research communications
Crystal engineering with short-chained amphiphiles: decasodium octa-n-butanesulfonate di-μ-chlorido-bis[dichloridopalladate(II)] tetrahydrate, a layered inorganic–organic hybrid material
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
*Correspondence e-mail: wfrank@hhu.de
In the course of crystal-engineering experiments, crystals of the hydrated title salt, Na10[Pd2Cl6](C4H9SO3)8·4H2O, were obtained from a water/2-propanol solution of sodium n-butanesulfonate and sodium tetrachloridopalladate(II). In the crystal, sodium n-butanesulfonate anions and water molecules are arranged in an inverse bilayered cationic array represented by the formula {[Na10(C4H9SO3)8(H2O)4]2+}n. Within this lamellar array: (i) a hydrophilic layer region parallel to the bc plane is established by the Na+ cations, the H2O molecules (as aqua ligands in κNa,κNa′-bridging coordination mode) and the O3S– groups of the sulfonate ions, and (ii) hydrophobic regions are present containing all the n-butyl groups in an almost parallel orientation, with the chain direction approximately perpendicular to the aforementioned hydrophilic layer. Unexpectedly, the flat centrosymmetric [Pd2Cl6]2− anion in the structure is placed between the butyl groups, within the hydrophobic regions, but due to its appropriate length primarily bonded to the hydrophilic `inorganic' layer regions above and below the hydrophobic area via Pd—Clt⋯Na- and Pd—Clt⋯H—O(H)—Na-type (Clt is terminal chloride) interactions. In addition to these hydrogen-bonding interactions, both aqua ligands are engaged in charge-supported S—O⋯H—O hydrogen bonds of a motif characterized by the D43(9) graph-set descriptor within the hydrophilic region. The of the title compound is the first reported for a metal n-butanesulfonate.
Keywords: crystal structure; sodium n-butanesulfonate; hexachloridodipalladate(II); amphiphile; bilayered structure; inorganic–organic hybrid material.
CCDC reference: 1906335
1. Chemical context
Sodium alkanesulfonates are artificial soaps (anionic tensides) with a widespread use (Schramm et al., 2003). They are known to have a bilayered structure like `natural' soaps, with an extreme tendency for disorder in the crystalline state (Buerger, 1942; Buerger et al., 1942). Compounds containing alkanesulfonate ions of the general formula CnH2n+1SO3− with n = 1–4 may be defined as short-chained alkanesulfonates (SCAS). In contrast to methanesulfonates (n = 1) and ethanesulfonates (n = 2), there is only rare structure information for the next higher homologues (n = 3, 4) (Frank & Jablonka, 2008; Russell et al., 1994). Solid sodium methanesulfonate is described as an inorganic–organic three-dimensional network (Wei & Hingerty, 1981). However, closer inspection shows the compound to have a bilayered soap-like structure with only one of five CH3SO3− anions connecting in the third dimension. In crystal-engineering experiments, we successfully exchanged this connecting anion by selected other ionic moieties and were able to retain the lamellar structure (Thoelen & Frank, 2017, 2018; Verheyen & Frank, 2009). An aim of subsequent attempts was to include chloridopalladate(II) anions PdnCl2n+22− that are known to be catalytically active (Bouquillion et al., 1999; Jimeno et al., 2012; Lassahn et al., 2003; Mu et al., 2012), by using [PdCl4]2− in the form of its sodium salt as a typical precursor in aqueous palladium(II) chemistry.
In the investigation described herein, the incorporation of hexachloridodipalladate(II) anions into the sodium n-butanesulfonate layered system was realized, resulting in the title compound (1) having the typical brown colour of palladium complexes with a square-planar coordination environment. According to the results of elemental analysis and vibrational spectroscopic investigations, hydrated sodium cations, n-butanesulfonate and hexachloridodipalladate(II) anions are present in the solid. The determination of this compound is the first of a metal n-butanesulfonate and eventually confirmed the composition Na10(C4H9SO3)8[Pd2Cl6]·4H2O and a lamellar structure.
2. Structural commentary
Fig. 1 shows the of the that contains (all in general positions) five sodium cations, two water molecules, four n-butanesulfonate anions and, close to a center of inversion, one half of a hexachloridodipalladate anion. The five Na+ cations are in quite different coordination environments (Fig. 2), defined by five sulfonato ligands (Na4, Na5), four sulfonato ligands and one aqua ligand (Na3), four sulfonato ligands and two aqua ligands (Na2) and four sulfonato ligands, one aqua ligand and one terminal chlorido ligand of the [Pd2Cl6]2− anion (Na1). Bond lengths and angles of the n-butanesulfonate anions are as expected (see supplementary Tables). All these anions are found with an entirely anti-periplanar conformation of the without any disorder. Altogether, n-butanesulfonate anions, Na+ cations and water molecules form a tenside-like inverse bilayered cationic array, which can be described by the formula {[Na10(H2O)4(C4H9SO3)8]2+}n. In this arrangement, the layer-like regions are oriented parallel to the bc plane of the As visualized by the blue and the red sections of the transparent background of Fig. 3, hydrophilic and hydrophobic regions are given, reminiscent of sections of the structures of `pure' short-chained sodium alkanesulfonates (Frank & Jablonka, 2008; Wei & Hingerty, 1981). The hydrophilic areas contain the Na+ cations, the H2O molecules serving as aqua ligands in μ(κNa,κNa′) bridging mode coordination, and the O3S– groups of the sulfonate ions. With all the C4-chains in an approximately parallel orientation, the butyl groups are arranged on both sides of the hydrophilic region to complete the double layer with an inverse bilayer thickness according to unit-cell parameter a. The centrosymmetric [Pd2Cl6]2− anions in the structure of 1 are placed between the n-butyl groups within the hydrophobic regions. In a first view, this position seems to be unexpected; however, the length of the dipalladate(II) anion is appropriate to allow for pronounced bonding to the hydrophilic `inorganic' layered regions above and below the hydrophobic area (Fig. 3). To interact with the inorganic areas above and below the hydrophobic region, a building block is needed that fits to the thickness of the hydrophobic double layer. In the concrete case of 1, the thickness is determined by the lengths of two `end-facing' n-butyl groups.
As expected, the Pd—Cl bonds to the terminal chlorido ligands [2.2776 (12) and 2.2800 (10) Å] are slightly shorter than the Pd—μ-Cl bonds [2.3159 (11) and 2.3212 (12) Å]. These geometric parameters, as well as the Cl—Pd—Cl bond angles of 86.20 (4) to 92.45 (4)° and the Pd—μ-Cl—Pd angle of 93.80 (4)°, are in good agreement with those found in Cs2[Pd2Cl6] (Schüpp & Keller, 1999) or in several hexachloridodipalladates with large organic cations (e.g. Chitanda et al., 2008; Gerisch et al., 1997; Makitova et al., 2007). Alternatively to the formula given above, compound 1 might be formulated as a hydrated double salt of sodium n-butanesulfonate and sodium hexachloridodipalladate(II): Na8(C4H9SO3)8·Na2Pd2Cl6·4H2O. This choice takes into account that the Na—Cl distance from the terminal chlorido ligand Cl2 of the hexachloridodipalladate(II) anion to the sodium cation Na1 [2.8560 (18) Å] is close to the distances of 2.809 (3) to 2.821 (2) Å in Na2PdCl4 (Schröder & Keller, 1989). However, this is a singular similarity, and because all the sodium cations of 1 clearly are components of the layer-like hydrophilic region, there is a much closer structural relationship of 1 to sodium methanesulfonate (Wei & Hingerty, 1981) and sodium 1-propanesulfonate monohydrate (Frank & Jablonka, 2008). As in the structures of these compounds, the in 1 contains five Na+ cations, establishing a closely related Na—O coordination network, and the separation of hydrophilic layers and hydrophobic areas is similar to the most prominent structural feature of crystallized amphiphiles where the neighbouring hydrophobic areas in the layer-like structures are connected by only.
3. Supramolecular features
As emphasized in Fig.1, in addition to the coordinative bonding to two Na+ cations [O1—Na1 = 2.326 (3) Å, O1—Na2 = 2.407 (4) Å; O2—Na3 = 2.311 (4) Å, O2—Na2′ = 2.488 (4) Å], the two crystallographically independent water molecules O1 and O2 in 1 are engaged in non-covalent bonding within the hydrophilic region (Table 1). The water molecule containing O1 serves as donor for both a charge-supported O—H⋯Cl-type hydrogen bond of medium strength to one of the terminal chlorido ligands of the [Pd2Cl6]2− anion [D⋯A distance = 3.127 (3) Å] and a charge-supported weak O—H⋯O type hydrogen bond to an O atom of a sulfonate anion containing S4 [D⋯A = 2.879 (4) Å]. In contrast, the water molecule containing O2 is engaged in two O—H⋯O type hydrogen bonds to sulfonate ions, one of moderate strength to an O atom of the sulfonate ion containing S4 [D⋯A = 2.723 (4) Å] and a weak one to an O atom of the sulfonate ion containing S3 [D⋯A = 2.884 (4) Å]. Pd—Clterm⋯H—O(Na2)—H⋯O14(S4)⋯H—O(Na2)—H⋯O—S is the entire path of hydrogen bonding described by the D34(9) graph-set descriptor (Russell et al., 1994; Grell et al., 1999), with the sulfonate oxygen atom O14 as the central double acceptor.
4. Database survey
A search in the Cambridge Structural Database (Version 5.40, update November 2018; Groom et al., 2016) for short-chained sodium alkanesulfonates Na(CnH2n+1SO3) with n = 1–4 gave three hits, viz. the structures of sodium methanesulfonate (BAKLAA; Wei & Hingerty, 1981), sodium 1-propanesulfonate monohydrate (GOKHIY; Frank & Jablonka, 2008) and α-cyclodextrin sodium 1-propanesulfonate nonahydrate (ACDPRS; Harata, 1977). For crystal structures with n-butanesulfonate anions, only one entry was found (WETNUE; Russell et al., 1994), describing the lamellar structure of guanidinium n-butanesulfonate. Searching for the hexachloridodipalladate(II) anion results in 46 entries. However, from a structural point of view, the role of the [Pd2Cl6]2− ion in 1 is completely different from the role of this species in all the other compounds. In addition to the reports on these compounds having organic components, there is one report on an inorganic ternary chloride containing the [Pd2Cl6]2− ion (CsPdCl3; Schüpp & Keller, 1999).
5. Synthesis and Crystallization
Thin brown platelets of 1 were obtained by slow isothermal evaporation of the solvent from a solution of 5 ml of distilled water and 5 ml of isopropanol containing 3.203 g (20 mmol) of sodium n-butanesulfonate and 1.177 g (4 mmol) of sodium tetrachloridopalladate(II). The evaporation temperature of the solution was adjusted to 288 K with a thermostat. After three days, crystals suitable for X-ray determination could be harvested (5.985 g; 81.6% based on PdCl42–). A single crystal was selected directly from the mother liquor. Raman spectroscopy was done with a Bruker MultiRAM spectrometer, equipped with a Nd:YAG laser (1064 nm) and an InGaAs detector (4000–70 cm−1): ν(C—H): 2969 (m), 2920 (s), 2872 (m); δs(C—H): 1445 (w), 1412 (w); δas(C—H): 1306 (w); νas(S—O): 1071 (s); νs(C—S): 800 (m); δ(S—O): 551 (m), 536 (m); ν(Pd—Clterm): 343 (m), ν(Pd—μ-Cl): 305 (s); ν(Pd—μ-Cl): 273 (m). Band assignments were made according to Fujimori (1959) and Gerisch et al. (1997). An IR spectrum was recorded by using a Spektrum Two FT–IR spectrometer (Perkin Elmer company) with an LiTaO3 detector (4000–350 cm−1) and an universal ATR equipment: ν(O—H): 3503 (s), 3462 (sh), 3436 (s), 3367 (s); ν(C—H): 2967 (s), 2936 (s), 2872 (m); δ(O—H): 1662 (m), 1602 (m); δs(C—H) 1465 (m), 1412 (w), 1378 (w), δas(C—H): 1314 (w), 1286 (w); νas(C—H): 1241 (w); νs(S—O): 1190 (s), 1166 (s); νas(S—O): 1057 (s), 1044 (s); νs(C—S): 794 (m); δ(S—O): 555 (m), 534 (m); band assignment according to Fujimori (1959). A CHS analysis was performed with a vario micro cube (Elementar Analysensysteme GmbH). Analysis calculated for C32H80Cl6Na10O28Pd2S8 (1824.84 g mol−1): C 21.06, H 4.42, S 14.06; found: C 20.78, H 4.49, S 12.98.
6. Refinement
Crystal data, data collection and structure . The positions of all hydrogen atoms were identified in difference-Fourier syntheses. In the course of the converging a riding model was applied using idealized C—H bond lengths (0.97–0.98 Å) as well as H—C—H and C—C—H angles. In addition, H atoms of CH3 groups were allowed to rotate around the neighboring C—C bonds. The Uiso(H) values were set to 1.5Ueq(Cmethyl) and 1.2Ueq(Cmethylene), respectively. H—O distances of the water molecules were restrained to 0.83 (3) Å.
details are summarized in Table 2Supporting information
CCDC reference: 1906335
https://doi.org/10.1107/S2056989019004201/wm5491sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004201/wm5491Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-AREA (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2016); software used to prepare material for publication: publCIF (Westrip, 2010).Na10[Pd2Cl6](C4H9O3S)8·4H2O | F(000) = 1856 |
Mr = 1824.84 | Dx = 1.702 Mg m−3 Dm = 1.712 Mg m−3 Dm measured by flotation in chloroform/bromoform |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.9049 (4) Å | Cell parameters from 49957 reflections |
b = 9.9047 (2) Å | θ = 4.1–59.3° |
c = 22.6734 (7) Å | µ = 1.10 mm−1 |
β = 94.315 (2)° | T = 213 K |
V = 3561.69 (16) Å3 | Thin platelets, brown |
Z = 2 | 0.43 × 0.13 × 0.06 mm |
Stoe IPDS_2T diffractometer | 7116 reflections with I > 2σ(I) |
ω scan | Rint = 0.072 |
Absorption correction: multi-scan (PLATON; Spek, 2009) | θmax = 27.5°, θmin = 2.1° |
Tmin = 0.650, Tmax = 0.937 | h = −20→20 |
48866 measured reflections | k = −11→12 |
8183 independent reflections | l = −29→29 |
Refinement on F2 | 4 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0215P)2 + 3.8152P] where P = (Fo2 + 2Fc2)/3 |
S = 1.54 | (Δ/σ)max < 0.001 |
8183 reflections | Δρmax = 0.73 e Å−3 |
408 parameters | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.10273 (2) | 0.51478 (3) | 0.52464 (2) | 0.02493 (8) | |
Cl1 | 0.18814 (7) | 0.69241 (11) | 0.55153 (7) | 0.0452 (3) | |
Cl2 | 0.20910 (6) | 0.36261 (11) | 0.54280 (6) | 0.0361 (3) | |
Cl3 | 0.01032 (7) | 0.34122 (11) | 0.49624 (7) | 0.0465 (3) | |
S1 | 0.37572 (5) | 0.04330 (8) | 0.48827 (4) | 0.01605 (17) | |
S2 | 0.40803 (5) | 0.51616 (8) | 0.41684 (4) | 0.01565 (17) | |
S3 | 0.37879 (6) | 0.32626 (9) | 0.19446 (4) | 0.01684 (17) | |
S4 | 0.35920 (5) | 0.87006 (9) | 0.26546 (4) | 0.01710 (17) | |
Na1 | 0.38885 (9) | 0.35553 (15) | 0.55924 (7) | 0.0216 (3) | |
Na2 | 0.46690 (10) | 0.73138 (16) | 0.54410 (7) | 0.0283 (4) | |
Na3 | 0.38987 (10) | 0.20007 (16) | 0.34308 (7) | 0.0274 (3) | |
Na4 | 0.48859 (9) | 0.56786 (15) | 0.28553 (7) | 0.0230 (3) | |
Na5 | 0.46642 (10) | 0.86689 (15) | 0.39298 (7) | 0.0245 (3) | |
O1 | 0.36894 (19) | 0.5796 (3) | 0.58556 (14) | 0.0283 (6) | |
H1 | 0.367 (3) | 0.583 (5) | 0.6209 (15) | 0.037 (15)* | |
H2 | 0.322 (2) | 0.604 (6) | 0.574 (3) | 0.054 (18)* | |
O2 | 0.5354 (2) | 0.1883 (3) | 0.35206 (15) | 0.0329 (7) | |
H3 | 0.556 (3) | 0.116 (4) | 0.344 (2) | 0.040 (15)* | |
H4 | 0.552 (4) | 0.240 (5) | 0.328 (2) | 0.053 (18)* | |
O3 | 0.40321 (17) | 0.1195 (3) | 0.54127 (12) | 0.0241 (6) | |
O4 | 0.40499 (17) | −0.0958 (3) | 0.49020 (14) | 0.0291 (6) | |
O5 | 0.40033 (19) | 0.1094 (3) | 0.43503 (13) | 0.0334 (7) | |
O6 | 0.41514 (16) | 0.4210 (3) | 0.46581 (12) | 0.0250 (6) | |
O7 | 0.43673 (17) | 0.4534 (3) | 0.36366 (12) | 0.0248 (6) | |
O8 | 0.45103 (16) | 0.6439 (3) | 0.43105 (12) | 0.0232 (6) | |
O9 | 0.3628 (2) | 0.2671 (3) | 0.25054 (13) | 0.0351 (7) | |
O10 | 0.42717 (18) | 0.4508 (3) | 0.20055 (14) | 0.0317 (7) | |
O11 | 0.41987 (17) | 0.2306 (3) | 0.15672 (12) | 0.0268 (6) | |
O12 | 0.38437 (18) | 0.7351 (3) | 0.28429 (14) | 0.0318 (7) | |
O13 | 0.37292 (17) | 0.9671 (3) | 0.31322 (12) | 0.0282 (6) | |
O14 | 0.39915 (16) | 0.9112 (3) | 0.21230 (11) | 0.0227 (6) | |
C1 | 0.2645 (2) | 0.0366 (4) | 0.48516 (18) | 0.0263 (8) | |
H1A | 0.247524 | −0.006022 | 0.521426 | 0.032* | |
H1B | 0.242490 | 0.129115 | 0.484160 | 0.032* | |
C2 | 0.2242 (3) | −0.0399 (5) | 0.4324 (2) | 0.0322 (9) | |
H2A | 0.237766 | 0.005670 | 0.395932 | 0.039* | |
H2B | 0.247891 | −0.131170 | 0.431978 | 0.039* | |
C3 | 0.1293 (3) | −0.0491 (5) | 0.4338 (2) | 0.0397 (11) | |
H3A | 0.115781 | −0.088804 | 0.471540 | 0.048* | |
H3B | 0.105327 | 0.042000 | 0.431444 | 0.048* | |
C4 | 0.0894 (4) | −0.1334 (8) | 0.3836 (3) | 0.0677 (19) | |
H4A | 0.101675 | −0.093553 | 0.346175 | 0.102* | |
H4B | 0.028870 | −0.136552 | 0.386313 | 0.102* | |
H4C | 0.112114 | −0.224331 | 0.386268 | 0.102* | |
C5 | 0.2997 (2) | 0.5537 (4) | 0.40159 (18) | 0.0218 (8) | |
H5A | 0.276788 | 0.588722 | 0.437482 | 0.026* | |
H5B | 0.293682 | 0.624250 | 0.371248 | 0.026* | |
C6 | 0.2495 (2) | 0.4298 (4) | 0.3802 (2) | 0.0280 (9) | |
H6A | 0.272963 | 0.394351 | 0.344612 | 0.034* | |
H6B | 0.255302 | 0.359666 | 0.410749 | 0.034* | |
C7 | 0.1563 (3) | 0.4605 (5) | 0.3663 (2) | 0.0372 (10) | |
H7A | 0.149960 | 0.526981 | 0.334304 | 0.045* | |
H7B | 0.133087 | 0.499702 | 0.401316 | 0.045* | |
C8 | 0.1075 (3) | 0.3334 (6) | 0.3481 (3) | 0.0614 (17) | |
H8A | 0.048969 | 0.356374 | 0.337654 | 0.092* | |
H8B | 0.110742 | 0.269793 | 0.380703 | 0.092* | |
H8C | 0.131600 | 0.292931 | 0.314234 | 0.092* | |
C9 | 0.2808 (2) | 0.3675 (4) | 0.15778 (17) | 0.0248 (8) | |
H9A | 0.290621 | 0.413088 | 0.120555 | 0.030* | |
H9B | 0.250007 | 0.283805 | 0.147917 | 0.030* | |
C10 | 0.2260 (3) | 0.4574 (5) | 0.1931 (2) | 0.0374 (11) | |
H10A | 0.210258 | 0.408265 | 0.228162 | 0.045* | |
H10B | 0.258374 | 0.537204 | 0.206608 | 0.045* | |
C11 | 0.1472 (3) | 0.5017 (6) | 0.1572 (3) | 0.0472 (13) | |
H11A | 0.119599 | 0.421943 | 0.138975 | 0.057* | |
H11B | 0.163221 | 0.560869 | 0.125302 | 0.057* | |
C12 | 0.0847 (3) | 0.5754 (6) | 0.1927 (4) | 0.070 (2) | |
H12A | 0.040022 | 0.612826 | 0.166142 | 0.105* | |
H12B | 0.113199 | 0.647803 | 0.215028 | 0.105* | |
H12C | 0.060712 | 0.512844 | 0.219803 | 0.105* | |
C13 | 0.2498 (2) | 0.8633 (4) | 0.2452 (2) | 0.0265 (8) | |
H13A | 0.239772 | 0.797174 | 0.213276 | 0.032* | |
H13B | 0.220841 | 0.831048 | 0.279147 | 0.032* | |
C14 | 0.2112 (2) | 0.9972 (4) | 0.2249 (2) | 0.0315 (9) | |
H14A | 0.242041 | 1.032898 | 0.192421 | 0.038* | |
H14B | 0.217053 | 1.062014 | 0.257575 | 0.038* | |
C15 | 0.1180 (3) | 0.9829 (5) | 0.2040 (2) | 0.0379 (10) | |
H15A | 0.112726 | 0.920407 | 0.170397 | 0.045* | |
H15B | 0.087968 | 0.943249 | 0.235982 | 0.045* | |
C16 | 0.0765 (3) | 1.1155 (5) | 0.1856 (2) | 0.0432 (12) | |
H16A | 0.106069 | 1.155756 | 0.154136 | 0.065* | |
H16B | 0.078677 | 1.176286 | 0.219272 | 0.065* | |
H16C | 0.018177 | 1.099456 | 0.171769 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.01842 (13) | 0.02374 (15) | 0.03245 (17) | 0.00385 (12) | 0.00072 (11) | 0.00322 (13) |
Cl1 | 0.0311 (5) | 0.0272 (5) | 0.0747 (9) | 0.0030 (4) | −0.0117 (5) | −0.0018 (6) |
Cl2 | 0.0231 (5) | 0.0286 (5) | 0.0551 (7) | 0.0068 (4) | −0.0055 (5) | 0.0019 (5) |
Cl3 | 0.0225 (5) | 0.0257 (5) | 0.0895 (10) | 0.0045 (4) | −0.0078 (6) | 0.0017 (6) |
S1 | 0.0189 (4) | 0.0142 (4) | 0.0150 (4) | −0.0004 (3) | 0.0011 (3) | −0.0014 (3) |
S2 | 0.0176 (4) | 0.0146 (4) | 0.0147 (4) | 0.0009 (3) | 0.0008 (3) | 0.0012 (3) |
S3 | 0.0225 (4) | 0.0154 (4) | 0.0123 (4) | −0.0003 (3) | −0.0002 (3) | 0.0009 (3) |
S4 | 0.0165 (4) | 0.0174 (4) | 0.0174 (4) | 0.0015 (3) | 0.0016 (3) | 0.0020 (3) |
Na1 | 0.0265 (8) | 0.0197 (7) | 0.0185 (7) | 0.0001 (6) | 0.0012 (6) | 0.0020 (6) |
Na2 | 0.0318 (8) | 0.0238 (8) | 0.0295 (9) | 0.0042 (7) | 0.0027 (7) | 0.0019 (7) |
Na3 | 0.0344 (9) | 0.0290 (8) | 0.0187 (8) | 0.0055 (7) | 0.0024 (6) | 0.0036 (7) |
Na4 | 0.0250 (7) | 0.0195 (7) | 0.0245 (8) | 0.0035 (6) | 0.0015 (6) | −0.0007 (6) |
Na5 | 0.0280 (8) | 0.0232 (7) | 0.0219 (8) | 0.0031 (6) | −0.0008 (6) | 0.0017 (6) |
O1 | 0.0271 (15) | 0.0317 (16) | 0.0252 (16) | 0.0021 (13) | −0.0040 (13) | −0.0052 (13) |
O2 | 0.0381 (17) | 0.0225 (15) | 0.0397 (19) | −0.0021 (13) | 0.0135 (14) | −0.0004 (14) |
O3 | 0.0264 (14) | 0.0263 (14) | 0.0193 (13) | 0.0004 (11) | −0.0005 (11) | −0.0071 (11) |
O4 | 0.0261 (14) | 0.0174 (13) | 0.0431 (18) | 0.0043 (11) | −0.0029 (13) | −0.0030 (12) |
O5 | 0.0380 (16) | 0.0452 (18) | 0.0170 (14) | −0.0123 (14) | 0.0007 (12) | 0.0077 (13) |
O6 | 0.0236 (13) | 0.0268 (14) | 0.0242 (15) | 0.0010 (11) | −0.0007 (11) | 0.0086 (12) |
O7 | 0.0265 (14) | 0.0274 (14) | 0.0209 (14) | 0.0038 (11) | 0.0048 (11) | −0.0024 (11) |
O8 | 0.0241 (13) | 0.0175 (12) | 0.0273 (15) | −0.0027 (10) | −0.0028 (11) | 0.0005 (11) |
O9 | 0.0493 (19) | 0.0403 (17) | 0.0161 (14) | −0.0015 (15) | 0.0045 (13) | 0.0069 (13) |
O10 | 0.0278 (15) | 0.0198 (13) | 0.0465 (19) | −0.0052 (12) | −0.0046 (13) | 0.0022 (13) |
O11 | 0.0306 (15) | 0.0288 (14) | 0.0205 (14) | 0.0124 (12) | −0.0017 (11) | −0.0062 (12) |
O12 | 0.0288 (15) | 0.0237 (14) | 0.0432 (19) | 0.0058 (12) | 0.0055 (13) | 0.0122 (13) |
O13 | 0.0287 (14) | 0.0345 (16) | 0.0207 (14) | 0.0046 (12) | −0.0021 (11) | −0.0062 (12) |
O14 | 0.0222 (13) | 0.0282 (14) | 0.0177 (13) | −0.0032 (11) | 0.0024 (10) | 0.0017 (11) |
C1 | 0.0175 (17) | 0.031 (2) | 0.030 (2) | 0.0028 (15) | 0.0008 (15) | −0.0085 (17) |
C2 | 0.030 (2) | 0.035 (2) | 0.032 (2) | −0.0031 (18) | −0.0025 (17) | −0.0074 (19) |
C3 | 0.023 (2) | 0.044 (3) | 0.050 (3) | −0.0036 (19) | −0.0059 (19) | 0.005 (2) |
C4 | 0.040 (3) | 0.091 (5) | 0.069 (4) | −0.017 (3) | −0.016 (3) | −0.008 (4) |
C5 | 0.0198 (17) | 0.0196 (17) | 0.026 (2) | 0.0039 (14) | 0.0010 (15) | 0.0023 (15) |
C6 | 0.025 (2) | 0.0258 (19) | 0.032 (2) | −0.0028 (16) | −0.0032 (16) | −0.0009 (17) |
C7 | 0.0211 (19) | 0.044 (3) | 0.046 (3) | −0.0001 (19) | −0.0029 (18) | −0.004 (2) |
C8 | 0.031 (3) | 0.065 (4) | 0.086 (5) | −0.014 (3) | −0.012 (3) | −0.004 (3) |
C9 | 0.0201 (18) | 0.034 (2) | 0.0195 (19) | 0.0016 (16) | −0.0022 (14) | −0.0025 (17) |
C10 | 0.027 (2) | 0.036 (2) | 0.050 (3) | 0.0024 (18) | 0.0039 (19) | −0.010 (2) |
C11 | 0.033 (2) | 0.046 (3) | 0.062 (3) | 0.013 (2) | 0.007 (2) | 0.010 (3) |
C12 | 0.032 (3) | 0.058 (4) | 0.120 (6) | 0.013 (3) | 0.005 (3) | −0.020 (4) |
C13 | 0.0148 (17) | 0.029 (2) | 0.036 (2) | −0.0021 (15) | 0.0011 (15) | 0.0046 (18) |
C14 | 0.0227 (19) | 0.028 (2) | 0.043 (3) | 0.0036 (16) | −0.0029 (17) | 0.0034 (19) |
C15 | 0.023 (2) | 0.045 (3) | 0.045 (3) | 0.0004 (19) | −0.0025 (18) | 0.007 (2) |
C16 | 0.027 (2) | 0.051 (3) | 0.051 (3) | 0.010 (2) | −0.003 (2) | 0.009 (2) |
Pd1—Cl1 | 2.2776 (12) | O1—H2 | 0.82 (3) |
Pd1—Cl2 | 2.2800 (10) | O2—H3 | 0.81 (3) |
Pd1—Cl3i | 2.3159 (11) | O2—H4 | 0.80 (3) |
Pd1—Cl3 | 2.3212 (12) | C1—C2 | 1.517 (6) |
Cl2—Na1 | 2.8560 (18) | C1—H1A | 0.9800 |
S1—O5 | 1.453 (3) | C1—H1B | 0.9800 |
S1—O4 | 1.453 (3) | C2—C3 | 1.514 (6) |
S1—O3 | 1.458 (3) | C2—H2A | 0.9800 |
S1—C1 | 1.767 (4) | C2—H2B | 0.9800 |
S2—O6 | 1.454 (3) | C3—C4 | 1.512 (8) |
S2—O7 | 1.460 (3) | C3—H3A | 0.9800 |
S2—O8 | 1.462 (3) | C3—H3B | 0.9800 |
S2—C5 | 1.771 (4) | C4—H4A | 0.9700 |
S3—O9 | 1.440 (3) | C4—H4B | 0.9700 |
S3—O10 | 1.455 (3) | C4—H4C | 0.9700 |
S3—O11 | 1.463 (3) | C5—C6 | 1.524 (5) |
S3—C9 | 1.759 (4) | C5—H5A | 0.9800 |
S4—O12 | 1.451 (3) | C5—H5B | 0.9800 |
S4—O13 | 1.452 (3) | C6—C7 | 1.522 (6) |
S4—O14 | 1.462 (3) | C6—H6A | 0.9800 |
S4—C13 | 1.767 (4) | C6—H6B | 0.9800 |
Na1—O6 | 2.284 (3) | C7—C8 | 1.520 (7) |
Na1—O1 | 2.326 (3) | C7—H7A | 0.9800 |
Na1—O11ii | 2.386 (3) | C7—H7B | 0.9800 |
Na1—O3 | 2.387 (3) | C8—H8A | 0.9700 |
Na1—O8iii | 2.540 (3) | C8—H8B | 0.9700 |
Na2—O4iv | 2.283 (3) | C8—H8C | 0.9700 |
Na2—O1 | 2.407 (4) | C9—C10 | 1.516 (6) |
Na2—O6iii | 2.431 (3) | C9—H9A | 0.9800 |
Na2—O2iii | 2.488 (4) | C9—H9B | 0.9800 |
Na2—O5iii | 2.649 (3) | C10—C11 | 1.507 (7) |
Na2—O8 | 2.700 (3) | C10—H10A | 0.9800 |
Na3—O9 | 2.212 (3) | C10—H10B | 0.9800 |
Na3—O5 | 2.264 (3) | C11—C12 | 1.514 (7) |
Na3—O2 | 2.311 (4) | C11—H11A | 0.9800 |
Na3—O13v | 2.414 (3) | C11—H11B | 0.9800 |
Na3—O7 | 2.649 (3) | C12—H12A | 0.9700 |
Na4—O7 | 2.308 (3) | C12—H12B | 0.9700 |
Na4—O12 | 2.342 (3) | C12—H12C | 0.9700 |
Na4—O14vi | 2.363 (3) | C13—C14 | 1.519 (6) |
Na4—O10 | 2.393 (3) | C13—H13A | 0.9800 |
Na4—O11vii | 2.479 (3) | C13—H13B | 0.9800 |
Na5—O8 | 2.391 (3) | C14—C15 | 1.529 (6) |
Na5—O13 | 2.462 (3) | C14—H14A | 0.9800 |
Na5—O3iii | 2.465 (3) | C14—H14B | 0.9800 |
Na5—O4iv | 2.505 (3) | C15—C16 | 1.515 (6) |
Na5—O11vii | 2.582 (3) | C15—H15A | 0.9800 |
Na5—O5iv | 2.817 (4) | C15—H15B | 0.9800 |
Na5—O10vii | 2.931 (4) | C16—H16A | 0.9700 |
Na5—O12 | 3.000 (4) | C16—H16B | 0.9700 |
O1—H1 | 0.80 (3) | C16—H16C | 0.9700 |
Cl1—Pd1—Cl2 | 92.45 (4) | O5iv—Na5—O12 | 119.93 (10) |
Cl1—Pd1—Cl3i | 90.99 (4) | O10vii—Na5—O12 | 76.60 (9) |
Cl2—Pd1—Cl3i | 176.53 (4) | Na1—O1—H1 | 108 (4) |
Cl1—Pd1—Cl3 | 177.19 (4) | Na2—O1—H1 | 116 (4) |
Cl2—Pd1—Cl3 | 90.36 (4) | Na1—O1—H2 | 109 (4) |
Cl3i—Pd1—Cl3 | 86.20 (4) | Na2—O1—H2 | 107 (4) |
Pd1—Cl2—Na1 | 139.61 (5) | H1—O1—H2 | 102 (5) |
Pd1i—Cl3—Pd1 | 93.80 (4) | Na3—O2—Na2iii | 88.93 (12) |
O5—S1—O4 | 110.28 (19) | Na3—O2—H3 | 116 (4) |
O5—S1—O3 | 111.62 (17) | Na2iii—O2—H3 | 122 (4) |
O4—S1—O3 | 112.98 (17) | Na3—O2—H4 | 107 (4) |
O5—S1—C1 | 108.38 (19) | Na2iii—O2—H4 | 117 (4) |
O4—S1—C1 | 106.46 (18) | H3—O2—H4 | 104 (5) |
O3—S1—C1 | 106.83 (17) | C2—C1—S1 | 114.3 (3) |
O5—S1—Na5v | 61.48 (14) | C2—C1—H1A | 108.7 |
O6—S2—O7 | 110.06 (17) | S1—C1—H1A | 108.7 |
O6—S2—O8 | 112.61 (17) | C2—C1—H1B | 108.7 |
O7—S2—O8 | 112.35 (16) | S1—C1—H1B | 108.7 |
O6—S2—C5 | 107.70 (17) | H1A—C1—H1B | 107.6 |
O7—S2—C5 | 106.74 (17) | C3—C2—C1 | 112.1 (4) |
O8—S2—C5 | 107.05 (17) | C3—C2—H2A | 109.2 |
O9—S3—O10 | 112.86 (19) | C1—C2—H2A | 109.2 |
O9—S3—O11 | 111.67 (18) | C3—C2—H2B | 109.2 |
O10—S3—O11 | 110.37 (18) | C1—C2—H2B | 109.2 |
O9—S3—C9 | 107.65 (19) | H2A—C2—H2B | 107.9 |
O10—S3—C9 | 106.94 (19) | C4—C3—C2 | 112.3 (4) |
O11—S3—C9 | 107.02 (18) | C4—C3—H3A | 109.1 |
O12—S4—O13 | 111.59 (18) | C2—C3—H3A | 109.1 |
O12—S4—O14 | 111.84 (17) | C4—C3—H3B | 109.1 |
O13—S4—O14 | 112.33 (17) | C2—C3—H3B | 109.1 |
O12—S4—C13 | 106.62 (18) | H3A—C3—H3B | 107.9 |
O13—S4—C13 | 107.99 (19) | C3—C4—H4A | 109.5 |
O14—S4—C13 | 106.06 (18) | C3—C4—H4B | 109.5 |
O6—Na1—O1 | 90.30 (12) | H4A—C4—H4B | 109.5 |
O6—Na1—O11ii | 157.10 (12) | C3—C4—H4C | 109.5 |
O1—Na1—O11ii | 97.25 (12) | H4A—C4—H4C | 109.5 |
O6—Na1—O3 | 95.34 (11) | H4B—C4—H4C | 109.5 |
O1—Na1—O3 | 174.22 (12) | C6—C5—S2 | 111.9 (3) |
O11ii—Na1—O3 | 78.00 (10) | C6—C5—H5A | 109.2 |
O6—Na1—O8iii | 80.06 (10) | S2—C5—H5A | 109.2 |
O1—Na1—O8iii | 97.50 (11) | C6—C5—H5B | 109.2 |
O11ii—Na1—O8iii | 77.54 (10) | S2—C5—H5B | 109.2 |
O3—Na1—O8iii | 84.77 (10) | H5A—C5—H5B | 107.9 |
O6—Na1—Cl2 | 97.08 (9) | C7—C6—C5 | 112.6 (3) |
O1—Na1—Cl2 | 81.71 (9) | C7—C6—H6A | 109.1 |
O11ii—Na1—Cl2 | 105.37 (9) | C5—C6—H6A | 109.1 |
O3—Na1—Cl2 | 96.29 (8) | C7—C6—H6B | 109.1 |
O8iii—Na1—Cl2 | 177.04 (9) | C5—C6—H6B | 109.1 |
O4iv—Na2—O1 | 114.31 (12) | H6A—C6—H6B | 107.8 |
O4iv—Na2—O6iii | 136.11 (12) | C6—C7—C8 | 111.1 (4) |
O1—Na2—O6iii | 100.08 (11) | C6—C7—H7A | 109.4 |
O4iv—Na2—O2iii | 103.31 (12) | C8—C7—H7A | 109.4 |
O1—Na2—O2iii | 76.94 (11) | C6—C7—H7B | 109.4 |
O6iii—Na2—O2iii | 110.63 (12) | C8—C7—H7B | 109.4 |
O4iv—Na2—O5iii | 87.44 (11) | H7A—C7—H7B | 108.0 |
O1—Na2—O5iii | 146.38 (12) | C7—C8—H8A | 109.5 |
O6iii—Na2—O5iii | 77.03 (11) | C7—C8—H8B | 109.5 |
O2iii—Na2—O5iii | 73.07 (11) | H8A—C8—H8B | 109.5 |
O4iv—Na2—O8 | 74.15 (10) | C7—C8—H8C | 109.5 |
O1—Na2—O8 | 98.82 (11) | H8A—C8—H8C | 109.5 |
O6iii—Na2—O8 | 74.38 (10) | H8B—C8—H8C | 109.5 |
O2iii—Na2—O8 | 173.81 (12) | C10—C9—S3 | 114.2 (3) |
O5iii—Na2—O8 | 112.15 (10) | C10—C9—H9A | 108.7 |
O9—Na3—O5 | 171.09 (14) | S3—C9—H9A | 108.7 |
O9—Na3—O2 | 102.75 (13) | C10—C9—H9B | 108.7 |
O5—Na3—O2 | 83.98 (13) | S3—C9—H9B | 108.7 |
O9—Na3—O13v | 90.64 (12) | H9A—C9—H9B | 107.6 |
O5—Na3—O13v | 83.01 (12) | C11—C10—C9 | 111.9 (4) |
O2—Na3—O13v | 93.81 (12) | C11—C10—H10A | 109.2 |
O9—Na3—O7 | 85.12 (11) | C9—C10—H10A | 109.2 |
O5—Na3—O7 | 102.30 (12) | C11—C10—H10B | 109.2 |
O2—Na3—O7 | 76.45 (11) | C9—C10—H10B | 109.2 |
O13v—Na3—O7 | 168.18 (11) | H10A—C10—H10B | 107.9 |
O7—Na4—O12 | 93.62 (11) | C10—C11—C12 | 114.0 (5) |
O7—Na4—O14vi | 88.54 (10) | C10—C11—H11A | 108.8 |
O12—Na4—O14vi | 176.01 (12) | C12—C11—H11A | 108.8 |
O7—Na4—O10 | 103.43 (11) | C10—C11—H11B | 108.8 |
O12—Na4—O10 | 95.00 (12) | C12—C11—H11B | 108.8 |
O14vi—Na4—O10 | 87.75 (11) | H11A—C11—H11B | 107.7 |
O7—Na4—O11vii | 98.26 (11) | C11—C12—H12A | 109.5 |
O12—Na4—O11vii | 86.19 (12) | C11—C12—H12B | 109.5 |
O14vi—Na4—O11vii | 90.18 (11) | H12A—C12—H12B | 109.5 |
O10—Na4—O11vii | 158.15 (12) | C11—C12—H12C | 109.5 |
O8—Na5—O13 | 124.40 (12) | H12A—C12—H12C | 109.5 |
O8—Na5—O3iii | 86.35 (10) | H12B—C12—H12C | 109.5 |
O13—Na5—O3iii | 148.92 (12) | C14—C13—S4 | 114.4 (3) |
O8—Na5—O4iv | 76.20 (10) | C14—C13—H13A | 108.7 |
O13—Na5—O4iv | 109.44 (11) | S4—C13—H13A | 108.7 |
O3iii—Na5—O4iv | 79.97 (10) | C14—C13—H13B | 108.7 |
O8—Na5—O11vii | 76.62 (10) | S4—C13—H13B | 108.7 |
O13—Na5—O11vii | 107.11 (10) | H13A—C13—H13B | 107.6 |
O3iii—Na5—O11vii | 72.99 (9) | C13—C14—C15 | 111.9 (4) |
O4iv—Na5—O11vii | 142.52 (11) | C13—C14—H14A | 109.2 |
O8—Na5—O5iv | 127.94 (10) | C15—C14—H14A | 109.2 |
O13—Na5—O5iv | 71.62 (10) | C13—C14—H14B | 109.2 |
O3iii—Na5—O5iv | 93.85 (10) | C15—C14—H14B | 109.2 |
O4iv—Na5—O5iv | 52.85 (9) | H14A—C14—H14B | 107.9 |
O11vii—Na5—O5iv | 152.22 (10) | C16—C15—C14 | 113.4 (4) |
O8—Na5—O10vii | 127.13 (10) | C16—C15—H15A | 108.9 |
O13—Na5—O10vii | 72.78 (9) | C14—C15—H15A | 108.9 |
O3iii—Na5—O10vii | 85.23 (10) | C16—C15—H15B | 108.9 |
O4iv—Na5—O10vii | 151.57 (11) | C14—C15—H15B | 108.9 |
O11vii—Na5—O10vii | 51.04 (8) | H15A—C15—H15B | 107.7 |
O5iv—Na5—O10vii | 104.68 (9) | C15—C16—H16A | 109.5 |
O8—Na5—O12 | 81.05 (10) | C15—C16—H16B | 109.5 |
O13—Na5—O12 | 51.00 (9) | H16A—C16—H16B | 109.5 |
O3iii—Na5—O12 | 144.57 (10) | C15—C16—H16C | 109.5 |
O4iv—Na5—O12 | 127.80 (10) | H16A—C16—H16C | 109.5 |
O11vii—Na5—O12 | 71.92 (9) | H16B—C16—H16C | 109.5 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z; (v) x, y−1, z; (vi) −x+1, y−1/2, −z+1/2; (vii) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O14viii | 0.80 (3) | 2.10 (4) | 2.879 (4) | 164 (5) |
O1—H2···Cl1 | 0.82 (3) | 2.32 (4) | 3.127 (3) | 172 (6) |
O2—H3···O10vi | 0.81 (3) | 1.95 (4) | 2.723 (4) | 159 (5) |
O2—H4···O14vi | 0.80 (3) | 2.10 (4) | 2.884 (4) | 164 (6) |
Symmetry codes: (vi) −x+1, y−1/2, −z+1/2; (viii) x, −y+3/2, z+1/2. |
Acknowledgements
We thank E. Hammes and P. Roloff for technical support and Dr G. Reiss for discussions.
References
Bouquillon, S., du Moulinet d'Hardemare, A., Averbuch-Pouchot, M., Hénin, F. & Muzart, J. (1999). Polyhedron, 18, 3511–3516. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2016). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Buerger, M. J. (1942). Proc. Natl Acad. Sci. 28, 529–535. CrossRef PubMed CAS Google Scholar
Buerger, M. J., Smith, L. B., de Bretteville, A. & Ryer, F. V. (1942). Proc. Natl Acad. Sci. 28, 526–529. CrossRef PubMed CAS Google Scholar
Chitanda, J. M., Quail, J. W. & Foley, S. R. (2008). Acta Cryst. E64, m907–m908. Web of Science CSD CrossRef IUCr Journals Google Scholar
Frank, W. & Jablonka, A. (2008). Z. Anorg. Allg. Chem. 634, 2037. Google Scholar
Fujimori, K. (1959). Bull. Chem. Soc. Jpn, 32, 850–852. CrossRef CAS Web of Science Google Scholar
Gerisch, M., Heinemann, F., Markgraf, U. & Steinborn, D. (1997). Z. Anorg. Allg. Chem. 623, 1651–1656. CSD CrossRef CAS Web of Science Google Scholar
Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Harata, K. (1977). Bull. Chem. Soc. Jpn, 50, 1259–1266. CSD CrossRef CAS Web of Science Google Scholar
Jimeno, C., Christmann, U., Escudero-Adán, E. C., Vilar, R. & Pericàs, M. A. (2012). Chem. Eur. J. 18, 16510–16516. Web of Science CSD CrossRef CAS PubMed Google Scholar
Lassahn, P. G., Lozan, V. & Janiak, C. (2003). Dalton Trans. pp. 927–935. Web of Science CSD CrossRef Google Scholar
Makitova, D. D., Tkachev, V. V. & Atovmyan, L. O. (2007). Russ. J. Coord. Chem. 33, 665–667. Google Scholar
Mu, B., Li, J., Han, Z. & Wu, Y. (2012). J. Organomet. Chem. 700, 117–124. Web of Science CrossRef CAS Google Scholar
Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952. CSD CrossRef CAS Web of Science Google Scholar
Schramm, L. L., Stasiuk, E. N. & Marangoni, D. G. (2003). Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 99, 3–48. CrossRef CAS Google Scholar
Schröder, L. & Keller, J. (1989). J. Less-Common Met. 153, 35–41. Google Scholar
Schüpp, B. & Keller, H.-L. (1999). Z. Anorg. Allg. Chem. 625, 1944–1950. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). IPDS. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Thoelen, F. & Frank, W. (2017). Z. Kristallogr. Suppl. 37, 118. Google Scholar
Thoelen, F. & Frank, W. (2018). Z. Kristallogr. Suppl. 38, 90. Google Scholar
Verheyen, V. & Frank, W. (2009). Z. Kristallogr. Suppl. 29, 41. Google Scholar
Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992–1997. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.