research communications
Synthesis and structural study of tris(2,6-diaminopyridinium) bis(oxalato)dioxidovanadate(V) 2.5-hydrate
aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II, Tunis, Tunisia, bUniversity of Gabes, Faculty of Sciences of Gabes, Erriadh Zrig City, 6072, Gabes, Tunisia, and cDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: medfaouzi.zid57@gmail.com
Crystals of the title compound, (C5H8N3)3[VO2(C2O4)2]·2.5H2O, a mononuclear VV complex, were obtained by slow evaporation at room temperature of an aqueous solution containing vanadium pentoxide, oxalic acid and 2,6-diaminopyridine. The contains one bis(oxalato)dioxovanadate(V) anionic complex, three 2,6-diaminopyridinium cations and two and a half uncoordinated water molecules. The mononuclear vanadium(V) anions are connected to the organic cations and water molecules through a strong N—H⋯O and O—H⋯O hydrogen-bond network, consolidated by π–π stacking interactions, to form a three-dimensional structure.
Keywords: crystal structure; vanadium; bis(oxalato) complexes; dioxovanadate(V); 2,6-diaminopyridine.
CCDC reference: 1910509
1. Chemical context
The coordination chemistry of vanadium has received great attention during the last few decades. Many vanadium complexes of the oxalate dianion have been reported having biological (Kordowiak et al., 2000; León et al., 2013) and catalysis applications (Mishra et al., 2002; Maurya et al., 2003). Many non-polymeric structural architectures of vanadium oxalate compounds have been reported, among which the synthesis of mononuclear bis(oxalato)dioxovanadate(V) complexes is limited to the easy formation of aquabis(oxalato)oxidovanadate(IV) (Lin et al., 2004, Aghabozorg et al., 2007, Sehimi et al., 2016). Dioxovanadate(V) compounds have been studied less often; reported structures include triammonium bis(oxalato)dioxovanadate(V) dihydrate, (NH4)[VO2(C2O4)2]·2H2O (Hoard et al., 1971; Atovmyan et al., 1972) and tripotassium bis(oxalato)dioxovanadate(V) trihydrate, K3[VO2(C2O4)]·3H2O (Drew et al., 1974; Stomberg, 1986). We report here the of a novel dioxovanadate(V) complex, (I).
2. Structural commentary
The is composed of a complex [VO2(C2O4)2]3− ion, three protonated 2,6-diaminopyridinium cations (C5H8N3)+ and two and a half uncoordinated water molecules (Fig. 1). The anionic complex has an overall charge of −3, requiring a vanadium atom with an +5. This formal value is in good agreement with the bond-valence-sum calculation (Brown & Altermatt, 1985), which gives a value of 4.99 valence units.
of (I)In the V, the central vanadium has distorted octahedral geometry with two terminal oxygen atoms and four oxygen atoms from two oxalate groups. The two terminal oxygen atoms O1 and O2 are located at shortened V—O distances of 1.6433 (8) and 1.6317 (8) Å, respectively, which is typical for a double-bonded vanadyl group, and form a cis-vanadyl grouping in the usual monodentate fashion. Substantially elongated complexing bonds [2.1644 (8) and 2.2248 (8) Å] extend from the vanadium to the two carboxylate oxygen atoms O4 and O7, while two other carboxylate oxygen atoms O3 and O8 are at 2.0020 (8) and 2.0026 (8) Å respectively.
of VThe geometric parameters for the 2,6-diaminopyridinium cations do not show any unusual features and are in agreement with those previously reported for bis(2,6-diaminopyridinium) oxalate dihydrate, 2C5H8N3+·C2O22−·2H2O (Odabaşoğlu et al., 2006).
3. Supramolecular features
The charged components are connected by an extensive hydrogen-bonding network. The amine and pyridine nitrogen atoms of the 2,6- diaminopyridinuim cations act as hydrogen-bond donors and coordinate the complex ions [VO2(C2O4)2]3− to each other or to water molecules via N—H⋯O hydrogen bonds as shown in Fig. 2, with bond lengths between 1.87 (2) and 2.61 (2) Å (Table 1).
The three nitrogen atoms N5, N6 and N8 of the first 2,6-diaminopyridinium cation act as donors of five hydrogen bonds, N5—H5B⋯O4i, N5—H5B⋯O5i, N8—H8A⋯O7, N6—H6A⋯OW1ii and N6—H6B⋯O10 (Table 1), and link two complex ions to a water molecule.
In the same way, the three nitrogen atoms N10, N11 and N13 of the second 2,6-diaminopyridinium cation act as donors of six hydrogen bonds, N10—H10A⋯OW3, N10—H10B⋯O9iii, N13—H13A⋯O9iii, N13—H13A⋯O10iii, N11—H11A⋯O10iii and N11—H11B⋯OW2iv (Table 1), coordinating a complex ion to two water molecules.
The third 2,6-diaminopyridinium cation links three complex ions via the six hydrogen bonds N15—H15A⋯O1i, N15—H15B⋯O1v, N15—H15B⋯O2v, N16—H16A⋯O4i, N16—H16B⋯O3 and N18—H18⋯O1i (Table 1), established by their three nitrogen atoms N15, N16 and N18.
The water molecules act as hydrogen-bond donors via five O—H⋯O hydrogen bonds involving their oxygen atoms, OW1—H1A⋯O5, OW1—H1B⋯OW2vi, OW2—H2A⋯OW1i, OW2—H2B⋯O6 and OW3—H3A⋯O8vii (Table 2) and coordinate the complex ions to the water molecules, generating R55(13) and R1010(36) hydrogen-bonded rings, as shown in Fig. 3.
|
The 2,6-diamnopyridinium cations in the supramolecular structure of (I) are paired via π–π stacking with intercentroid distances of 3.6652 (1) and 3.8155 (2)Å, as illustrated in Fig. 4, consolidating the three-dimensional network (Fig. 5).
4. Synthesis and crystallization
All reagents and solvents were commercially available and used without further purification. Elemental analyses for carbon, nitrogen and hydrogen were performed on a Flash2000 Organic Elemental Analyser, CHNS-O analyser by Thermo Scientific (Centre of Scientific Instrumentation of the University of Granada). An ICP-OES Perkin-Elmer Optima 8300 Spectrometer (Centre of Scientific Instrumentation of the University of Granada) was used to determine the metal content in the complex.
A mixture of vanadium pentoxide (V2O5/Merck, 99%), 2,6-diaminopyridine (C5H7N3/Sigma Aldrich, 98%) and oxalic acid dihydrate (C2H2O4·2H2O/Prolabo, 99,5%) were used as starting materials.
Under continuous stirring at 373 K, a solution of oxalic acid dihydrate (0.126 g, 1 mmol) dissolved in 10 cm3 of distilled water was added dropwise to a stirring solution of vanadium pentoxide (0.181 g, 1 mmol) dissolved in 20 cm3 of distilled water. After 15 minutes of mixture stirring, 2,6-diaminopyridine (0.218 g, 2 mmol) was added to the mixture without prior dissolution. The final solution was kept under continuous stirring and heated for a further hour. After filtration, the filtrate was placed in a petri dish and kept at room temperature. After a week to ten days, orange–brown crystals, stable at room temperature and of suitable size for a structural study, appeared.
The elemental analytical results for carbon, hydrogen and nitrogen are close to the calculated values. Calculated: C: 35.97%, H: 4.61%, N: 19.87%; V: 8.03%, Found C: 35.53%, H: 5.15%, N: 19.74%, V: 10.85%.
5. Refinement
Crystal data, data collection and structure . Hydrogen atoms of the 2,6-diaminopyridinium cations and water molecules were located in difference-Fourier maps and refined freely with isotropic displacement parameters.
details are summarized in Table 2Supporting information
CCDC reference: 1910509
https://doi.org/10.1107/S2056989019005267/vn2145sup1.cif
contains datablocks I, 1R. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019005267/vn2145Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(C5H8N3)3[VO2(C2O4)2]·2.5H2O | F(000) = 2632 |
Mr = 1268.90 | Dx = 1.533 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 38.972 (2) Å | Cell parameters from 33946 reflections |
b = 7.5746 (4) Å | θ = 2.2–30.6° |
c = 20.8208 (12) Å | µ = 0.44 mm−1 |
β = 116.551 (2)° | T = 100 K |
V = 5498.0 (5) Å3 | Prism, orange-brown |
Z = 4 | 0.54 × 0.31 × 0.28 mm |
Bruker Venture diffractometer | 7884 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
ω scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: numerical (SADABS; Sheldrick, 1996) | h = −55→54 |
Tmin = 0.877, Tmax = 0.929 | k = −8→10 |
32414 measured reflections | l = −29→23 |
8409 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.087 | All H-atom parameters refined |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0395P)2 + 5.9089P] where P = (Fo2 + 2Fc2)/3 |
8409 reflections | (Δ/σ)max = 0.001 |
491 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.66 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.41895 (2) | 0.51731 (2) | 0.53978 (2) | 0.01188 (5) | |
O1 | 0.44546 (2) | 0.56998 (11) | 0.49956 (4) | 0.01743 (15) | |
O2 | 0.43619 (2) | 0.32872 (11) | 0.57872 (4) | 0.01834 (16) | |
O3 | 0.37302 (2) | 0.40795 (10) | 0.45955 (4) | 0.01608 (15) | |
O4 | 0.38117 (2) | 0.73971 (10) | 0.49208 (4) | 0.01663 (15) | |
C1 | 0.34163 (3) | 0.49862 (15) | 0.42904 (6) | 0.01604 (19) | |
C2 | 0.34638 (3) | 0.69347 (15) | 0.45406 (6) | 0.01666 (19) | |
O5 | 0.31838 (3) | 0.78943 (13) | 0.43753 (5) | 0.0290 (2) | |
O6 | 0.31082 (3) | 0.44355 (13) | 0.38420 (5) | 0.0270 (2) | |
O7 | 0.38034 (2) | 0.52494 (10) | 0.59251 (4) | 0.01578 (15) | |
O8 | 0.44487 (2) | 0.68508 (11) | 0.62182 (4) | 0.01635 (15) | |
C3 | 0.38693 (3) | 0.65717 (14) | 0.63407 (6) | 0.01499 (18) | |
C4 | 0.42578 (3) | 0.74855 (15) | 0.65372 (6) | 0.01634 (19) | |
O9 | 0.43714 (3) | 0.86623 (13) | 0.69874 (5) | 0.02635 (19) | |
O10 | 0.36600 (3) | 0.71404 (12) | 0.65962 (5) | 0.02217 (17) | |
C5 | 0.32523 (4) | 0.12402 (15) | 0.56396 (6) | 0.0204 (2) | |
N5 | 0.35544 (4) | 0.08838 (15) | 0.55082 (8) | 0.0301 (3) | |
H5A | 0.3711 (6) | 0.166 (3) | 0.5552 (11) | 0.040 (5)* | |
H5B | 0.3527 (6) | −0.006 (3) | 0.5255 (12) | 0.042 (6)* | |
N8 | 0.32350 (3) | 0.28965 (13) | 0.58800 (5) | 0.01779 (18) | |
H8A | 0.3427 (6) | 0.372 (3) | 0.5924 (10) | 0.037 (5)* | |
C6 | 0.29533 (3) | 0.34407 (16) | 0.60538 (6) | 0.0195 (2) | |
N6 | 0.29672 (3) | 0.51242 (15) | 0.62589 (7) | 0.0259 (2) | |
H6A | 0.2794 (6) | 0.543 (3) | 0.6385 (11) | 0.038 (5)* | |
H6B | 0.3165 (6) | 0.570 (3) | 0.6337 (10) | 0.035 (5)* | |
C7 | 0.26704 (4) | 0.22302 (18) | 0.59948 (7) | 0.0242 (2) | |
H7 | 0.2459 (5) | 0.258 (3) | 0.6093 (10) | 0.035 (5)* | |
C8 | 0.26825 (4) | 0.05496 (18) | 0.57483 (7) | 0.0251 (2) | |
H8 | 0.2490 (6) | −0.027 (3) | 0.5720 (10) | 0.033 (5)* | |
C9 | 0.29675 (4) | 0.00273 (16) | 0.55638 (7) | 0.0239 (2) | |
H9 | 0.2974 (6) | −0.114 (3) | 0.5399 (10) | 0.038 (5)* | |
C10 | 0.41609 (3) | 0.75481 (16) | 0.25317 (6) | 0.0181 (2) | |
N10 | 0.44513 (3) | 0.76369 (16) | 0.23561 (6) | 0.0228 (2) | |
H10A | 0.4591 (6) | 0.670 (3) | 0.2394 (11) | 0.044 (6)* | |
H10B | 0.4489 (5) | 0.854 (3) | 0.2183 (10) | 0.033 (5)* | |
N13 | 0.39527 (3) | 0.90492 (14) | 0.24518 (5) | 0.01700 (18) | |
H13A | 0.4021 (5) | 1.004 (3) | 0.2302 (10) | 0.032 (5)* | |
C11 | 0.36515 (3) | 0.91707 (16) | 0.26207 (6) | 0.0181 (2) | |
N11 | 0.34804 (3) | 1.07389 (16) | 0.25299 (6) | 0.0241 (2) | |
H11A | 0.3536 (6) | 1.152 (3) | 0.2307 (11) | 0.043 (5)* | |
H11B | 0.3295 (5) | 1.088 (3) | 0.2644 (10) | 0.031 (5)* | |
C12 | 0.35486 (4) | 0.76673 (18) | 0.28837 (6) | 0.0222 (2) | |
H12 | 0.3329 (5) | 0.778 (3) | 0.2984 (10) | 0.031 (5)* | |
C13 | 0.37542 (4) | 0.61321 (17) | 0.29592 (7) | 0.0247 (2) | |
H13 | 0.3675 (6) | 0.501 (3) | 0.3123 (10) | 0.033 (5)* | |
C14 | 0.40600 (4) | 0.60402 (17) | 0.27926 (7) | 0.0230 (2) | |
H14 | 0.4198 (6) | 0.504 (3) | 0.2841 (11) | 0.039 (6)* | |
C15 | 0.47700 (3) | −0.13176 (15) | 0.41695 (6) | 0.01577 (19) | |
N15 | 0.49100 (3) | −0.29671 (15) | 0.42598 (6) | 0.0222 (2) | |
H15A | 0.4848 (5) | −0.371 (3) | 0.4494 (10) | 0.029 (4)* | |
H15B | 0.5133 (6) | −0.312 (3) | 0.4253 (10) | 0.033 (5)* | |
N18 | 0.44624 (3) | −0.10508 (12) | 0.43083 (5) | 0.01337 (16) | |
H18A | 0.4831 (5) | 0.275 (2) | 0.3702 (9) | 0.028 (4)* | |
C16 | 0.42852 (3) | 0.05396 (14) | 0.42368 (6) | 0.01396 (18) | |
N16 | 0.39901 (3) | 0.06024 (13) | 0.43990 (6) | 0.01817 (18) | |
H16A | 0.3916 (5) | −0.032 (2) | 0.4570 (9) | 0.022 (4)* | |
H16B | 0.3889 (5) | 0.159 (3) | 0.4397 (9) | 0.027 (4)* | |
C17 | 0.44205 (4) | 0.19760 (15) | 0.39958 (6) | 0.0192 (2) | |
H17 | 0.4304 (5) | 0.315 (2) | 0.3964 (9) | 0.026 (4)* | |
C18 | 0.47321 (4) | 0.17289 (17) | 0.38535 (7) | 0.0218 (2) | |
H18 | 0.4387 (5) | −0.200 (3) | 0.4490 (9) | 0.028 (4)* | |
C19 | 0.49093 (3) | 0.01017 (17) | 0.39314 (6) | 0.0202 (2) | |
H19 | 0.5114 (5) | −0.010 (2) | 0.3839 (10) | 0.026 (4)* | |
OW1 | 0.25449 (3) | 0.86277 (12) | 0.32000 (5) | 0.02255 (17) | |
H1A | 0.2743 (6) | 0.806 (3) | 0.3570 (11) | 0.039 (5)* | |
H1B | 0.2432 (7) | 0.786 (3) | 0.2835 (13) | 0.054 (6)* | |
OW2 | 0.28869 (3) | 0.15066 (13) | 0.29340 (5) | 0.02227 (17) | |
H2A | 0.2759 (7) | 0.064 (3) | 0.3002 (12) | 0.052 (6)* | |
H2B | 0.2985 (7) | 0.225 (3) | 0.3309 (13) | 0.057 (7)* | |
OW3 | 0.500000 | 0.48083 (18) | 0.250000 | 0.0223 (2) | |
H3A | 0.5113 (6) | 0.419 (3) | 0.2838 (10) | 0.044 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01305 (8) | 0.01016 (8) | 0.01423 (9) | 0.00085 (6) | 0.00771 (6) | 0.00032 (6) |
O1 | 0.0194 (4) | 0.0173 (4) | 0.0194 (4) | −0.0009 (3) | 0.0121 (3) | 0.0003 (3) |
O2 | 0.0219 (4) | 0.0154 (4) | 0.0212 (4) | 0.0052 (3) | 0.0126 (3) | 0.0044 (3) |
O3 | 0.0171 (3) | 0.0111 (3) | 0.0201 (4) | −0.0003 (3) | 0.0083 (3) | −0.0033 (3) |
O4 | 0.0184 (4) | 0.0104 (3) | 0.0186 (4) | −0.0001 (3) | 0.0060 (3) | 0.0006 (3) |
C1 | 0.0170 (5) | 0.0147 (5) | 0.0177 (5) | −0.0008 (4) | 0.0088 (4) | −0.0034 (4) |
C2 | 0.0189 (5) | 0.0145 (5) | 0.0152 (4) | 0.0020 (4) | 0.0063 (4) | −0.0009 (4) |
O5 | 0.0224 (4) | 0.0239 (4) | 0.0311 (5) | 0.0097 (4) | 0.0034 (4) | −0.0065 (4) |
O6 | 0.0189 (4) | 0.0260 (5) | 0.0302 (5) | −0.0039 (3) | 0.0058 (4) | −0.0105 (4) |
O7 | 0.0175 (3) | 0.0138 (3) | 0.0197 (4) | −0.0014 (3) | 0.0116 (3) | −0.0020 (3) |
O8 | 0.0138 (3) | 0.0182 (4) | 0.0174 (3) | −0.0010 (3) | 0.0073 (3) | −0.0033 (3) |
C3 | 0.0168 (4) | 0.0135 (4) | 0.0160 (4) | 0.0020 (4) | 0.0086 (4) | 0.0014 (4) |
C4 | 0.0153 (4) | 0.0162 (5) | 0.0168 (5) | 0.0012 (4) | 0.0066 (4) | −0.0015 (4) |
O9 | 0.0224 (4) | 0.0266 (5) | 0.0296 (5) | −0.0040 (3) | 0.0112 (4) | −0.0147 (4) |
O10 | 0.0234 (4) | 0.0207 (4) | 0.0292 (4) | 0.0016 (3) | 0.0178 (4) | −0.0043 (3) |
C5 | 0.0312 (6) | 0.0143 (5) | 0.0213 (5) | −0.0028 (4) | 0.0167 (5) | −0.0010 (4) |
N5 | 0.0476 (7) | 0.0148 (5) | 0.0475 (7) | −0.0058 (5) | 0.0387 (6) | −0.0068 (5) |
N8 | 0.0220 (4) | 0.0140 (4) | 0.0212 (4) | −0.0025 (3) | 0.0131 (4) | −0.0017 (3) |
C6 | 0.0192 (5) | 0.0202 (5) | 0.0204 (5) | −0.0005 (4) | 0.0102 (4) | −0.0010 (4) |
N6 | 0.0229 (5) | 0.0215 (5) | 0.0385 (6) | −0.0020 (4) | 0.0183 (5) | −0.0083 (4) |
C7 | 0.0215 (5) | 0.0259 (6) | 0.0286 (6) | −0.0036 (5) | 0.0142 (5) | −0.0015 (5) |
C8 | 0.0267 (6) | 0.0227 (6) | 0.0269 (6) | −0.0074 (5) | 0.0130 (5) | 0.0010 (5) |
C9 | 0.0345 (6) | 0.0154 (5) | 0.0260 (6) | −0.0060 (5) | 0.0173 (5) | −0.0013 (4) |
C10 | 0.0240 (5) | 0.0184 (5) | 0.0119 (4) | −0.0013 (4) | 0.0079 (4) | −0.0021 (4) |
N10 | 0.0303 (5) | 0.0211 (5) | 0.0233 (5) | 0.0042 (4) | 0.0174 (4) | 0.0028 (4) |
N13 | 0.0196 (4) | 0.0180 (4) | 0.0147 (4) | −0.0008 (3) | 0.0088 (3) | 0.0022 (3) |
C11 | 0.0185 (5) | 0.0226 (5) | 0.0131 (4) | −0.0012 (4) | 0.0070 (4) | 0.0020 (4) |
N11 | 0.0232 (5) | 0.0273 (5) | 0.0272 (5) | 0.0050 (4) | 0.0162 (4) | 0.0104 (4) |
C12 | 0.0241 (5) | 0.0258 (6) | 0.0185 (5) | −0.0054 (5) | 0.0114 (4) | 0.0017 (4) |
C13 | 0.0335 (6) | 0.0207 (5) | 0.0211 (5) | −0.0078 (5) | 0.0135 (5) | 0.0000 (4) |
C14 | 0.0336 (6) | 0.0162 (5) | 0.0208 (5) | −0.0020 (5) | 0.0136 (5) | −0.0013 (4) |
C15 | 0.0134 (4) | 0.0206 (5) | 0.0124 (4) | 0.0015 (4) | 0.0050 (4) | −0.0013 (4) |
N15 | 0.0204 (5) | 0.0250 (5) | 0.0243 (5) | 0.0094 (4) | 0.0128 (4) | 0.0053 (4) |
N18 | 0.0154 (4) | 0.0120 (4) | 0.0140 (4) | 0.0001 (3) | 0.0078 (3) | −0.0001 (3) |
C16 | 0.0177 (4) | 0.0114 (4) | 0.0138 (4) | −0.0009 (4) | 0.0080 (4) | −0.0017 (3) |
N16 | 0.0250 (5) | 0.0097 (4) | 0.0273 (5) | 0.0019 (3) | 0.0184 (4) | 0.0009 (3) |
C17 | 0.0266 (5) | 0.0121 (5) | 0.0223 (5) | −0.0029 (4) | 0.0140 (4) | −0.0002 (4) |
C18 | 0.0263 (6) | 0.0202 (5) | 0.0225 (5) | −0.0083 (4) | 0.0142 (5) | −0.0014 (4) |
C19 | 0.0176 (5) | 0.0263 (6) | 0.0194 (5) | −0.0042 (4) | 0.0108 (4) | −0.0016 (4) |
OW1 | 0.0192 (4) | 0.0214 (4) | 0.0242 (4) | 0.0024 (3) | 0.0072 (3) | −0.0005 (3) |
OW2 | 0.0227 (4) | 0.0209 (4) | 0.0247 (4) | −0.0021 (3) | 0.0119 (3) | −0.0030 (3) |
OW3 | 0.0222 (6) | 0.0201 (6) | 0.0200 (6) | 0.000 | 0.0052 (5) | 0.000 |
V1—O2 | 1.6317 (8) | N10—H10A | 0.88 (2) |
V1—O1 | 1.6433 (8) | N10—H10B | 0.82 (2) |
V1—O3 | 2.0020 (8) | N13—C11 | 1.3706 (14) |
V1—O8 | 2.0026 (8) | N13—H13A | 0.90 (2) |
V1—O4 | 2.1644 (8) | C11—N11 | 1.3337 (16) |
V1—O7 | 2.2248 (8) | C11—C12 | 1.3978 (16) |
O3—C1 | 1.2948 (13) | N11—H11A | 0.84 (2) |
O4—C2 | 1.2761 (14) | N11—H11B | 0.861 (19) |
C1—O6 | 1.2189 (14) | C12—C13 | 1.3807 (19) |
C1—C2 | 1.5485 (15) | C12—H12 | 0.970 (18) |
C2—O5 | 1.2254 (14) | C13—C14 | 1.3841 (19) |
O7—C3 | 1.2725 (13) | C13—H13 | 1.012 (19) |
O8—C4 | 1.2914 (13) | C14—H14 | 0.91 (2) |
C3—O10 | 1.2335 (13) | C15—N15 | 1.3425 (15) |
C3—C4 | 1.5442 (15) | C15—N18 | 1.3679 (13) |
C4—O9 | 1.2240 (14) | C15—C19 | 1.3916 (16) |
C5—N5 | 1.3498 (17) | N15—H15A | 0.85 (2) |
C5—N8 | 1.3635 (15) | N15—H15B | 0.882 (19) |
C5—C9 | 1.3944 (17) | N18—C16 | 1.3632 (14) |
N5—H5A | 0.82 (2) | N18—H18 | 0.917 (19) |
N5—H5B | 0.87 (2) | C16—N16 | 1.3364 (14) |
N8—C6 | 1.3643 (15) | C16—C17 | 1.3965 (15) |
N8—H8A | 0.95 (2) | N16—H16A | 0.887 (18) |
C6—N6 | 1.3382 (16) | N16—H16B | 0.843 (19) |
C6—C7 | 1.3966 (17) | C17—C18 | 1.3855 (17) |
N6—H6A | 0.86 (2) | C17—H17 | 0.987 (18) |
N6—H6B | 0.84 (2) | C18—C19 | 1.3863 (18) |
C7—C8 | 1.3811 (19) | C18—H18A | 0.979 (18) |
C7—H7 | 0.969 (19) | C19—H19 | 0.915 (18) |
C8—C9 | 1.3855 (19) | OW1—H1A | 0.92 (2) |
C8—H8 | 0.955 (19) | OW1—H1B | 0.90 (2) |
C9—H9 | 0.95 (2) | OW2—H2A | 0.87 (2) |
C10—N10 | 1.3375 (16) | OW2—H2B | 0.90 (3) |
C10—N13 | 1.3632 (15) | OW3—H3A | 0.79 (2) |
C10—C14 | 1.3946 (17) | OW3—H3Ai | 0.79 (2) |
O2—V1—O1 | 104.64 (4) | C8—C9—H9 | 121.2 (12) |
O2—V1—O3 | 93.92 (4) | C5—C9—H9 | 120.3 (12) |
O1—V1—O3 | 101.92 (4) | N10—C10—N13 | 117.06 (11) |
O2—V1—O8 | 101.13 (4) | N10—C10—C14 | 124.60 (12) |
O1—V1—O8 | 95.07 (4) | N13—C10—C14 | 118.33 (11) |
O3—V1—O8 | 153.67 (3) | C10—N10—H10A | 120.1 (14) |
O2—V1—O4 | 162.54 (4) | C10—N10—H10B | 120.3 (14) |
O1—V1—O4 | 91.77 (4) | H10A—N10—H10B | 119.4 (19) |
O3—V1—O4 | 76.58 (3) | C10—N13—C11 | 123.78 (10) |
O8—V1—O4 | 82.98 (3) | C10—N13—H13A | 119.3 (12) |
O2—V1—O7 | 89.80 (4) | C11—N13—H13A | 116.9 (12) |
O1—V1—O7 | 164.36 (4) | N11—C11—N13 | 117.04 (11) |
O3—V1—O7 | 82.69 (3) | N11—C11—C12 | 124.63 (11) |
O8—V1—O7 | 75.94 (3) | N13—C11—C12 | 118.32 (11) |
O4—V1—O7 | 74.62 (3) | C11—N11—H11A | 118.1 (15) |
C1—O3—V1 | 119.09 (7) | C11—N11—H11B | 119.9 (13) |
C2—O4—V1 | 112.79 (7) | H11A—N11—H11B | 121.4 (19) |
O6—C1—O3 | 125.84 (11) | C13—C12—C11 | 118.51 (11) |
O6—C1—C2 | 120.83 (10) | C13—C12—H12 | 124.7 (11) |
O3—C1—C2 | 113.33 (9) | C11—C12—H12 | 116.7 (11) |
O5—C2—O4 | 125.27 (11) | C12—C13—C14 | 122.33 (12) |
O5—C2—C1 | 120.89 (10) | C12—C13—H13 | 119.6 (11) |
O4—C2—C1 | 113.84 (9) | C14—C13—H13 | 118.1 (11) |
C3—O7—V1 | 112.38 (7) | C13—C14—C10 | 118.73 (12) |
C4—O8—V1 | 119.21 (7) | C13—C14—H14 | 123.3 (13) |
O10—C3—O7 | 126.65 (11) | C10—C14—H14 | 118.0 (13) |
O10—C3—C4 | 119.21 (10) | N15—C15—N18 | 116.59 (10) |
O7—C3—C4 | 114.13 (9) | N15—C15—C19 | 124.76 (11) |
O9—C4—O8 | 124.79 (11) | N18—C15—C19 | 118.63 (10) |
O9—C4—C3 | 120.37 (10) | C15—N15—H15A | 119.9 (13) |
O8—C4—C3 | 114.77 (9) | C15—N15—H15B | 117.4 (13) |
N5—C5—N8 | 116.69 (11) | H15A—N15—H15B | 117.1 (18) |
N5—C5—C9 | 124.59 (12) | C16—N18—C15 | 123.82 (10) |
N8—C5—C9 | 118.71 (11) | C16—N18—H18 | 119.8 (11) |
C5—N5—H5A | 120.6 (15) | C15—N18—H18 | 116.3 (11) |
C5—N5—H5B | 114.1 (14) | N16—C16—N18 | 117.07 (10) |
H5A—N5—H5B | 123 (2) | N16—C16—C17 | 124.67 (10) |
C5—N8—C6 | 123.57 (10) | N18—C16—C17 | 118.26 (10) |
C5—N8—H8A | 118.5 (12) | C16—N16—H16A | 123.1 (11) |
C6—N8—H8A | 118.0 (12) | C16—N16—H16B | 119.1 (12) |
N6—C6—N8 | 116.75 (11) | H16A—N16—H16B | 117.3 (16) |
N6—C6—C7 | 124.85 (12) | C18—C17—C16 | 118.65 (11) |
N8—C6—C7 | 118.40 (11) | C18—C17—H17 | 121.8 (10) |
C6—N6—H6A | 115.6 (14) | C16—C17—H17 | 119.4 (10) |
C6—N6—H6B | 117.4 (14) | C17—C18—C19 | 122.23 (11) |
H6A—N6—H6B | 125.6 (19) | C17—C18—H18A | 118.1 (11) |
C8—C7—C6 | 118.76 (12) | C19—C18—H18A | 119.6 (11) |
C8—C7—H7 | 120.2 (12) | C18—C19—C15 | 118.39 (11) |
C6—C7—H7 | 120.9 (12) | C18—C19—H19 | 124.3 (11) |
C7—C8—C9 | 122.06 (12) | C15—C19—H19 | 117.3 (11) |
C7—C8—H8 | 117.8 (12) | H1A—OW1—H1B | 108.3 (19) |
C9—C8—H8 | 120.1 (12) | H2A—OW2—H2B | 113 (2) |
C8—C9—C5 | 118.48 (12) | H3A—OW3—H3Ai | 108 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5B···O4ii | 0.87 (2) | 2.47 (2) | 3.2515 (14) | 150.0 (19) |
N5—H5B···O5ii | 0.87 (2) | 2.31 (2) | 3.1196 (16) | 154.7 (19) |
N8—H8A···O7 | 0.95 (2) | 1.87 (2) | 2.8118 (13) | 174.1 (18) |
N6—H6A···OW1iii | 0.86 (2) | 2.00 (2) | 2.8559 (15) | 171.0 (19) |
N6—H6B···O10 | 0.84 (2) | 2.07 (2) | 2.9018 (15) | 176.4 (19) |
N10—H10A···OW3 | 0.88 (2) | 2.08 (2) | 2.9463 (15) | 169 (2) |
N10—H10B···O9iv | 0.82 (2) | 2.17 (2) | 2.8863 (15) | 146.8 (18) |
N13—H13A···O9iv | 0.90 (2) | 2.01 (2) | 2.8309 (13) | 150.3 (17) |
N13—H13A···O10iv | 0.90 (2) | 2.615 (19) | 3.3149 (14) | 135.2 (16) |
N11—H11A···O10iv | 0.84 (2) | 2.02 (2) | 2.8401 (14) | 165 (2) |
N11—H11B···OW2v | 0.861 (19) | 2.00 (2) | 2.8522 (14) | 173.1 (19) |
N15—H15A···O1ii | 0.85 (2) | 2.252 (19) | 2.9914 (14) | 145.5 (17) |
N15—H15B···O1vi | 0.882 (19) | 2.570 (19) | 3.0641 (13) | 116.2 (15) |
N15—H15B···O2vi | 0.882 (19) | 2.01 (2) | 2.8926 (14) | 175.9 (19) |
N16—H16A···O4ii | 0.887 (18) | 1.990 (18) | 2.8695 (13) | 170.5 (16) |
N16—H16B···O3 | 0.843 (19) | 2.085 (19) | 2.9156 (12) | 168.5 (17) |
N18—H18···O1ii | 0.917 (19) | 1.993 (19) | 2.8541 (12) | 155.7 (16) |
OW1—H1A···O5 | 0.92 (2) | 1.79 (2) | 2.6550 (13) | 155.8 (19) |
OW1—H1B···OW2vii | 0.90 (2) | 1.84 (2) | 2.7270 (13) | 169 (2) |
OW2—H2A···OW1ii | 0.87 (2) | 1.87 (3) | 2.7384 (14) | 173 (2) |
OW2—H2B···O6 | 0.90 (3) | 1.93 (3) | 2.7896 (13) | 160 (2) |
OW3—H3A···O8viii | 0.79 (2) | 2.10 (2) | 2.8621 (10) | 161 (2) |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1/2, −y+3/2, −z+1; (iv) x, −y+2, z−1/2; (v) x, y+1, z; (vi) −x+1, −y, −z+1; (vii) −x+1/2, y+1/2, −z+1/2; (viii) −x+1, −y+1, −z+1. |
Acknowledgements
HS thanks Dr Elisa Barea (Department of Inorganic Chemistry, University of Granada) for support and advice during her short-term stay in the University of Granada where the single-crystal X-ray diffraction, elemental analysis and ICP–MS studies were carried out (Centre of Scientific Instrumentation of the University of Granada).
Funding information
Financial support from the Ministry of Higher Education and Scientific Research of Tunisia is gratefully acknowledged.
References
Aghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754–m1755. Web of Science CSD CrossRef IUCr Journals Google Scholar
Atovmyan, B. O. & Sokolova, Yu. A. (1972). Zh. Strukt. Khim. 12, 984–985. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Drew, R. E., Einstein, F. W. B. & Gransden, S. E. (1974). Can. J. Chem. 52, 2184–2189. CrossRef CAS Google Scholar
Hoard, J. L., Scheidt, W. R. & Tsai, C. (1971). J. Am. Chem. Soc. 93, 3867–3872. CrossRef CAS Google Scholar
Kordowiak, A. M., Dudek, B. & Gyrboś, R. (2000). Comp. Biochem. & Phys. C125, 11–16. Google Scholar
León, E. I., Etcheverry, S. B., Parajón-Costa, B. S. & Baran, E. J. (2013). Biol. Trace Elem. Res. 155, 295–300. PubMed Google Scholar
Lin, L., Wu, S.-F., Huang, C.-C., Zhang, H.-H., Huang, X.-H. & Lian, Z.-X. (2004). Acta Cryst. E60, m631–m633. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maurya, M. R., Kumar, M., Titinchi, S. J. J., Abbo, H. S. & Chand, S. (2003). Catal. Lett. 86, 97–105. Web of Science CrossRef CAS Google Scholar
Mishra, G. S. & Kumar, A. (2002). Catal. Lett. 81, 113–117. Web of Science CrossRef CAS Google Scholar
Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4543–o4544. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sehimi, H., Chérif, I. & Zid, M. F. (2016). Acta Cryst. E72, 724–729. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stomberg, R. (1986). Acta Chem. Scand. A40, 168–176. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.