 (9)0.65743 (17)0.43252 (9)0.0452 (3)
C10.98347 (12)0.5989 (2)0.48195 (13)0.0398 (3)
H1A0.9960070.6758140.5545030.048*
H1AB1.0359200.6437800.4284700.048*
S10.90847 (3)0.53047 (7)0.20190 (4)0.05100 (17)
N20.69512 (10)0.59494 (18)0.25797 (10)0.0372 (3)
HN20.6711 (17)0.573 (2)0.1826 (14)0.045*
C20.82013 (12)0.58234 (19)0.30120 (12)0.0351 (3)
C30.60474 (11)0.62787 (19)0.32261 (12)0.0332 (3)
C40.47845 (11)0.61990 (18)0.25055 (12)0.0323 (3)
C50.44876 (13)0.6519 (2)0.12543 (12)0.0380 (3)
H50.5089030.6814920.0816720.046*
C60.32849 (14)0.6391 (2)0.06642 (14)0.0446 (3)
H60.3080600.6623900.0170730.054*
C70.23884 (13)0.5923 (2)0.13013 (16)0.0466 (4)
H70.1587870.5814430.0893040.056*
C80.26809 (14)0.5617 (2)0.25436 (16)0.0469 (4)
H80.2076210.5309090.2974390.056*
C90.38722 (13)0.5766 (2)0.31507 (13)0.0396 (3)
H90.4065190.5577800.3991160.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0294 (6)0.0525 (7)0.0365 (6)0.0051 (5)0.0025 (4)0.0034 (5)
O10.0362 (5)0.0667 (7)0.0327 (5)0.0038 (5)0.0061 (4)0.0008 (5)
C10.0288 (6)0.0468 (8)0.0405 (7)0.0030 (5)0.0013 (5)0.0052 (6)
S10.0316 (2)0.0798 (3)0.0436 (2)0.00179 (16)0.01212 (16)0.00785 (18)
N20.0274 (5)0.0518 (7)0.0316 (5)0.0025 (5)0.0039 (4)0.0014 (5)
C20.0282 (6)0.0395 (7)0.0371 (6)0.0016 (5)0.0049 (5)0.0012 (5)
C30.0291 (6)0.0373 (7)0.0333 (6)0.0012 (5)0.0063 (5)0.0036 (5)
C40.0283 (6)0.0338 (6)0.0347 (6)0.0024 (5)0.0058 (5)0.0027 (5)
C50.0348 (6)0.0427 (7)0.0362 (6)0.0003 (5)0.0063 (5)0.0053 (5)
C60.0410 (7)0.0497 (8)0.0390 (7)0.0026 (6)0.0030 (6)0.0041 (6)
C70.0285 (6)0.0490 (9)0.0586 (9)0.0040 (6)0.0009 (6)0.0005 (7)
C80.0313 (7)0.0552 (9)0.0571 (9)0.0028 (6)0.0155 (6)0.0040 (7)
C90.0331 (7)0.0486 (8)0.0387 (7)0.0034 (6)0.0108 (5)0.0048 (6)
Geometric parameters (Å, º) top
N1—C21.3228 (17)C4—C51.3894 (17)
N1—C11.4564 (17)C4—C91.3944 (18)
N1—HN10.854 (14)C5—C61.388 (2)
O1—C31.2209 (16)C5—H50.9300
C1—C1i1.518 (3)C6—C71.380 (2)
C1—H1A0.9700C6—H60.9300
C1—H1AB0.9700C7—C81.378 (2)
S1—C21.6633 (14)C7—H70.9300
N2—C31.3723 (17)C8—C91.383 (2)
N2—C21.3971 (16)C8—H80.9300
N2—HN20.846 (14)C9—H90.9300
C3—C41.4913 (17)
C2—N1—C1123.98 (12)C5—C4—C9119.69 (12)
C2—N1—HN1116.3 (12)C5—C4—C3123.74 (12)
C1—N1—HN1119.7 (12)C9—C4—C3116.58 (12)
N1—C1—C1i110.75 (14)C6—C5—C4119.34 (13)
N1—C1—H1A109.5C6—C5—H5120.3
C1i—C1—H1A109.5C4—C5—H5120.3
N1—C1—H1AB109.5C7—C6—C5120.78 (14)
C1i—C1—H1AB109.5C7—C6—H6119.6
H1A—C1—H1AB108.1C5—C6—H6119.6
C3—N2—C2128.67 (11)C8—C7—C6119.91 (13)
C3—N2—HN2115.1 (13)C8—C7—H7120.0
C2—N2—HN2116.1 (13)C6—C7—H7120.0
N1—C2—N2116.03 (12)C7—C8—C9120.11 (14)
N1—C2—S1125.77 (10)C7—C8—H8119.9
N2—C2—S1118.19 (10)C9—C8—H8119.9
O1—C3—N2122.46 (12)C8—C9—C4120.15 (14)
O1—C3—C4121.88 (12)C8—C9—H9119.9
N2—C3—C4115.64 (11)C4—C9—H9119.9
C2—N1—C1—C1i84.6 (2)N2—C3—C4—C9154.33 (13)
C1—N1—C2—N2177.90 (13)C9—C4—C5—C60.4 (2)
C1—N1—C2—S11.5 (2)C3—C4—C5—C6179.28 (13)
C3—N2—C2—N12.5 (2)C4—C5—C6—C71.1 (2)
C3—N2—C2—S1177.01 (12)C5—C6—C7—C81.5 (3)
C2—N2—C3—O12.4 (2)C6—C7—C8—C90.4 (3)
C2—N2—C3—C4175.85 (13)C7—C8—C9—C41.0 (2)
O1—C3—C4—C5156.36 (14)C5—C4—C9—C81.4 (2)
N2—C3—C4—C525.33 (19)C3—C4—C9—C8178.28 (14)
O1—C3—C4—C923.98 (19)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···O10.86 (2)1.95 (2)2.6528 (16)138 (2)
C5—H5···O1ii0.932.583.478 (16)162
C9—H9···O1iii0.932.523.311 (16)143
C1—H1A···S1iv0.972.973.8375 (16)150
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Sonatel Foundation for financial support.

References

First citationAbusaadiya, S. M., Yamin, B. M., Ngatiman, F. & Hasbullah, S. A. (2016). IUCrData, 1, x160927.  Google Scholar
First citationAdan, D., Sapari, S., Halim, S. N. & Yamin, B. M. (2012). Acta Cryst. E68, o2226.  CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., Ulrich, F. & Külcü, N. (2004). Acta Chim. Slov. 51, 787–792.  CAS Google Scholar
First citationAydın, F., Aykaç, D., Ünver, H. & İskeleli, N. O. (2012). J. Chem. Crystallogr. 42, 381–387.  Google Scholar
First citationCortes-Clerget, M., Gager, O., Monteil, M., Pirat, J.-L., Migianu-Griffoni, E., Deschamp, J. & Lecouvey, M. (2016). Adv. Synth. Catal. 358, 34–40.  CAS Google Scholar
First citationCunha, S., Macedo, F. C. Jr, Costa, G. A. N., Rodrigues, M. T. Jr, Verde, R. B. V., de Souza Neta, L. C., Vencato, I., Lariucci, C. & Sá, F. P. (2007). Monatsh. Chem. 138, 511–516.  CSD CrossRef CAS Google Scholar
First citationDing, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, o658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G.-L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct. 222, 279–280.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o2083.  CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2167.  CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yamin, B. M. & Kassim, M. B. (2009). Acta Cryst. E65, o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHassan, I. N., Yi, C. Y. & Kassim, M. B. (2011). Acta Cryst. E67, o780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaynes, C. J. E., Busschaert, N., Kirby, I. L., Herniman, J., Light, M. E., Wells, N. J., Marques, I., Félix, V. & Gale, P. A. (2014). Org. Biomol. Chem. 12, 62–72.  CSD CrossRef CAS PubMed Google Scholar
First citationKaripcin, F., Atis, M., Sariboga, B., Celik, H. & Tas, M. (2013). J. Mol. Struct. 1048, 69–77.  CSD CrossRef CAS Google Scholar
First citationKhan, M. R., Zaib, S., Rauf, M. K., Ebihara, M., Badshah, A., Zahid, M., Nadeem, M. A. & Iqbal, J. (2018). J. Mol. Struct. 1164, 354–362.  CSD CrossRef CAS Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1679–o1680.  CSD CrossRef IUCr Journals Google Scholar
First citationLight, M. E. (2018). CSD Communication, https://doi:10.5517/ccdc.csd.cc1zr8bb.  Google Scholar
First citationNgah, N., Darman, N. & Yamin, B. M. (2006). Acta Cryst. E62, o3369–o3371.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNgah, N., Mohamed, N. A., Yamin, B. M. & Mohd Zaki, H. (2014). Acta Cryst. E70, o705.  CSD CrossRef IUCr Journals Google Scholar
First citationNguyen, H. H. & Abram, U. (2008). Inorg. Chem. Commun. 11, 1478–1480.  CSD CrossRef CAS Google Scholar
First citationOthman, E. A., Arif, M. A. M. & Yamin, B. M. (2007). Acta Cryst. E63, o2436–o2437.  CSD CrossRef IUCr Journals Google Scholar
First citationOyeka, E. E., Asegbeloyin, J. N., Babahan, I., Eboma, B., Okpareke, O., Lane, J., Ibezim, A., Bıyık, H. H., Törün, B. & Izuogu, D. C. (2018). J. Mol. Struct. 1168, 153–164.  CSD CrossRef CAS Google Scholar
First citationPansuriya, P., Naidu, H., Friedrich, H. B. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2552.  CSD CrossRef IUCr Journals Google Scholar
First citationRakhshani, S., Rezvani, A. R., Dušek, M. & Eigner, V. (2018). Appl. Organomet. Chem. 32, e4342.  CSD CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShutalev, A. D., Zhukhlistova, N. E. & Gurskaya, G. V. (2004). Mendeleev Commun. 14, 31–33.  CSD CrossRef Google Scholar
First citationSigman, M. S. & Jacobsen, E. N. (1998). J. Am. Chem. Soc. 120, 4901–4902.  Web of Science CrossRef CAS Google Scholar
First citationSow, M. M., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, o569.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, H. (2016). CSD Communication, https://doi:10.5517/cc1khnrg.  Google Scholar
First citationYamin, B. M., Deris, H., Malik, Z. M. & Yousuf, S. (2008). Acta Cryst. E64, o360.  CSD CrossRef IUCr Journals Google Scholar
First citationYamin, B. M. & Malik, Z. M. (2007). Acta Cryst. E63, o4842.  CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M., Roslan, R., Kadir, M. A. & Yamin, B. M. (2007). Acta Cryst. E63, o3591.  CSD CrossRef IUCr Journals Google Scholar
First citationYusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, o828–o829.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-M., Xian, L., Wei, T.-B. & Cai, L.-X. (2003). Acta Cryst. E59, o817–o819.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, X., Li, B., Wang, Q. & Guo, L. (2010). Acta Cryst. E66, o1774.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds