research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structural study of tris­­(2,6-di­amino­pyridinium) bis­­(oxalato)dioxidovanadate(V) 2.5-hydrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia, bUniversity of Gabes, Faculty of Sciences of Gabes, Erriadh Zrig City, 6072, Gabes, Tunisia, and cDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: medfaouzi.zid57@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 22 March 2019; accepted 16 April 2019; online 25 April 2019)

Crystals of the title compound, (C5H8N3)3[VO2(C2O4)2]·2.5H2O, a mononuclear VV complex, were obtained by slow evaporation at room temperature of an aqueous solution containing vanadium pentoxide, oxalic acid and 2,6-di­amino­pyridine. The asymmetric unit contains one bis­(oxalato)dioxovanadate(V) anionic complex, three 2,6-di­amino­pyridinium cations and two and a half uncoordinated water mol­ecules. The mononuclear vanadium(V) anions are connected to the organic cations and water mol­ecules through a strong N—H⋯O and O—H⋯O hydrogen-bond network, consolidated by ππ stacking inter­actions, to form a three-dimensional structure.

1. Chemical context

The coordination chemistry of vanadium has received great attention during the last few decades. Many vanadium complexes of the oxalate dianion have been reported having biological (Kordowiak et al., 2000[Kordowiak, A. M., Dudek, B. & Gyrboś, R. (2000). Comp. Biochem. & Phys. C125, 11-16.]; León et al., 2013[León, E. I., Etcheverry, S. B., Parajón-Costa, B. S. & Baran, E. J. (2013). Biol. Trace Elem. Res. 155, 295-300.]) and catalysis applications (Mishra et al., 2002[Mishra, G. S. & Kumar, A. (2002). Catal. Lett. 81, 113-117.]; Maurya et al., 2003[Maurya, M. R., Kumar, M., Titinchi, S. J. J., Abbo, H. S. & Chand, S. (2003). Catal. Lett. 86, 97-105.]). Many non-polymeric structural architectures of vanadium oxalate compounds have been reported, among which the synthesis of mononuclear bis­(oxalato)dioxovanadate(V) complexes is limited to the easy formation of aqua­bis(oxalato)oxidovanadate(IV) (Lin et al., 2004[Lin, L., Wu, S.-F., Huang, C.-C., Zhang, H.-H., Huang, X.-H. & Lian, Z.-X. (2004). Acta Cryst. E60, m631-m633.], Aghabozorg et al., 2007[Aghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754-m1755.], Sehimi et al., 2016[Sehimi, H., Chérif, I. & Zid, M. F. (2016). Acta Cryst. E72, 724-729.]). Dioxovanadate(V) compounds have been studied less often; reported structures include tri­ammonium bis­(oxalato)dioxovanadate(V) dihydrate, (NH4)[VO2(C2O4)2]·2H2O (Hoard et al., 1971[Hoard, J. L., Scheidt, W. R. & Tsai, C. (1971). J. Am. Chem. Soc. 93, 3867-3872.]; Atovmyan et al., 1972[Atovmyan, B. O. & Sokolova, Yu. A. (1972). Zh. Strukt. Khim. 12, 984-985.]) and tripotassium bis­(oxalato)dioxovanadate(V) trihydrate, K3[VO2(C2O4)]·3H2O (Drew et al., 1974[Drew, R. E., Einstein, F. W. B. & Gransden, S. E. (1974). Can. J. Chem. 52, 2184-2189.]; Stomberg, 1986[Stomberg, R. (1986). Acta Chem. Scand. A40, 168-176.]). We report here the crystal structure of a novel dioxovanadate(V) complex, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] is composed of a complex [VO2(C2O4)2]3− ion, three protonated 2,6-di­amino­pyridinium cations (C5H8N3)+ and two and a half uncoordinated water mol­ecules (Fig. 1[link]). The anionic complex has an overall charge of −3, requiring a vanadium atom with an oxidation state +5. This formal value is in good agreement with the bond-valence-sum calculation (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), which gives a value of 4.99 valence units.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

In the coordination polyhedron of VV, the central vanadium has distorted octa­hedral geometry with two terminal oxygen atoms and four oxygen atoms from two oxalate groups. The two terminal oxygen atoms O1 and O2 are located at shortened V—O distances of 1.6433 (8) and 1.6317 (8) Å, respectively, which is typical for a double-bonded vanadyl group, and form a cis-vanadyl grouping in the usual monodentate fashion. Substanti­ally elongated complexing bonds [2.1644 (8) and 2.2248 (8) Å] extend from the vanadium to the two carboxyl­ate oxygen atoms O4 and O7, while two other carboxyl­ate oxygen atoms O3 and O8 are at 2.0020 (8) and 2.0026 (8) Å respectively.

The geometric parameters for the 2,6-di­amino­pyridinium cations do not show any unusual features and are in agreement with those previously reported for bis­(2,6-di­amino­pyridinium) oxalate dihydrate, 2C5H8N3+·C2O22−·2H2O (Odabaşoğlu et al., 2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4543-o4544.]).

3. Supra­molecular features

The charged components are connected by an extensive hydrogen-bonding network. The amine and pyridine nitro­gen atoms of the 2,6- di­amino­pyridinuim cations act as hydrogen-bond donors and coordinate the complex ions [VO2(C2O4)2]3− to each other or to water mol­ecules via N—H⋯O hydrogen bonds as shown in Fig. 2[link], with bond lengths between 1.87 (2) and 2.61 (2) Å (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯O4i 0.87 (2) 2.47 (2) 3.2515 (14) 150.0 (19)
N5—H5B⋯O5i 0.87 (2) 2.31 (2) 3.1196 (16) 154.7 (19)
N8—H8A⋯O7 0.95 (2) 1.87 (2) 2.8118 (13) 174.1 (18)
N6—H6A⋯OW1ii 0.86 (2) 2.00 (2) 2.8559 (15) 171.0 (19)
N6—H6B⋯O10 0.84 (2) 2.07 (2) 2.9018 (15) 176.4 (19)
N10—H10A⋯OW3 0.88 (2) 2.08 (2) 2.9463 (15) 169 (2)
N10—H10B⋯O9iii 0.82 (2) 2.17 (2) 2.8863 (15) 146.8 (18)
N13—H13A⋯O9iii 0.90 (2) 2.01 (2) 2.8309 (13) 150.3 (17)
N13—H13A⋯O10iii 0.90 (2) 2.615 (19) 3.3149 (14) 135.2 (16)
N11—H11A⋯O10iii 0.84 (2) 2.02 (2) 2.8401 (14) 165 (2)
N11—H11B⋯OW2iv 0.861 (19) 2.00 (2) 2.8522 (14) 173.1 (19)
N15—H15A⋯O1i 0.85 (2) 2.252 (19) 2.9914 (14) 145.5 (17)
N15—H15B⋯O1v 0.882 (19) 2.570 (19) 3.0641 (13) 116.2 (15)
N15—H15B⋯O2v 0.882 (19) 2.01 (2) 2.8926 (14) 175.9 (19)
N16—H16A⋯O4i 0.887 (18) 1.990 (18) 2.8695 (13) 170.5 (16)
N16—H16B⋯O3 0.843 (19) 2.085 (19) 2.9156 (12) 168.5 (17)
N18—H18⋯O1i 0.917 (19) 1.993 (19) 2.8541 (12) 155.7 (16)
OW1—H1A⋯O5 0.92 (2) 1.79 (2) 2.6550 (13) 155.8 (19)
OW1—H1B⋯OW2vi 0.90 (2) 1.84 (2) 2.7270 (13) 169 (2)
OW2—H2A⋯OW1i 0.87 (2) 1.87 (3) 2.7384 (14) 173 (2)
OW2—H2B⋯O6 0.90 (3) 1.93 (3) 2.7896 (13) 160 (2)
OW3—H3A⋯O8vii 0.79 (2) 2.10 (2) 2.8621 (10) 161 (2)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x, -y+2, z-{\script{1\over 2}}]; (iv) x, y+1, z; (v) -x+1, -y, -z+1; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
View of N—H⋯O hydrogen bonds (blue dashed line) formed by (a) the first, (b) the second and (c) the third 2,6-di­amino­pyridinium cation. [Symmetry codes: (i) x, y − 1, z; (ii) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (iii) x, −y + 2, z − [{1\over 2}]; (iv) x, y + 1, z; (v) −x + 1, −y, −z + 1]

The three nitro­gen atoms N5, N6 and N8 of the first 2,6-di­amino­pyridinium cation act as donors of five hydrogen bonds, N5—H5B⋯O4i, N5—H5B⋯O5i, N8—H8A⋯O7, N6—H6A⋯OW1ii and N6—H6B⋯O10 (Table 1[link]), and link two complex ions to a water mol­ecule.

In the same way, the three nitro­gen atoms N10, N11 and N13 of the second 2,6-di­amino­pyridinium cation act as donors of six hydrogen bonds, N10—H10A⋯OW3, N10—H10B⋯O9iii, N13—H13A⋯O9iii, N13—H13A⋯O10iii, N11—H11A⋯O10iii and N11—H11B⋯OW2iv (Table 1[link]), coordinating a complex ion to two water mol­ecules.

The third 2,6-di­amino­pyridinium cation links three complex ions via the six hydrogen bonds N15—H15A⋯O1i, N15—H15B⋯O1v, N15—H15B⋯O2v, N16—H16A⋯O4i, N16—H16B⋯O3 and N18—H18⋯O1i (Table 1[link]), established by their three nitro­gen atoms N15, N16 and N18.

The water mol­ecules act as hydrogen-bond donors via five O—H⋯O hydrogen bonds involving their oxygen atoms, OW1—H1A⋯O5, OW1—H1B⋯OW2vi, OW2—H2A⋯OW1i, OW2—H2B⋯O6 and OW3—H3A⋯O8vii (Table 2[link]) and coordinate the complex ions to the water mol­ecules, generating R55(13) and R1010(36) hydrogen-bonded rings, as shown in Fig. 3[link].

Table 2
Experimental details

Crystal data
Chemical formula (C5H8N3)3[VO2(C2O4)2]·2.5H2O
Mr 1268.90
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 38.972 (2), 7.5746 (4), 20.8208 (12)
β (°) 116.551 (2)
V3) 5498.0 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.54 × 0.31 × 0.28
 
Data collection
Diffractometer Bruker Venture
Absorption correction Numerical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.877, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 32414, 8409, 7884
Rint 0.017
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.10
No. of reflections 8409
No. of parameters 491
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.44, −0.66
Computer programs: APEX2 andSAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 3]
Figure 3
(a) View of O—H⋯O hydrogen bonds (red dashed line) formed by the two-and-half water mol­ecules. [Symmetry codes: (i) x, y − 1, z; (vi) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) −x + 1, −y + 1, −z + 1]. (b) R55(13) and R1010(36) motifs.

The 2,6-diamnopyridinium cations in the supra­molecular structure of (I)[link] are paired via ππ stacking with inter­centroid distances of 3.6652 (1) and 3.8155 (2)Å, as illustrated in Fig. 4[link], consolidating the three-dimensional network (Fig. 5[link]).

[Figure 4]
Figure 4
ππ stacking inter­actions (orange and green dashed lines) between adjacent 2,6-di­amino­pyridinium organic cations.
[Figure 5]
Figure 5
View of the packing of the title compound.

4. Synthesis and crystallization

All reagents and solvents were commercially available and used without further purification. Elemental analyses for carbon, nitro­gen and hydrogen were performed on a Flash2000 Organic Elemental Analyser, CHNS-O analyser by Thermo Scientific (Centre of Scientific Instrumentation of the University of Granada). An ICP-OES Perkin-Elmer Optima 8300 Spectrometer (Centre of Scientific Instrumentation of the University of Granada) was used to determine the metal content in the complex.

A mixture of vanadium pentoxide (V2O5/Merck, 99%), 2,6-di­amino­pyridine (C5H7N3/Sigma Aldrich, 98%) and oxalic acid dihydrate (C2H2O4·2H2O/Prolabo, 99,5%) were used as starting materials.

Under continuous stirring at 373 K, a solution of oxalic acid dihydrate (0.126 g, 1 mmol) dissolved in 10 cm3 of distilled water was added dropwise to a stirring solution of vanadium pentoxide (0.181 g, 1 mmol) dissolved in 20 cm3 of distilled water. After 15 minutes of mixture stirring, 2,6-di­amino­pyridine (0.218 g, 2 mmol) was added to the mixture without prior dissolution. The final solution was kept under continuous stirring and heated for a further hour. After filtration, the filtrate was placed in a petri dish and kept at room temperature. After a week to ten days, orange–brown crystals, stable at room temperature and of suitable size for a structural study, appeared.

The elemental analytical results for carbon, hydrogen and nitro­gen are close to the calculated values. Calculated: C: 35.97%, H: 4.61%, N: 19.87%; V: 8.03%, Found C: 35.53%, H: 5.15%, N: 19.74%, V: 10.85%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms of the 2,6-di­amino­pyridinium cations and water mol­ecules were located in difference-Fourier maps and refined freely with isotropic displacement parameters.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tris(2,6-diaminopyridinium) bis(oxalato)dioxidovanadate(V) 2.5-hydrate top
Crystal data top
(C5H8N3)3[VO2(C2O4)2]·2.5H2OF(000) = 2632
Mr = 1268.90Dx = 1.533 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 38.972 (2) ÅCell parameters from 33946 reflections
b = 7.5746 (4) Åθ = 2.2–30.6°
c = 20.8208 (12) ŵ = 0.44 mm1
β = 116.551 (2)°T = 100 K
V = 5498.0 (5) Å3Prism, orange-brown
Z = 40.54 × 0.31 × 0.28 mm
Data collection top
Bruker Venture
diffractometer
7884 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
h = 5554
Tmin = 0.877, Tmax = 0.929k = 810
32414 measured reflectionsl = 2923
8409 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.087All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0395P)2 + 5.9089P]
where P = (Fo2 + 2Fc2)/3
8409 reflections(Δ/σ)max = 0.001
491 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.41895 (2)0.51731 (2)0.53978 (2)0.01188 (5)
O10.44546 (2)0.56998 (11)0.49956 (4)0.01743 (15)
O20.43619 (2)0.32872 (11)0.57872 (4)0.01834 (16)
O30.37302 (2)0.40795 (10)0.45955 (4)0.01608 (15)
O40.38117 (2)0.73971 (10)0.49208 (4)0.01663 (15)
C10.34163 (3)0.49862 (15)0.42904 (6)0.01604 (19)
C20.34638 (3)0.69347 (15)0.45406 (6)0.01666 (19)
O50.31838 (3)0.78943 (13)0.43753 (5)0.0290 (2)
O60.31082 (3)0.44355 (13)0.38420 (5)0.0270 (2)
O70.38034 (2)0.52494 (10)0.59251 (4)0.01578 (15)
O80.44487 (2)0.68508 (11)0.62182 (4)0.01635 (15)
C30.38693 (3)0.65717 (14)0.63407 (6)0.01499 (18)
C40.42578 (3)0.74855 (15)0.65372 (6)0.01634 (19)
O90.43714 (3)0.86623 (13)0.69874 (5)0.02635 (19)
O100.36600 (3)0.71404 (12)0.65962 (5)0.02217 (17)
C50.32523 (4)0.12402 (15)0.56396 (6)0.0204 (2)
N50.35544 (4)0.08838 (15)0.55082 (8)0.0301 (3)
H5A0.3711 (6)0.166 (3)0.5552 (11)0.040 (5)*
H5B0.3527 (6)0.006 (3)0.5255 (12)0.042 (6)*
N80.32350 (3)0.28965 (13)0.58800 (5)0.01779 (18)
H8A0.3427 (6)0.372 (3)0.5924 (10)0.037 (5)*
C60.29533 (3)0.34407 (16)0.60538 (6)0.0195 (2)
N60.29672 (3)0.51242 (15)0.62589 (7)0.0259 (2)
H6A0.2794 (6)0.543 (3)0.6385 (11)0.038 (5)*
H6B0.3165 (6)0.570 (3)0.6337 (10)0.035 (5)*
C70.26704 (4)0.22302 (18)0.59948 (7)0.0242 (2)
H70.2459 (5)0.258 (3)0.6093 (10)0.035 (5)*
C80.26825 (4)0.05496 (18)0.57483 (7)0.0251 (2)
H80.2490 (6)0.027 (3)0.5720 (10)0.033 (5)*
C90.29675 (4)0.00273 (16)0.55638 (7)0.0239 (2)
H90.2974 (6)0.114 (3)0.5399 (10)0.038 (5)*
C100.41609 (3)0.75481 (16)0.25317 (6)0.0181 (2)
N100.44513 (3)0.76369 (16)0.23561 (6)0.0228 (2)
H10A0.4591 (6)0.670 (3)0.2394 (11)0.044 (6)*
H10B0.4489 (5)0.854 (3)0.2183 (10)0.033 (5)*
N130.39527 (3)0.90492 (14)0.24518 (5)0.01700 (18)
H13A0.4021 (5)1.004 (3)0.2302 (10)0.032 (5)*
C110.36515 (3)0.91707 (16)0.26207 (6)0.0181 (2)
N110.34804 (3)1.07389 (16)0.25299 (6)0.0241 (2)
H11A0.3536 (6)1.152 (3)0.2307 (11)0.043 (5)*
H11B0.3295 (5)1.088 (3)0.2644 (10)0.031 (5)*
C120.35486 (4)0.76673 (18)0.28837 (6)0.0222 (2)
H120.3329 (5)0.778 (3)0.2984 (10)0.031 (5)*
C130.37542 (4)0.61321 (17)0.29592 (7)0.0247 (2)
H130.3675 (6)0.501 (3)0.3123 (10)0.033 (5)*
C140.40600 (4)0.60402 (17)0.27926 (7)0.0230 (2)
H140.4198 (6)0.504 (3)0.2841 (11)0.039 (6)*
C150.47700 (3)0.13176 (15)0.41695 (6)0.01577 (19)
N150.49100 (3)0.29671 (15)0.42598 (6)0.0222 (2)
H15A0.4848 (5)0.371 (3)0.4494 (10)0.029 (4)*
H15B0.5133 (6)0.312 (3)0.4253 (10)0.033 (5)*
N180.44624 (3)0.10508 (12)0.43083 (5)0.01337 (16)
H18A0.4831 (5)0.275 (2)0.3702 (9)0.028 (4)*
C160.42852 (3)0.05396 (14)0.42368 (6)0.01396 (18)
N160.39901 (3)0.06024 (13)0.43990 (6)0.01817 (18)
H16A0.3916 (5)0.032 (2)0.4570 (9)0.022 (4)*
H16B0.3889 (5)0.159 (3)0.4397 (9)0.027 (4)*
C170.44205 (4)0.19760 (15)0.39958 (6)0.0192 (2)
H170.4304 (5)0.315 (2)0.3964 (9)0.026 (4)*
C180.47321 (4)0.17289 (17)0.38535 (7)0.0218 (2)
H180.4387 (5)0.200 (3)0.4490 (9)0.028 (4)*
C190.49093 (3)0.01017 (17)0.39314 (6)0.0202 (2)
H190.5114 (5)0.010 (2)0.3839 (10)0.026 (4)*
OW10.25449 (3)0.86277 (12)0.32000 (5)0.02255 (17)
H1A0.2743 (6)0.806 (3)0.3570 (11)0.039 (5)*
H1B0.2432 (7)0.786 (3)0.2835 (13)0.054 (6)*
OW20.28869 (3)0.15066 (13)0.29340 (5)0.02227 (17)
H2A0.2759 (7)0.064 (3)0.3002 (12)0.052 (6)*
H2B0.2985 (7)0.225 (3)0.3309 (13)0.057 (7)*
OW30.5000000.48083 (18)0.2500000.0223 (2)
H3A0.5113 (6)0.419 (3)0.2838 (10)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.01305 (8)0.01016 (8)0.01423 (9)0.00085 (6)0.00771 (6)0.00032 (6)
O10.0194 (4)0.0173 (4)0.0194 (4)0.0009 (3)0.0121 (3)0.0003 (3)
O20.0219 (4)0.0154 (4)0.0212 (4)0.0052 (3)0.0126 (3)0.0044 (3)
O30.0171 (3)0.0111 (3)0.0201 (4)0.0003 (3)0.0083 (3)0.0033 (3)
O40.0184 (4)0.0104 (3)0.0186 (4)0.0001 (3)0.0060 (3)0.0006 (3)
C10.0170 (5)0.0147 (5)0.0177 (5)0.0008 (4)0.0088 (4)0.0034 (4)
C20.0189 (5)0.0145 (5)0.0152 (4)0.0020 (4)0.0063 (4)0.0009 (4)
O50.0224 (4)0.0239 (4)0.0311 (5)0.0097 (4)0.0034 (4)0.0065 (4)
O60.0189 (4)0.0260 (5)0.0302 (5)0.0039 (3)0.0058 (4)0.0105 (4)
O70.0175 (3)0.0138 (3)0.0197 (4)0.0014 (3)0.0116 (3)0.0020 (3)
O80.0138 (3)0.0182 (4)0.0174 (3)0.0010 (3)0.0073 (3)0.0033 (3)
C30.0168 (4)0.0135 (4)0.0160 (4)0.0020 (4)0.0086 (4)0.0014 (4)
C40.0153 (4)0.0162 (5)0.0168 (5)0.0012 (4)0.0066 (4)0.0015 (4)
O90.0224 (4)0.0266 (5)0.0296 (5)0.0040 (3)0.0112 (4)0.0147 (4)
O100.0234 (4)0.0207 (4)0.0292 (4)0.0016 (3)0.0178 (4)0.0043 (3)
C50.0312 (6)0.0143 (5)0.0213 (5)0.0028 (4)0.0167 (5)0.0010 (4)
N50.0476 (7)0.0148 (5)0.0475 (7)0.0058 (5)0.0387 (6)0.0068 (5)
N80.0220 (4)0.0140 (4)0.0212 (4)0.0025 (3)0.0131 (4)0.0017 (3)
C60.0192 (5)0.0202 (5)0.0204 (5)0.0005 (4)0.0102 (4)0.0010 (4)
N60.0229 (5)0.0215 (5)0.0385 (6)0.0020 (4)0.0183 (5)0.0083 (4)
C70.0215 (5)0.0259 (6)0.0286 (6)0.0036 (5)0.0142 (5)0.0015 (5)
C80.0267 (6)0.0227 (6)0.0269 (6)0.0074 (5)0.0130 (5)0.0010 (5)
C90.0345 (6)0.0154 (5)0.0260 (6)0.0060 (5)0.0173 (5)0.0013 (4)
C100.0240 (5)0.0184 (5)0.0119 (4)0.0013 (4)0.0079 (4)0.0021 (4)
N100.0303 (5)0.0211 (5)0.0233 (5)0.0042 (4)0.0174 (4)0.0028 (4)
N130.0196 (4)0.0180 (4)0.0147 (4)0.0008 (3)0.0088 (3)0.0022 (3)
C110.0185 (5)0.0226 (5)0.0131 (4)0.0012 (4)0.0070 (4)0.0020 (4)
N110.0232 (5)0.0273 (5)0.0272 (5)0.0050 (4)0.0162 (4)0.0104 (4)
C120.0241 (5)0.0258 (6)0.0185 (5)0.0054 (5)0.0114 (4)0.0017 (4)
C130.0335 (6)0.0207 (5)0.0211 (5)0.0078 (5)0.0135 (5)0.0000 (4)
C140.0336 (6)0.0162 (5)0.0208 (5)0.0020 (5)0.0136 (5)0.0013 (4)
C150.0134 (4)0.0206 (5)0.0124 (4)0.0015 (4)0.0050 (4)0.0013 (4)
N150.0204 (5)0.0250 (5)0.0243 (5)0.0094 (4)0.0128 (4)0.0053 (4)
N180.0154 (4)0.0120 (4)0.0140 (4)0.0001 (3)0.0078 (3)0.0001 (3)
C160.0177 (4)0.0114 (4)0.0138 (4)0.0009 (4)0.0080 (4)0.0017 (3)
N160.0250 (5)0.0097 (4)0.0273 (5)0.0019 (3)0.0184 (4)0.0009 (3)
C170.0266 (5)0.0121 (5)0.0223 (5)0.0029 (4)0.0140 (4)0.0002 (4)
C180.0263 (6)0.0202 (5)0.0225 (5)0.0083 (4)0.0142 (5)0.0014 (4)
C190.0176 (5)0.0263 (6)0.0194 (5)0.0042 (4)0.0108 (4)0.0016 (4)
OW10.0192 (4)0.0214 (4)0.0242 (4)0.0024 (3)0.0072 (3)0.0005 (3)
OW20.0227 (4)0.0209 (4)0.0247 (4)0.0021 (3)0.0119 (3)0.0030 (3)
OW30.0222 (6)0.0201 (6)0.0200 (6)0.0000.0052 (5)0.000
Geometric parameters (Å, º) top
V1—O21.6317 (8)N10—H10A0.88 (2)
V1—O11.6433 (8)N10—H10B0.82 (2)
V1—O32.0020 (8)N13—C111.3706 (14)
V1—O82.0026 (8)N13—H13A0.90 (2)
V1—O42.1644 (8)C11—N111.3337 (16)
V1—O72.2248 (8)C11—C121.3978 (16)
O3—C11.2948 (13)N11—H11A0.84 (2)
O4—C21.2761 (14)N11—H11B0.861 (19)
C1—O61.2189 (14)C12—C131.3807 (19)
C1—C21.5485 (15)C12—H120.970 (18)
C2—O51.2254 (14)C13—C141.3841 (19)
O7—C31.2725 (13)C13—H131.012 (19)
O8—C41.2914 (13)C14—H140.91 (2)
C3—O101.2335 (13)C15—N151.3425 (15)
C3—C41.5442 (15)C15—N181.3679 (13)
C4—O91.2240 (14)C15—C191.3916 (16)
C5—N51.3498 (17)N15—H15A0.85 (2)
C5—N81.3635 (15)N15—H15B0.882 (19)
C5—C91.3944 (17)N18—C161.3632 (14)
N5—H5A0.82 (2)N18—H180.917 (19)
N5—H5B0.87 (2)C16—N161.3364 (14)
N8—C61.3643 (15)C16—C171.3965 (15)
N8—H8A0.95 (2)N16—H16A0.887 (18)
C6—N61.3382 (16)N16—H16B0.843 (19)
C6—C71.3966 (17)C17—C181.3855 (17)
N6—H6A0.86 (2)C17—H170.987 (18)
N6—H6B0.84 (2)C18—C191.3863 (18)
C7—C81.3811 (19)C18—H18A0.979 (18)
C7—H70.969 (19)C19—H190.915 (18)
C8—C91.3855 (19)OW1—H1A0.92 (2)
C8—H80.955 (19)OW1—H1B0.90 (2)
C9—H90.95 (2)OW2—H2A0.87 (2)
C10—N101.3375 (16)OW2—H2B0.90 (3)
C10—N131.3632 (15)OW3—H3A0.79 (2)
C10—C141.3946 (17)OW3—H3Ai0.79 (2)
O2—V1—O1104.64 (4)C8—C9—H9121.2 (12)
O2—V1—O393.92 (4)C5—C9—H9120.3 (12)
O1—V1—O3101.92 (4)N10—C10—N13117.06 (11)
O2—V1—O8101.13 (4)N10—C10—C14124.60 (12)
O1—V1—O895.07 (4)N13—C10—C14118.33 (11)
O3—V1—O8153.67 (3)C10—N10—H10A120.1 (14)
O2—V1—O4162.54 (4)C10—N10—H10B120.3 (14)
O1—V1—O491.77 (4)H10A—N10—H10B119.4 (19)
O3—V1—O476.58 (3)C10—N13—C11123.78 (10)
O8—V1—O482.98 (3)C10—N13—H13A119.3 (12)
O2—V1—O789.80 (4)C11—N13—H13A116.9 (12)
O1—V1—O7164.36 (4)N11—C11—N13117.04 (11)
O3—V1—O782.69 (3)N11—C11—C12124.63 (11)
O8—V1—O775.94 (3)N13—C11—C12118.32 (11)
O4—V1—O774.62 (3)C11—N11—H11A118.1 (15)
C1—O3—V1119.09 (7)C11—N11—H11B119.9 (13)
C2—O4—V1112.79 (7)H11A—N11—H11B121.4 (19)
O6—C1—O3125.84 (11)C13—C12—C11118.51 (11)
O6—C1—C2120.83 (10)C13—C12—H12124.7 (11)
O3—C1—C2113.33 (9)C11—C12—H12116.7 (11)
O5—C2—O4125.27 (11)C12—C13—C14122.33 (12)
O5—C2—C1120.89 (10)C12—C13—H13119.6 (11)
O4—C2—C1113.84 (9)C14—C13—H13118.1 (11)
C3—O7—V1112.38 (7)C13—C14—C10118.73 (12)
C4—O8—V1119.21 (7)C13—C14—H14123.3 (13)
O10—C3—O7126.65 (11)C10—C14—H14118.0 (13)
O10—C3—C4119.21 (10)N15—C15—N18116.59 (10)
O7—C3—C4114.13 (9)N15—C15—C19124.76 (11)
O9—C4—O8124.79 (11)N18—C15—C19118.63 (10)
O9—C4—C3120.37 (10)C15—N15—H15A119.9 (13)
O8—C4—C3114.77 (9)C15—N15—H15B117.4 (13)
N5—C5—N8116.69 (11)H15A—N15—H15B117.1 (18)
N5—C5—C9124.59 (12)C16—N18—C15123.82 (10)
N8—C5—C9118.71 (11)C16—N18—H18119.8 (11)
C5—N5—H5A120.6 (15)C15—N18—H18116.3 (11)
C5—N5—H5B114.1 (14)N16—C16—N18117.07 (10)
H5A—N5—H5B123 (2)N16—C16—C17124.67 (10)
C5—N8—C6123.57 (10)N18—C16—C17118.26 (10)
C5—N8—H8A118.5 (12)C16—N16—H16A123.1 (11)
C6—N8—H8A118.0 (12)C16—N16—H16B119.1 (12)
N6—C6—N8116.75 (11)H16A—N16—H16B117.3 (16)
N6—C6—C7124.85 (12)C18—C17—C16118.65 (11)
N8—C6—C7118.40 (11)C18—C17—H17121.8 (10)
C6—N6—H6A115.6 (14)C16—C17—H17119.4 (10)
C6—N6—H6B117.4 (14)C17—C18—C19122.23 (11)
H6A—N6—H6B125.6 (19)C17—C18—H18A118.1 (11)
C8—C7—C6118.76 (12)C19—C18—H18A119.6 (11)
C8—C7—H7120.2 (12)C18—C19—C15118.39 (11)
C6—C7—H7120.9 (12)C18—C19—H19124.3 (11)
C7—C8—C9122.06 (12)C15—C19—H19117.3 (11)
C7—C8—H8117.8 (12)H1A—OW1—H1B108.3 (19)
C9—C8—H8120.1 (12)H2A—OW2—H2B113 (2)
C8—C9—C5118.48 (12)H3A—OW3—H3Ai108 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O4ii0.87 (2)2.47 (2)3.2515 (14)150.0 (19)
N5—H5B···O5ii0.87 (2)2.31 (2)3.1196 (16)154.7 (19)
N8—H8A···O70.95 (2)1.87 (2)2.8118 (13)174.1 (18)
N6—H6A···OW1iii0.86 (2)2.00 (2)2.8559 (15)171.0 (19)
N6—H6B···O100.84 (2)2.07 (2)2.9018 (15)176.4 (19)
N10—H10A···OW30.88 (2)2.08 (2)2.9463 (15)169 (2)
N10—H10B···O9iv0.82 (2)2.17 (2)2.8863 (15)146.8 (18)
N13—H13A···O9iv0.90 (2)2.01 (2)2.8309 (13)150.3 (17)
N13—H13A···O10iv0.90 (2)2.615 (19)3.3149 (14)135.2 (16)
N11—H11A···O10iv0.84 (2)2.02 (2)2.8401 (14)165 (2)
N11—H11B···OW2v0.861 (19)2.00 (2)2.8522 (14)173.1 (19)
N15—H15A···O1ii0.85 (2)2.252 (19)2.9914 (14)145.5 (17)
N15—H15B···O1vi0.882 (19)2.570 (19)3.0641 (13)116.2 (15)
N15—H15B···O2vi0.882 (19)2.01 (2)2.8926 (14)175.9 (19)
N16—H16A···O4ii0.887 (18)1.990 (18)2.8695 (13)170.5 (16)
N16—H16B···O30.843 (19)2.085 (19)2.9156 (12)168.5 (17)
N18—H18···O1ii0.917 (19)1.993 (19)2.8541 (12)155.7 (16)
OW1—H1A···O50.92 (2)1.79 (2)2.6550 (13)155.8 (19)
OW1—H1B···OW2vii0.90 (2)1.84 (2)2.7270 (13)169 (2)
OW2—H2A···OW1ii0.87 (2)1.87 (3)2.7384 (14)173 (2)
OW2—H2B···O60.90 (3)1.93 (3)2.7896 (13)160 (2)
OW3—H3A···O8viii0.79 (2)2.10 (2)2.8621 (10)161 (2)
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y+3/2, z+1; (iv) x, y+2, z1/2; (v) x, y+1, z; (vi) x+1, y, z+1; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1, y+1, z+1.
 

Acknowledgements

HS thanks Dr Elisa Barea (Department of Inorganic Chemistry, University of Granada) for support and advice during her short-term stay in the University of Granada where the single-crystal X-ray diffraction, elemental analysis and ICP–MS studies were carried out (Centre of Scientific Instrumentation of the University of Granada).

Funding information

Financial support from the Ministry of Higher Education and Scientific Research of Tunisia is gratefully acknowledged.

References

First citationAghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754–m1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAtovmyan, B. O. & Sokolova, Yu. A. (1972). Zh. Strukt. Khim. 12, 984–985.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrew, R. E., Einstein, F. W. B. & Gransden, S. E. (1974). Can. J. Chem. 52, 2184–2189.  CrossRef CAS Google Scholar
First citationHoard, J. L., Scheidt, W. R. & Tsai, C. (1971). J. Am. Chem. Soc. 93, 3867–3872.  CrossRef CAS Google Scholar
First citationKordowiak, A. M., Dudek, B. & Gyrboś, R. (2000). Comp. Biochem. & Phys. C125, 11–16.  Google Scholar
First citationLeón, E. I., Etcheverry, S. B., Parajón-Costa, B. S. & Baran, E. J. (2013). Biol. Trace Elem. Res. 155, 295–300.  PubMed Google Scholar
First citationLin, L., Wu, S.-F., Huang, C.-C., Zhang, H.-H., Huang, X.-H. & Lian, Z.-X. (2004). Acta Cryst. E60, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaurya, M. R., Kumar, M., Titinchi, S. J. J., Abbo, H. S. & Chand, S. (2003). Catal. Lett. 86, 97–105.  Web of Science CrossRef CAS Google Scholar
First citationMishra, G. S. & Kumar, A. (2002). Catal. Lett. 81, 113–117.  Web of Science CrossRef CAS Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4543–o4544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSehimi, H., Chérif, I. & Zid, M. F. (2016). Acta Cryst. E72, 724–729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStomberg, R. (1986). Acta Chem. Scand. A40, 168–176.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds