research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-(2-hy­dr­oxy-3-meth­­oxy­benzyl­amino)­benzoic acid di­methyl­formamide monosolvate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar, 842001, India, bDepartment of Applied Chemistry, Faculty of Engineering & Technology, Aligarh, Muslim University, Aligarh, UP 202002, India, and cNational Taras Shevchenko University, Department of Chemistry, Volodymyrska, str., 64, 01601, Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, igolenya@ua.fm

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 February 2019; accepted 14 April 2019; online 18 April 2019)

The title compound, C15H15NO4·C3H7NO·H2O, a secondary amine mol­ecule, is accompanied by one equivalent of water and one equivalent of di­methyl­formamide (DMF) as solvents. The mol­ecule is non-planar, with a Car­yl—CH2—NH—Car­yl torsion angle of −66.3 (3)°. In the crystal, O—H⋯O and N—H⋯O hydrogen-bonding inter­actions between the amine mol­ecules and the two types of solvent mol­ecule result in the formation of a layered structure extending parallel to (010).

1. Chemical context

Vanillin and vanillin derivatives are used in food and non-food applications, in fragrances and as flavouring agents for pharmaceutical products (Hocking, 1997[Hocking, M. B. (1997). J. Chem. Educ. 74, 1055-1059.]; Walton et al., 2003[Walton, N. J., Mayer, M. J. & Narbad, A. (2003). Phytochemistry, 63, 505-515.]). Synthetic vanillin is used as an inter­mediate in the chemical and pharmaceutical industries for the production of herbicides, anti­foaming agents and drugs, such as papaverine, L-dopa and L-methyl­dopa, as well as anti­microbial agents such as trimethoprim (Fitzgerald et al., 2005[Fitzgerald, D. J., Stratford, M., Gasson, M. J. & Narbad, A. (2005). J. Agric. Food Chem. 53, 1769-1775.]), and as a bacterial co-factor involved in the synthesis of folic acid (Robinson, 1966[Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541-662 London: Pergamon.]). Another example is benzocaine, the ethyl ester of p-amino­benzoic acid, which is a local anaesthetic. The mechanism includes inhibiting voltage-dependent sodium channels on the nerve membrane, which results in stopping the signal propagation (Neumcke et al., 1981[Neumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230-236.]). The title compound (1) was synthesized by reduction of reported (E)-4-(2-hy­droxy-3-meth­oxy­benzyl­idene­amino)­benzoic acid with sodium borohydride and crystallizes as a water and di­methyl­formamide solvate. The latter Schiff base is formed by condensation of 4-amino­benzoic acid with o-vanilline.

[Scheme 1]

In this context and as part of an ongoing structural study of Schiff bases and secondary amines for their utilization in the synthesis of new organic compounds and the application of excited-state proton transfer and fluorescent chemosensors (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.],b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.], 2018a[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018a). J. Mol. Struct. 1156, 457-464.],b[Faizi, M. S. H., Dege, N. & Iskenderov, T. S. (2018b). Acta Cryst. E74, 410-413.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787-3796.]), we report here the mol­ecular and crystal structure of (1), C15H15NO4·C3H7NO·H2O.

2. Structural commentary

Compound (1) crystallizes in space group Pbca with one mol­ecule of 4-(2-hy­droxy-3-meth­oxy­benzyl­amino)­benzoic acid and one mol­ecule each of DMF and water in the asymmetric unit (Fig. 1[link]). The secondary amine has two substituted aromatic rings at either end of the —CH2—NH— linkage. As a result of the Car­yl—CH2—NH— Car­yl torsion angle of −66.3 (3)°, the mol­ecular shape of the title compound is bent around the central C8—N1 bond. The secondary amine N atom (N1) has a practically trigonal-planar configuration deviating by 0.02 (1) Å from the mean plane of the adjacent atoms, and N1—C5 is apparently less conjugated with the C2–C7 benzenecarboxylic acid ring. For comparison, the reported C—N distance in the crystal structure of the ethyl 4-[(E)-(4-hy­droxy-3-meth­oxy­benzyl­idene)amino]­benzoate Schiff base is 1.274 (2) Å (Ling et al., 2016[Ling, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951-954.]), and in the zwitterionic form it is 1.312 Å (Kamaal et al., 2018[Kamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M. & Iskenderov, T. (2018). Acta Cryst. E74, 1847-1850.]). The benzene rings C2–C7 and C9–C14 are roughly perpendicular to each another, with a dihedral angle of 88.15 (10)° between them.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 40% probability level. Inter­molecular O—Hwater⋯Oamide and C—Hmeth­yl⋯Namine hydrogen bonds involving the water and di­methyl­formamide solvent mol­ecules are shown as dashed lines (see Table 1[link] for numerical details).

The C16=O5 bond length in the dimethlyformamide solvent is 1.246 (2) Å, which is slightly longer than reported [1.2309 (17) Å (Fernandes et al., 2007[Fernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861.]) or 1.2373 (18) Å (Elgemeie et al., 2015[Elgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322-1324.])] for other di­methyl­formamide solvates. In (1), the C13—O4 bond length to the meth­oxy group is 1.366 (2) Å.

3. Supra­molecular features

The water and di­methyl­formamide solvent mol­ecules stabilize the packing within the crystal structure through hydrogen bonding. The molecules of di­methyl­formamide, 4-(2-hy­droxy-3-meth­oxy­benzyl­amino)­benzoic acid and water are linked through hy­droxyO3—H3⋯O6water, amineN1—H1⋯O6water, waterO6—H6B⋯O5amide, waterO6—H6B⋯O1carb­oxy­ate and O2—H2⋯O5amide hydrogen bonds (Table 1[link], Fig. 2[link]) into a layered structure extending parallel to (010) (Fig. 3[link]). Further C—H⋯O inter­actions (Table 1[link]) between the methyl group of the meth­oxy functionality and the carboxyl­ate group consolidate the packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O1i 0.96 2.50 3.329 (3) 145
N1—H1⋯O6iii 0.89 (2) 2.05 (2) 2.936 (2) 175 (2)
O2—H2⋯O5iv 0.90 (3) 1.70 (3) 2.591 (2) 171 (3)
O3—H3⋯O6v 0.88 (3) 1.90 (3) 2.739 (2) 158 (3)
O6—H6A⋯O1vi 0.85 (3) 1.94 (3) 2.776 (2) 172 (3)
O6—H6B⋯O5 0.88 (3) 1.91 (3) 2.785 (2) 178 (3)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y+1, -z+1; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A view of hydrogen-bonding inter­actions around the water mol­ecule in the title structure.
[Figure 3]
Figure 3
A partial view of the title structure projected along the a axis to emphasize the crystal packing. Dashed lines indicate hydrogen bonds (see Table 1[link] for numerical details).

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave eleven hits for reduced Schiff bases containing a Car­yl—CH2—NH— Car­yl moiety. In direct comparison with the title compound, there are two examples of very similar compounds reported in the literature: ethyl 4-{[(2-hy­droxy­phen­yl)meth­yl]amino}­benzoate, (I) (WEFQEG; Salman et al., 2017[Salman, M., Abu-Yamin, A. A., Sarairah, I., Ibrahim, A. & Aldamen, M. A. (2017). Z. Kristallogr. 232, 631-632.]), and ethyl 4-[(3,5-di-tert-butyl-2-hy­droxy­benz­yl) amino]­benzoate, (II) (VABTAV; Shakir et al., 2010[Shakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2916.]). There is also a related compound, viz. ethyl 4-[(2-hy­droxy­benz­yl)amino]­benzoate, in which the 3-meth­oxy group in the title compound is replaced by a hydrogen atom and the carb­oxy­lic acid is replaced by an ester. Other related structures based on a benzyl­idene–phen­yl–amine moiety are n-propyl 4-[2-(4,6-di­meth­oxy­pyrimidin-2-yl­oxy)benzyl­amino]­benzoate, (III) (ILAGIL; Wu et al., 2003[Wu, J., Zhang, P.-Z., Lu, L., Yu, Q.-S., Hu, X.-R. & Gu, J.-M. (2003). Chin. J. Struct. Chem. 22, 613-616.]), and [4-(2-hy­droxy­benzyl­amino)­benzoato-κO]tri­phenyl­tin(IV), (IV) (WENXAP; Jiang et al., 2006[Jiang, H., Ma, J.-F. & Zhang, W.-L. (2006). Acta Cryst. E62, m2745-m2746.]). The torsion angle Car­yl—CH2—NH—Car­yl in the title compound [−66.3 (3)°] compares well to those in I (73.68°), II (77.38°) and IV (−87.28°), despite the difference in substituent groups.

5. Synthesis and crystallization

To a hot stirred solution of 4-amino­benzoic acid (PABA) (1.00 g, 7.2 mmol) in methanol (15 ml) was added vanillin (1.11 g, 7.2 mmol). The resultant mixture was then heated under reflux. After an hour, a precipitate was formed. The reaction mixture was heated for about a further 30 minutes for completion of the reaction, which was monitored through TLC. The reaction mixture was then cooled to room temperature, filtered and washed with hot methanol. It was then dried in vacuo to give (E)-4-(2-hy­droxy-3-meth­oxy­benzyl­idene­amino) benzoic acid in 78% yield. The latter (1.00 g, 3.7 mmol) was dissolved in 25 ml of methanol and reduced by addition of excess sodium borohydride (0.28 g, 7.4 mmol). The solution was stirred until the yellow colour disappeared. Then the solution was diluted with 8–10 times the volume of water and the pH was adjusted to 6 by addition of 12%wt HCl. The white precipitate was collected and dried in air. Colourless single crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a di­methyl­formamide solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and O—H hydrogen atoms were located in difference-Fourier maps and were freely refined, while the C-bound H atoms were included in calculated positions and treated as riding, with fixed C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula C15H15NO4·C3H7NO·H2O
Mr 364.39
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 11.5504 (7), 13.8047 (7), 22.3899 (12)
V3) 3570.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.39 × 0.24 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 40928, 3165, 2321
Rint 0.106
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.05
No. of reflections 3165
No. of parameters 258
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.25
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

4-(2-Hydroxy-3-methoxybenzylamino)benzoic acid dimethylformamide monosolvate monohydrate top
Crystal data top
C15H15NO4·C3H7NO·H2ODx = 1.356 Mg m3
Mr = 364.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6409 reflections
a = 11.5504 (7) Åθ = 2.3–28.2°
b = 13.8047 (7) ŵ = 0.10 mm1
c = 22.3899 (12) ÅT = 100 K
V = 3570.1 (3) Å3Block, colorless
Z = 80.39 × 0.24 × 0.17 mm
F(000) = 1552
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.106
φ and ω scansθmax = 25.1°, θmin = 2.9°
40928 measured reflectionsh = 1313
3165 independent reflectionsk = 1616
2321 reflections with I > 2σ(I)l = 2626
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0393P)2 + 2.7178P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3165 reflectionsΔρmax = 0.25 e Å3
258 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.97909 (13)0.64576 (11)0.53644 (7)0.0253 (4)
O21.07571 (14)0.62871 (12)0.45097 (7)0.0283 (4)
O30.71716 (14)0.70129 (10)0.18430 (7)0.0252 (4)
O40.76784 (13)0.88000 (10)0.14629 (6)0.0225 (4)
N10.56965 (16)0.64392 (13)0.34340 (8)0.0202 (4)
C10.97938 (19)0.63895 (15)0.48187 (10)0.0203 (5)
C20.87414 (18)0.64213 (15)0.44484 (9)0.0191 (5)
C30.76483 (19)0.64465 (15)0.47181 (10)0.0205 (5)
H3A0.7591630.6446070.5132450.025*
C40.66632 (18)0.64718 (15)0.43802 (9)0.0195 (5)
H40.5947110.6495200.4569580.023*
C50.67081 (18)0.64633 (14)0.37540 (9)0.0182 (5)
C60.78028 (18)0.64468 (15)0.34804 (9)0.0209 (5)
H60.7860100.6451260.3066080.025*
C70.87952 (18)0.64238 (15)0.38257 (10)0.0204 (5)
H70.9514160.6409720.3638890.024*
C80.56478 (18)0.66082 (15)0.27954 (9)0.0198 (5)
H8A0.4870590.6465800.2656760.024*
H8B0.6170480.6159270.2599560.024*
C90.59608 (18)0.76308 (15)0.26052 (9)0.0183 (5)
C100.54893 (18)0.84270 (15)0.29065 (9)0.0204 (5)
H100.4997340.8327500.3229510.024*
C110.57492 (18)0.93582 (15)0.27275 (9)0.0216 (5)
H110.5433920.9881200.2932640.026*
C120.64763 (18)0.95228 (15)0.22444 (9)0.0204 (5)
H120.6643271.0152500.2124420.024*
C130.69509 (18)0.87437 (15)0.19427 (9)0.0184 (5)
C140.66910 (18)0.77913 (15)0.21267 (9)0.0185 (5)
C150.8038 (2)0.97495 (15)0.12804 (10)0.0246 (5)
H15A0.8382771.0079960.1613210.037*
H15B0.7378621.0108460.1142480.037*
H15C0.8594360.9695370.0963520.037*
O50.73401 (13)0.39240 (11)0.48915 (6)0.0232 (4)
N20.63766 (15)0.39534 (12)0.40067 (8)0.0197 (4)
C160.73235 (19)0.38897 (15)0.43356 (10)0.0207 (5)
H160.8026320.3814080.4138340.025*
C170.64116 (19)0.39045 (16)0.33595 (9)0.0233 (5)
H17A0.7187850.3767880.3231460.035*
H17B0.6166370.4513340.3195370.035*
H17C0.5903840.3400110.3223530.035*
C180.52415 (19)0.40815 (18)0.42793 (10)0.0287 (6)
H18A0.5331330.4195690.4699680.043*
H18B0.4786420.3507980.4218600.043*
H18C0.4858770.4625300.4099140.043*
O60.63671 (14)0.30090 (13)0.58799 (7)0.0227 (4)
H10.506 (2)0.6567 (16)0.3644 (10)0.025 (6)*
H21.138 (3)0.623 (2)0.4752 (13)0.060 (10)*
H30.759 (2)0.7170 (19)0.1528 (12)0.045 (8)*
H6A0.607 (2)0.250 (2)0.5735 (12)0.044 (9)*
H6B0.667 (2)0.329 (2)0.5565 (13)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (9)0.0326 (9)0.0193 (9)0.0028 (7)0.0005 (7)0.0003 (7)
O20.0179 (9)0.0423 (10)0.0247 (9)0.0061 (7)0.0004 (7)0.0053 (7)
O30.0359 (10)0.0164 (8)0.0234 (9)0.0002 (7)0.0095 (7)0.0016 (7)
O40.0277 (9)0.0182 (8)0.0217 (8)0.0013 (6)0.0070 (7)0.0019 (6)
N10.0190 (10)0.0251 (10)0.0165 (10)0.0002 (8)0.0014 (8)0.0014 (8)
C10.0243 (12)0.0164 (11)0.0202 (13)0.0024 (9)0.0011 (9)0.0017 (9)
C20.0218 (12)0.0156 (11)0.0199 (12)0.0009 (9)0.0004 (9)0.0008 (9)
C30.0255 (12)0.0185 (12)0.0175 (11)0.0009 (9)0.0026 (9)0.0010 (9)
C40.0178 (11)0.0206 (12)0.0199 (12)0.0018 (9)0.0038 (9)0.0000 (9)
C50.0212 (12)0.0117 (10)0.0216 (12)0.0006 (9)0.0001 (9)0.0005 (8)
C60.0254 (12)0.0204 (12)0.0169 (11)0.0017 (9)0.0019 (9)0.0016 (9)
C70.0189 (11)0.0182 (11)0.0240 (12)0.0013 (9)0.0042 (9)0.0020 (9)
C80.0195 (11)0.0225 (12)0.0173 (11)0.0023 (9)0.0003 (9)0.0003 (9)
C90.0171 (11)0.0192 (11)0.0185 (11)0.0019 (9)0.0053 (9)0.0009 (9)
C100.0182 (11)0.0233 (12)0.0196 (12)0.0014 (9)0.0003 (9)0.0006 (9)
C110.0215 (12)0.0192 (12)0.0242 (12)0.0054 (9)0.0002 (9)0.0029 (9)
C120.0208 (11)0.0157 (11)0.0246 (12)0.0013 (9)0.0031 (9)0.0011 (9)
C130.0175 (11)0.0223 (12)0.0156 (11)0.0003 (9)0.0020 (9)0.0001 (9)
C140.0200 (11)0.0184 (11)0.0170 (11)0.0013 (9)0.0009 (9)0.0029 (9)
C150.0290 (13)0.0181 (12)0.0265 (13)0.0025 (10)0.0044 (10)0.0042 (9)
O50.0247 (8)0.0262 (9)0.0188 (8)0.0007 (7)0.0020 (6)0.0019 (7)
N20.0198 (10)0.0194 (10)0.0198 (10)0.0007 (7)0.0014 (8)0.0010 (7)
C160.0211 (12)0.0169 (11)0.0241 (13)0.0006 (9)0.0018 (9)0.0011 (9)
C170.0246 (12)0.0266 (13)0.0186 (12)0.0026 (10)0.0003 (9)0.0006 (9)
C180.0207 (12)0.0386 (14)0.0267 (13)0.0027 (10)0.0038 (10)0.0013 (11)
O60.0226 (8)0.0265 (9)0.0190 (9)0.0021 (7)0.0003 (7)0.0005 (7)
Geometric parameters (Å, º) top
O1—C11.225 (2)C9—C101.400 (3)
O2—C11.318 (3)C10—C111.380 (3)
O2—H20.90 (3)C10—H100.9300
O3—C141.366 (2)C11—C121.388 (3)
O3—H30.88 (3)C11—H110.9300
O4—C131.366 (2)C12—C131.383 (3)
O4—C151.434 (2)C12—H120.9300
N1—C51.371 (3)C13—C141.410 (3)
N1—C81.450 (3)C15—H15A0.9600
N1—H10.89 (2)C15—H15B0.9600
C1—C21.472 (3)C15—H15C0.9600
C2—C71.396 (3)O5—C161.246 (2)
C2—C31.400 (3)N2—C161.321 (3)
C3—C41.367 (3)N2—C171.451 (3)
C3—H3A0.9300N2—C181.457 (3)
C4—C51.403 (3)C16—H160.9300
C4—H40.9300C17—H17A0.9600
C5—C61.405 (3)C17—H17B0.9600
C6—C71.383 (3)C17—H17C0.9600
C6—H60.9300C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.518 (3)C18—H18C0.9600
C8—H8A0.9700O6—H6A0.85 (3)
C8—H8B0.9700O6—H6B0.88 (3)
C9—C141.382 (3)
C1—O2—H2111.3 (19)C9—C10—H10119.8
C14—O3—H3113.6 (18)C10—C11—C12120.70 (19)
C13—O4—C15117.01 (16)C10—C11—H11119.6
C5—N1—C8122.99 (18)C12—C11—H11119.6
C5—N1—H1115.1 (15)C13—C12—C11119.53 (19)
C8—N1—H1117.1 (15)C13—C12—H12120.2
O1—C1—O2122.3 (2)C11—C12—H12120.2
O1—C1—C2123.9 (2)O4—C13—C12125.70 (19)
O2—C1—C2113.87 (18)O4—C13—C14114.44 (17)
C7—C2—C3118.1 (2)C12—C13—C14119.87 (19)
C7—C2—C1121.73 (19)O3—C14—C9118.85 (18)
C3—C2—C1120.17 (19)O3—C14—C13120.74 (18)
C4—C3—C2120.8 (2)C9—C14—C13120.40 (19)
C4—C3—H3A119.6O4—C15—H15A109.5
C2—C3—H3A119.6O4—C15—H15B109.5
C3—C4—C5121.5 (2)H15A—C15—H15B109.5
C3—C4—H4119.3O4—C15—H15C109.5
C5—C4—H4119.3H15A—C15—H15C109.5
N1—C5—C4119.40 (19)H15B—C15—H15C109.5
N1—C5—C6122.59 (19)C16—N2—C17122.02 (18)
C4—C5—C6118.0 (2)C16—N2—C18121.30 (18)
C7—C6—C5120.2 (2)C17—N2—C18116.68 (18)
C7—C6—H6119.9O5—C16—N2124.5 (2)
C5—C6—H6119.9O5—C16—H16117.7
C6—C7—C2121.4 (2)N2—C16—H16117.7
C6—C7—H7119.3N2—C17—H17A109.5
C2—C7—H7119.3N2—C17—H17B109.5
N1—C8—C9114.65 (17)H17A—C17—H17B109.5
N1—C8—H8A108.6N2—C17—H17C109.5
C9—C8—H8A108.6H17A—C17—H17C109.5
N1—C8—H8B108.6H17B—C17—H17C109.5
C9—C8—H8B108.6N2—C18—H18A109.5
H8A—C8—H8B107.6N2—C18—H18B109.5
C14—C9—C10119.03 (19)H18A—C18—H18B109.5
C14—C9—C8120.80 (19)N2—C18—H18C109.5
C10—C9—C8120.15 (19)H18A—C18—H18C109.5
C11—C10—C9120.5 (2)H18B—C18—H18C109.5
C11—C10—H10119.8H6A—O6—H6B103 (2)
O1—C1—C2—C7174.4 (2)C14—C9—C10—C110.1 (3)
O2—C1—C2—C75.1 (3)C8—C9—C10—C11178.52 (19)
O1—C1—C2—C35.8 (3)C9—C10—C11—C120.4 (3)
O2—C1—C2—C3174.68 (19)C10—C11—C12—C130.5 (3)
C7—C2—C3—C40.1 (3)C15—O4—C13—C124.2 (3)
C1—C2—C3—C4179.70 (19)C15—O4—C13—C14175.82 (18)
C2—C3—C4—C50.7 (3)C11—C12—C13—O4179.86 (19)
C8—N1—C5—C4168.25 (18)C11—C12—C13—C140.1 (3)
C8—N1—C5—C614.0 (3)C10—C9—C14—O3178.43 (18)
C3—C4—C5—N1176.67 (19)C8—C9—C14—O33.0 (3)
C3—C4—C5—C61.2 (3)C10—C9—C14—C130.4 (3)
N1—C5—C6—C7176.78 (19)C8—C9—C14—C13178.20 (19)
C4—C5—C6—C71.0 (3)O4—C13—C14—O31.5 (3)
C5—C6—C7—C20.3 (3)C12—C13—C14—O3178.52 (19)
C3—C2—C7—C60.2 (3)O4—C13—C14—C9179.71 (18)
C1—C2—C7—C6179.53 (19)C12—C13—C14—C90.3 (3)
C5—N1—C8—C966.3 (3)C17—N2—C16—O5179.74 (19)
N1—C8—C9—C14135.2 (2)C18—N2—C16—O50.6 (3)
N1—C8—C9—C1046.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15C···O1i0.962.503.329 (3)145
C15—H15C···O2ii0.962.553.094 (3)116
N1—H1···O6iii0.89 (2)2.05 (2)2.936 (2)175 (2)
O2—H2···O5iv0.90 (3)1.70 (3)2.591 (2)171 (3)
O3—H3···O6v0.88 (3)1.90 (3)2.739 (2)158 (3)
O6—H6A···O1vi0.85 (3)1.94 (3)2.776 (2)172 (3)
O6—H6B···O50.88 (3)1.91 (3)2.785 (2)178 (3)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+3/2, y+1, z1/2; (vi) x+3/2, y1/2, z.
 

Acknowledgements

The Department of Applied Chemistry, Aligarh Muslim University, Aligarh and the Department of Chemistry, L. S. College, B. R. A. Bihar University, are acknowledged for providing laboratory facilities.

Funding information

Funding for this research was provided by: UGC (grant to Musheer Ahmad).

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElgemeie, G. H., Mohamed, R. A., Hussein, H. A. & Jones, P. G. (2015). Acta Cryst. E71, 1322–1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018a). J. Mol. Struct. 1156, 457–464.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N. & Iskenderov, T. S. (2018b). Acta Cryst. E74, 410–413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFitzgerald, D. J., Stratford, M., Gasson, M. J. & Narbad, A. (2005). J. Agric. Food Chem. 53, 1769–1775.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHocking, M. B. (1997). J. Chem. Educ. 74, 1055–1059.  CrossRef CAS Web of Science Google Scholar
First citationJiang, H., Ma, J.-F. & Zhang, W.-L. (2006). Acta Cryst. E62, m2745–m2746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M. & Iskenderov, T. (2018). Acta Cryst. E74, 1847–1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  Web of Science CrossRef CAS Google Scholar
First citationLing, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951–954.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). Chemistry Select, 3, 3787–3796.  CAS Google Scholar
First citationNeumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230–236.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRobinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662 London: Pergamon.  Google Scholar
First citationSalman, M., Abu-Yamin, A. A., Sarairah, I., Ibrahim, A. & Aldamen, M. A. (2017). Z. Kristallogr. 232, 631–632.  CAS Google Scholar
First citationShakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWalton, N. J., Mayer, M. J. & Narbad, A. (2003). Phytochemistry, 63, 505–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, J., Zhang, P.-Z., Lu, L., Yu, Q.-S., Hu, X.-R. & Gu, J.-M. (2003). Chin. J. Struct. Chem. 22, 613–616.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds