research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fac-aqua­[(E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­­idene)aniline-κ2N,N′]tri­carbonylrhenium(I) hexa­fluorido­phosphate methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece, bInstitute of Nanoscience and Nanotechnology, Department of Materials Science, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece, and cInstitute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece
*Correspondence e-mail: v.psycharis@inn.demokritos.gr

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 March 2019; accepted 29 March 2019; online 5 April 2019)

In the title compound, fac-[Re(C19H13N3S)(CO)3(H2O)]PF6·CH3OH, the coordination environment of the ReI atom is octa­hedral with a C3N2O coordination set. In this mol­ecule, the N,N′ bidentate ligand, (E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline, and the monodentate aqua ligand occupy the three available coordination sites of the [Re(CO)3]+ core, generating a `2 + 1' mixed-ligand complex. In this complex, the Re—C bonds of the carbonyl ligands trans to the coordinating N,N′ atoms of the bidentate ligand are longer than the Re—C bond of the carbonyl group trans to the aqua ligand, in accordance with the intensity of their trans effects. The complex is positively charged with PF6 as the counter-ion. In the structure, the complexes form dimers through ππ inter­molecular inter­actions. O—H⋯O and O—H⋯N hydrogen bonds lead to the formation of stacks parallel to the a axis, which further extend into layers parallel to (0[\overline{1}]1). Through O—H⋯F hydrogen bonds between the complexes and the PF6counter-anions, a three-dimensional network is established.

1. Chemical context

`2 + 1' mixed-ligand complexes of general formula fac-[M(CO)3L1L2], where M is Re or 99mTc, L1 is a bidentate ligand (bi­pyridine, 2-picolinic acid, acetyl­acetone, etc) and L2 is a monodentate ligand (aqua, imidazole, phosphine or isocyanide), have been studied extensively for the development of novel radiopharmaceuticals for diagnosis (M = 99mTc) or radiotherapy (M = 186/188Re) (Knopf et al., 2017[Knopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302-14314.]; Mundwiler et al., 2004[Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. A. (2004). Dalton Trans. pp. 1320-1328.]; Papagiannopoulou et al., 2014[Papagiannopoulou, D., Triantis, C., Vassileiadis, V., Raptopoulou, C. P., Psycharis, V., Terzis, A., Pirmettis, I. & Papadopoulos, M. S. (2014). Polyhedron, 68, 46-52.]; Tri­antis et al., 2013[Triantis, C., Tsotakos, T., Tsoukalas, C., Sagnou, M., Raptopoulou, C., Terzis, A., Psycharis, V., Pelecanou, M., Pirmettis, I. & Papadopoulos, M. (2013). Inorg. Chem. 52, 12995-13003.]; Shegani et al., 2017[Shegani, A., Triantis, C., Nock, B. A., Maina, T., Kiritsis, C., Psycharis, V., Raptopoulou, C., Pirmettis, I., Tisato, F. & Papadopoulos, M. S. (2017). Inorg. Chem. 56, 8175-8186.]). Furthermore, recent studies have revealed the potential of such fac-[Re(CO)3L1L2] complexes as anti­cancer agents (Leonidova & Gasser, 2014[Leonidova, A. & Gasser, G. (2014). Chem. Biol. 9, 2180-2193.]). According to the `2 + 1' strategy, the inter­mediate aqua complex fac-[Re(CO)3(L2)(H2O)] plays a crucial role. The labile water ligand can readily be substituted by a monodentate ligand L2 (typically heterocyclic aromatic amines, isocyanides, phosphines), generating the final fac-[Re(CO)3L2L1] product in high yield. The `2 + 1' complexes are characterized by kinetic stability and structural variability that facilitates the tuning of physicochemical properties and tethering of pharmacophores of inter­est towards the generation of targeted multifunctional compounds.

[Scheme 1]

As part of our ongoing research in the field of Re/Tc coordination chemistry, we report herein the structure of the `2 + 1' tricarbonyl rhenium(I) complex fac-[Re(CO)3(NNbz)(H2O)]PF6·CH3OH where the bidentate NNbz ligand is (E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline. The NNbz ligand carries the 2-(4′-amino­phen­yl)benzo­thia­zole scaffold, which also exhibits inter­esting biol­ogical properties against a variety of targets and presents great potential for diagnostic/therapeutic applications (Keri et al., 2015[Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207-251.]; Kiritsis et al., 2017[Kiritsis, C., Mavroidi, B., Shegani, A., Palamaris, E., Loudos, G., Sagnou, M., Pirmettis, I., Papadopoulos, M. & Pelecanou, M. (2017). ACS Med. Chem. Lett. 8, 1089-1092.]; Bradshaw & Westwell, 2004[Bradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1241-1253.]).

2. Structural commentary

The asymmetric unit of the title compound comprises one fac-aqua­tricarbonyl-(E)-4-(benzo[d]thia­zol-2-yl)-N-(pyridin-2-yl­methyl­idene)aniline–rhenium(I) complex mol­ecule, one PF6 counter-anion and one methanol solvent mol­ecule (Fig. 1[link]). Within the complex, the ReI atom presents a distorted octa­hedral C3N2O coordination set with the three tricarbonyl ligands in facial and the bidentate di­imine (NNbz) and the monodentate water ligands in a cis arrangement (Fig. 1[link]). The two coordinating nitro­gen atoms N1 and N2 of the bidentate NNbz ligand together with two carbonyl carbon atoms define the equatorial plane with almost perfect planarity (deviation from the least-squares plane = 0.006 Å). The Re—N1 and Re—N2 distances are 2.177 (2) and 2.194 (2) Å, respectively. The oxygen atom of the water mol­ecule [Re—O1W = 2.189 (2) Å] and the carbon atom from the third carbonyl ligand define the axial direction of the octa­hedron. Both the Re—N and the Re—O distances fall in the range of observed values in complexes with a di­imine, aqua or tricarbonyl core (Mella et al., 2016[Mella, P., Cabezas, K., Cerda, C., Cepeda-Plaza, M., Günther, G., Pizarro, N. & Vega, A. (2016). New J. Chem. 40, 6451-6459.]; Connick et al., 1999[Connick, W. B., Di Bilio, A. J., Schaeffer, W. P. & Gray, H. B. (1999). Acta Cryst. C55, 913-916.]; Schutte et al. 2011[Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486-12498.]; Salignac et al., 2003[Salignac, B., Grundler, P. V., Cayemittes, S., Frey, U., Scopelliti, R., Merbach, A. E., Hedinger, R., Hegetschweiler, K., Alberto, R., Prinz, U., Raabe, G., Kölle, U. & Hall, S. (2003). Inorg. Chem. 42, 3516-3526.]; Knopf et al., 2017[Knopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302-14314.]; Rillema et al., 2007[Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404-m1405.]; Barbazán et al., 2009[Barbazán, P., Carballo, R., Prieto, I., Turnes, M. & Vázquez-López, E. M. (2009). J. Organomet. Chem. 694, 3102-3111.]; Carrington et al., 2016[Carrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. 55, 7852-7858.]; Tzeng et al., 2011[Tzeng, B.-C., Chen, B.-S., Chen, C.-K., Chang, Y.-P., Tzeng, W.-C., Lin, T.-Y., Lee, G.-H., Chou, P.-T., Fu, Y. J. & Chang, A. H.-H. (2011). Inorg. Chem. 50, 5379-5388.]; Grewe et al., 2003[Grewe, J., Hagenbach, A., Stromburg, B., Alberto, R., Vazquez-Lopez, E. & Abram, U. (2003). Z. Anorg. Allg. Chem. 629, 303-311.]). The NNbz ligand deviates from planarity as the dihedral angle between the central phenyl ring and the benzo­thia­zole group is 20.48 (8)°, while the dihedral angle between the phenyl ring and the pyridine ring is 39.13 (8)°.

[Figure 1]
Figure 1
Mol­ecular structure and labeling scheme for the title ReI complex, the methanol solvent mol­ecule and the PF6 counter-anion. Displacement ellipsoids are drawn at the 50% probability level. Cyan and dark-green dashed lines indicate the O1W—H101⋯O1M and O1W—H102⋯F1 hydrogen bonds, respectively.

3. Supra­molecular features

The counter-anion and the methanol solvent mol­ecules form O1W—H102⋯F1 and O1W—H101⋯O1M hydrogen bonds with the aqua ligand (Fig. 1[link], Table 1[link]). Neighbouring complexes present a ππ overlap between their coordinating NNbz ligands, forming dimers (Fig. 2[link]). More specifically, the mol­ecules are centrosymetrically related and thus exhibit parallel phenyl rings of the NNbz ligand at a distance of 3.50 (1) Å. In addition, both the pyridine rings and the phenyl rings of the benzo­thia­zole parts of neighbouring centrosymmetrically related NNbz ligands overlap with each other, with their respective centroids Cg1 and Cg2 lying at a distance of 3.8525 (1) Å and forming an angle of 18.67 (6)° [Cg1 and Cg2′ are the centroids of the N1, C4–C8 and C17′–C22′ rings; symmetry code: (′) 1 − x, 1 − y, 1 − z; Fig. 2[link]]. The dimers are stacked along the a-axis direction. Methanol solvent mol­ecules are inter­leaved between adjacent dimers within the stacked mol­ecules and are linked through inter­molecular O1W—H101⋯O1M and O1M—H201⋯N3 inter­actions (Fig. 3[link]). These stacks are extended into layers parallel to (0[\overline{1}]1) through C5—H5⋯O2 hydrogen bonds and further O1W—H102⋯F1, C9—H9⋯F3ii (Table 1[link]) hydrogen bonds between the counter-anions and the coordinating ligands result in the formation of a three-dimensional network structure (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.91 (4) 2.59 (4) 3.439 (4) 156 (3)
C9—H9⋯F3ii 0.94 (3) 2.47 (3) 3.390 (3) 166 (2)
O1W—H101⋯O1M 0.91 (4) 1.67 (4) 2.558 (3) 165 (4)
O1W—H102⋯F1 0.72 (4) 2.36 (4) 3.059 (5) 164 (4)
O1M—H201⋯N3iii 0.88 (5) 2.01 (5) 2.842 (3) 158 (4)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
Dimers of complexes formed through ππ overlap between their coordinating NNbz ligands and inter­molecular inter­actions between dimers with methanol solvent mol­ecules and PF6 counter-anions. Colour code as in Fig. 1[link] with the additional O1M—H201⋯N3 inter­actions indicated by orange dashed lines. [Symmetry codes: (′) 1 − x, 1 − y, 1 − z; (′′) 2 − x, 1 − y, 1 − z; (′′′) −1 + x, y, z.]
[Figure 3]
Figure 3
Layers of complexes parallel to (0[\overline{1}]1). C5—H5⋯O2 hydrogen bonds are indicated by yellow dashed lines. For the atoms and the rest of the bonds, the colour code is as in Fig. 2[link].
[Figure 4]
Figure 4
Three-dimensional arrangement of layers. C9—H9⋯F3ii hydrogen bonds are indicated by black dashed lines. For the atoms and the rest of the bonds, the colour code is as in previous figures. The cyan arrows indicate the position of the layers within the structure and the orange ones the areas where the complexes inter­act through ππ inter­actions.

4. Hirshfeld surface study

The view of the Hirshfeld surface mapped with dnorm (Fig. 5[link]a) reveals almost all of the hydrogen-bonding inter­actions discussed above as intense red areas. The same view of the surface mapped with the curvedness property reveals the contact areas of the tricarbonyl part of the complex with the benzo­thia­zole end of the coordinating ligand, as indicated by patches of the same shape (circled areas in Fig. 5[link]b). Finally, the plot of the surface mapped with the shape-index property (Fig. 5[link]c) gives clear evidence that this part of the mol­ecule inter­acts with a centrosymmetrically related neighbour, as the shape of the patterns on the surface are related centrosymmetrically. The rhombic and triangular shapes with the complementary red(hollows)/blue(bumps) colours are characteristic of ππ inter­actions. The asymmetric distribution of points in the fingerprint plot for the complex shown in Fig. 5[link]d is indicative that there are contributions from different mol­ecules. The relative contributions for the H⋯H, O⋯H, H⋯F, C⋯H and C⋯C inter­actions are 23.2, 20.2, 16.2, 9.7 and 8.2%, respectively, which, in total, amount to 96.4%. The rest of the inter­molecular inter­actions include O⋯S (3.1%), H⋯N (2.3%), C⋯S (2.4%) and C⋯N (1.5%), as well as other inter­actions with <1% contribution.

[Figure 5]
Figure 5
Views of the Hirshfeld surfaces mapped over (a) dnorm, (b) curvedness and (c) shape-index, and (d) the fingerprint plot for the title complex. The red circles in (b) indicate patches of the same shape corresponding to contact areas of neighbouring complexes. The central ellipse in (c) indicates the ππ overlap of the central phenyl rings, and the two circles at both ends of the surface the overlap of the pyridine ring and the phenyl ring of the benzo­thia­zol part of neighbouring centrosymmetrically related NNbz ligands. In (d), de and di are the distances to the nearest atom centre exterior and inter­ior to the surface. A1 and A4 stand for the acceptor atoms in O1W—H201⋯N3 and C⋯H inter­actions. A2, B2 indicate the acceptor atom and the H-donated atom in the C5—H5⋯O2 inter­action, B1 the H101 atom in the O1W—H101⋯O1M inter­action, and B3, C and D the H⋯F, H⋯H and C⋯C inter­actions, respectively.

5. Database survey

A search of the Cambridge Structural Database (Version 5.39, update of August 2918; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed twelve fac-aqua­tricarbonyl ReI complexes with different N,N′-bidentate ligands. A thirteenth structure, FIWQUX-2 (Schutte et al., 2011[Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486-12498.]), consists of two symmetry-independent complexes. The Re—N bond lengths observed in the present study (Table 2[link]) are longer than those in most of the previously studied complexes, and close to the longer ones observed in the SEHGUK structure (Knopf et al., 2017[Knopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302-14314.]) with the 4,7-diphenyl-1,10-phenanthroline bidentate ligand. As can be seen in Table 2[link], the Re—N bond lengths fall in the range 2.142–2.210 Å. The corresponding range for the Re—O1W bond is 2.143–2.214 Å, with the value observed in the present study falling in the middle of this range. The values of the Re—C bond lengths are also given. In all cases, the Re—C bonds trans to water mol­ecule are shorter than the Re—C bonds trans to N atoms, in accordance with the intensity of the trans effect of the coordinating ligands.

Table 2
Characteristic bond lengths (Å) for a series of ReI complexes with a fac-aqua tricarbonyl di­imine octa­hedral core

  Re—N1 Re—C1 Re—N2 Re—C2 Re—O1W Re—C3
Present work 2.177 (2) 1.925 (3) 2.194 (2) 1.920 (3) 2.189 (2) 1.899 (3)
ENAJAGa 2.156 (7) 1.935 (11) 2.165 (7) 1.884 (10) 2.176 (7) 1.886 (11)
ENAJEKa 2.173 (5) 1.911 (7) 2.178 (5) 1.921 (7) 2.191 (5) 1.879 (7)
FIWQUX-1b 2.168 (7) 1.91 (1) 2.180 (5) 1.914 (8) 2.215 (6) 1.88 (1)
FIWQUX-2b 2.164 (7) 1.902 (10) 2.178 (7) 1.909 (10) 2.210 (6) 1.868 (10)
KAWLOLc 2.168 (4) 1.914 (6) 2.175 (4) 1.929 (7) 2.162 (3) 1.893 (5)
UHUNOAd 2.161 (5) 1.938 (7) 2.183 (5) 1.931 (7) 2.181 (5) 1.898 (7)
  2.160 (5) 1.928 (6) 2.174 (4) 1.926 (9) 2.196 (6) 1.915 (7)
SEHGUKe 2.210 (3) 1.928 (4) 2.200 (3) 1.929 (4) 2.196 (2) 1.896 (4)
PIDYILff 2.167 (2) 1.918 (3) 2.167 (2) 1.918 (3) 2.143 (3) 1.912 (4)
UHUNUGd 2.161 (6) 1.901 (9) 2.165 (6) 1.914 (10) 2.190 (5) 1.882 (10)
  2.165 (6) 1.901 (9) 2.161 (6) 1.91 (1) 2.190 (5) 1.88 (1)
VUDWATg 2.185 (4) 1.888 (7) 2.175 (6) 1.925 (8) 2.165 (5) 1.853 (9)
ETEDEOh 2.186 (5) 1.933 (6) 2.178 (5) 1.902 (7) 2.155 (5) 1.896 (7)
IZORIZi 2.203 (3) 1.912 (4) 2.142 (3) 1.922 (4) 2.173 (3) 1.904 (4)
TUTDANj 2.168 (6) 1.925 (8) 2.175 (6) 1.913 (9) 2.175 (6) 1.89 (1)
Notes: (a) 1,10-Phenanthroline (Connick et al., 1999[Connick, W. B., Di Bilio, A. J., Schaeffer, W. P. & Gray, H. B. (1999). Acta Cryst. C55, 913-916.]); (b) 1,10-phenanthroline (Schutte et al., 2011[Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486-12498.]); (c) 1,10-phenanthroline (Schutte et al., 2011[Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486-12498.]); (d) 1,10-phenanthroline (Salignac et al., 2003[Salignac, B., Grundler, P. V., Cayemittes, S., Frey, U., Scopelliti, R., Merbach, A. E., Hedinger, R., Hegetschweiler, K., Alberto, R., Prinz, U., Raabe, G., Kölle, U. & Hall, S. (2003). Inorg. Chem. 42, 3516-3526.]); (e) 4,7-diphenyl-1,10-phenanthroline (Knopf et al., 2017[Knopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302-14314.]); (f) 2,2′-bi­pyrazine (Rillema et al., 2007[Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404-m1405.]); (g) 2-hy­droxy­benzoic acid hydrazide, (Barbazán et al., 2009[Barbazán, P., Carballo, R., Prieto, I., Turnes, M. & Vázquez-López, E. M. (2009). J. Organomet. Chem. 694, 3102-3111.]); (h) 2-(2′-pyrid­yl)benzo­thia­zole (Carrington et al., 2016[Carrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. 55, 7852-7858.]); (i) 2-(2′-pyrid­yl)benzimidazole (Tzeng et al., 2011[Tzeng, B.-C., Chen, B.-S., Chen, C.-K., Chang, Y.-P., Tzeng, W.-C., Lin, T.-Y., Lee, G.-H., Chou, P.-T., Fu, Y. J. & Chang, A. H.-H. (2011). Inorg. Chem. 50, 5379-5388.]); (j) acetyl­pyridine benzoyl­hydrazone (Grewe et al., 2003[Grewe, J., Hagenbach, A., Stromburg, B., Alberto, R., Vazquez-Lopez, E. & Abram, U. (2003). Z. Anorg. Allg. Chem. 629, 303-311.]).

6. Synthesis and crystallization

A mixture of Re(CO)5Br (81 mg, 0.2 mmol) and the NNbz ligand (69 mg, 0.22 mmol) was suspended in 7 ml toluene and refluxed under an N2 atmosphere for 4 h. The red suspension was then allowed to cool to room temperature. The red solid that formed was dissolved in aceto­nitrile (25 ml) and a batch of AgPF6 (55 mg, 0.22 mmol) was added. The reaction mixture was refluxed for 18 h under an N2 atmosphere. The round flask was covered with aluminium foil to avoid exposure to any ambient light. The reaction mixture was allowed to cool for 1 h to 273 K, and then the precipitate (AgBr) was filtered off through celite. The yellow–orange filtrate was evaporated to dryness under reduced pressure, and the residue was recrystallized from aceto­nitrile/water to obtain 67 mg (45% yield) of the aqua complex. Analysis calculated (%) for C22H15F6N3O4PReS: C, 35.30; H, 2.02; N, 5.61; found: C: 35.43, H: 2.05, N: 5.52. IR (cm−1): 2034, 1941, 1914 cm−1 (vibration tension of the C≡O bond), 832, 556 cm−1 (due to the counter-ion PF6). 1H NMR (DMSO-d6), δ (ppm): 9.58, 9.15, 8.49, 8.45, 8.37, 8.21, 8.12, 7.98, 7.83, 7.78, 7.60, 7.52. Red–brown crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol/water solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula [Re(C19H13N3S)(CO)3(H2O)]PF6·CH4O
Mr 780.64
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 160
a, b, c (Å) 10.0447 (3), 10.7580 (3), 13.6263 (4)
α, β, γ (°) 74.335 (1), 76.285 (1), 68.874 (1)
V3) 1306.38 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.88
Crystal size (mm) 0.48 × 0.26 × 0.04
 
Data collection
Diffractometer Rigaku R-AXIS SPIDER IPDS
Absorption correction Numerical (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.])
Tmin, Tmax 0.496, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25647, 5694, 5416
Rint 0.027
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 1.06
No. of reflections 5694
No. of parameters 437
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.97, −0.53
Computer programs: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]), SHELXS (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Crystal Impact, 2012[Crystal Impact (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

fac-Aqua[(E)-4-(benzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethylidene)aniline-κ2N,N']tricarbonylrhenium(I) hexafluoridophosphate methanol monosolvate top
Crystal data top
[Re(C19H13N3S)(CO)3(H2O)]PF6·CH4OZ = 2
Mr = 780.64F(000) = 756
Triclinic, P1Dx = 1.985 Mg m3
a = 10.0447 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7580 (3) ÅCell parameters from 23889 reflections
c = 13.6263 (4) Åθ = 3.2–27.5°
α = 74.335 (1)°µ = 4.88 mm1
β = 76.285 (1)°T = 160 K
γ = 68.874 (1)°Parallelepiped, red brown
V = 1306.38 (7) Å30.48 × 0.26 × 0.04 mm
Data collection top
Rigaku R-AXIS SPIDER IPDS
diffractometer
5416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
θ scansθmax = 27.0°, θmin = 3.1°
Absorption correction: numerical
(CrystalClear; Rigaku, 2005)
h = 1212
Tmin = 0.496, Tmax = 1.000k = 1313
25647 measured reflectionsl = 1716
5694 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020All H-atom parameters refined
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0212P)2 + 1.3806P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
5694 reflectionsΔρmax = 0.97 e Å3
437 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.60782 (2)0.80579 (2)0.72803 (2)0.02076 (4)
O1W0.7342 (2)0.6297 (2)0.82936 (19)0.0305 (4)
C10.7598 (3)0.7903 (3)0.6110 (2)0.0278 (6)
O10.8494 (2)0.7844 (2)0.54080 (17)0.0378 (5)
C20.6724 (3)0.9386 (3)0.7560 (2)0.0274 (6)
O20.7081 (2)1.0222 (2)0.76923 (17)0.0368 (5)
C30.4873 (3)0.9562 (3)0.6452 (2)0.0270 (6)
O30.4169 (2)1.0526 (2)0.59636 (17)0.0384 (5)
N10.4410 (2)0.7968 (2)0.86255 (17)0.0235 (5)
N20.5265 (2)0.6456 (2)0.71983 (17)0.0225 (4)
N30.8451 (2)0.3276 (2)0.34299 (18)0.0255 (5)
S10.76531 (10)0.12865 (8)0.46521 (7)0.0419 (2)
C40.3971 (3)0.8740 (3)0.9337 (2)0.0286 (6)
C50.3005 (3)0.8508 (3)1.0224 (2)0.0327 (6)
C60.2477 (4)0.7445 (3)1.0389 (2)0.0362 (7)
C70.2894 (3)0.6653 (3)0.9652 (2)0.0323 (6)
C80.3849 (3)0.6940 (3)0.8781 (2)0.0256 (5)
C90.4331 (3)0.6167 (3)0.7970 (2)0.0258 (6)
C100.5866 (3)0.5565 (3)0.6476 (2)0.0230 (5)
C110.6169 (3)0.4165 (3)0.6826 (2)0.0265 (6)
C120.6798 (3)0.3310 (3)0.6132 (2)0.0286 (6)
C130.7123 (3)0.3835 (3)0.5087 (2)0.0244 (5)
C140.6791 (3)0.5242 (3)0.4738 (2)0.0249 (5)
C150.6175 (3)0.6105 (3)0.5431 (2)0.0233 (5)
C160.7791 (3)0.2926 (3)0.4342 (2)0.0257 (6)
C170.8562 (3)0.1046 (3)0.3433 (2)0.0330 (7)
C180.8893 (4)0.0061 (3)0.2976 (3)0.0441 (8)
C190.9563 (4)0.0040 (3)0.1968 (3)0.0415 (8)
C200.9923 (3)0.1196 (3)0.1420 (3)0.0368 (7)
C210.9609 (3)0.2297 (3)0.1873 (2)0.0328 (6)
C220.8905 (3)0.2234 (3)0.2887 (2)0.0272 (6)
C1M0.9995 (5)0.3997 (5)0.6743 (4)0.0528 (10)
O1M0.9675 (3)0.5110 (2)0.7203 (2)0.0505 (7)
P10.72699 (9)0.71646 (8)1.09118 (6)0.03265 (17)
F10.8471 (3)0.6216 (3)1.0214 (3)0.0957 (10)
F20.8364 (4)0.7745 (3)1.1108 (2)0.0963 (11)
F30.7504 (3)0.5986 (2)1.19014 (18)0.0677 (7)
F40.6144 (3)0.6560 (2)1.0673 (2)0.0683 (7)
F50.6990 (3)0.8341 (2)0.99029 (18)0.0631 (6)
F60.5955 (4)0.8096 (3)1.1538 (3)0.1039 (12)
H40.432 (3)0.942 (3)0.920 (3)0.033 (9)*
H50.276 (4)0.906 (4)1.069 (3)0.042 (10)*
H60.186 (4)0.731 (3)1.094 (3)0.031 (8)*
H70.257 (4)0.596 (4)0.970 (3)0.044 (10)*
H90.398 (3)0.546 (3)0.801 (2)0.028 (8)*
H110.598 (3)0.384 (3)0.750 (2)0.023 (7)*
H120.704 (3)0.237 (3)0.634 (3)0.034 (8)*
H140.696 (3)0.560 (3)0.406 (3)0.026 (8)*
H150.592 (3)0.702 (3)0.517 (2)0.016 (7)*
H180.868 (4)0.083 (4)0.334 (3)0.043 (10)*
H190.976 (4)0.070 (4)0.170 (3)0.045 (10)*
H201.038 (4)0.127 (3)0.071 (3)0.036 (9)*
H210.984 (3)0.311 (3)0.149 (3)0.031 (8)*
H1010.823 (5)0.581 (4)0.801 (3)0.051 (11)*
H1020.749 (4)0.641 (4)0.874 (3)0.044 (12)*
H2011.041 (5)0.541 (5)0.709 (4)0.073 (14)*
H2021.091 (6)0.323 (5)0.698 (4)0.099 (18)*
H2030.915 (6)0.364 (5)0.702 (4)0.095 (17)*
H2041.008 (6)0.427 (6)0.607 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02758 (6)0.01809 (5)0.01851 (6)0.01022 (4)0.00178 (4)0.00422 (4)
O1W0.0366 (12)0.0287 (10)0.0275 (12)0.0099 (9)0.0071 (10)0.0065 (9)
C10.0326 (14)0.0231 (13)0.0306 (15)0.0109 (11)0.0065 (13)0.0058 (11)
O10.0379 (12)0.0408 (12)0.0309 (12)0.0142 (10)0.0052 (10)0.0079 (10)
C20.0333 (14)0.0257 (13)0.0225 (14)0.0106 (11)0.0041 (11)0.0020 (11)
O20.0531 (13)0.0295 (10)0.0382 (12)0.0228 (10)0.0122 (10)0.0056 (9)
C30.0338 (14)0.0258 (13)0.0227 (14)0.0134 (12)0.0003 (11)0.0057 (11)
O30.0427 (12)0.0308 (11)0.0359 (12)0.0098 (10)0.0094 (10)0.0028 (10)
N10.0271 (11)0.0211 (10)0.0220 (11)0.0069 (9)0.0025 (9)0.0059 (9)
N20.0285 (11)0.0186 (10)0.0227 (11)0.0089 (9)0.0038 (9)0.0062 (9)
N30.0274 (11)0.0236 (11)0.0270 (12)0.0093 (9)0.0015 (9)0.0084 (9)
S10.0606 (5)0.0262 (3)0.0392 (4)0.0243 (4)0.0199 (4)0.0164 (3)
C40.0339 (15)0.0248 (13)0.0285 (15)0.0084 (12)0.0040 (12)0.0101 (11)
C50.0376 (16)0.0338 (15)0.0259 (15)0.0066 (13)0.0031 (12)0.0130 (13)
C60.0394 (17)0.0394 (16)0.0242 (15)0.0125 (14)0.0069 (13)0.0080 (13)
C70.0364 (16)0.0297 (14)0.0309 (16)0.0155 (13)0.0034 (13)0.0069 (12)
C80.0309 (14)0.0218 (12)0.0245 (14)0.0101 (11)0.0021 (11)0.0049 (11)
C90.0326 (14)0.0231 (13)0.0251 (14)0.0148 (11)0.0003 (11)0.0061 (11)
C100.0261 (13)0.0222 (12)0.0238 (13)0.0106 (10)0.0014 (10)0.0078 (10)
C110.0385 (15)0.0224 (13)0.0186 (13)0.0126 (11)0.0013 (11)0.0026 (11)
C120.0397 (15)0.0183 (12)0.0286 (15)0.0118 (11)0.0028 (12)0.0045 (11)
C130.0269 (13)0.0241 (12)0.0251 (14)0.0120 (10)0.0008 (11)0.0084 (11)
C140.0308 (14)0.0239 (13)0.0217 (14)0.0118 (11)0.0019 (11)0.0053 (11)
C150.0293 (13)0.0186 (12)0.0233 (13)0.0099 (10)0.0037 (11)0.0035 (10)
C160.0294 (13)0.0202 (12)0.0290 (14)0.0099 (10)0.0018 (11)0.0072 (11)
C170.0374 (15)0.0282 (14)0.0351 (16)0.0153 (12)0.0090 (13)0.0152 (12)
C180.0501 (19)0.0326 (16)0.052 (2)0.0214 (15)0.0175 (16)0.0228 (15)
C190.0375 (17)0.0401 (17)0.052 (2)0.0133 (14)0.0089 (15)0.0310 (16)
C200.0329 (15)0.0462 (18)0.0336 (17)0.0127 (14)0.0054 (13)0.0205 (14)
C210.0349 (15)0.0338 (15)0.0311 (16)0.0139 (13)0.0009 (13)0.0098 (13)
C220.0255 (13)0.0274 (13)0.0316 (15)0.0104 (11)0.0004 (11)0.0112 (12)
C1M0.049 (2)0.058 (2)0.066 (3)0.0270 (19)0.001 (2)0.029 (2)
O1M0.0334 (12)0.0402 (13)0.081 (2)0.0137 (10)0.0051 (12)0.0265 (13)
P10.0454 (4)0.0270 (4)0.0253 (4)0.0160 (3)0.0040 (3)0.0003 (3)
F10.088 (2)0.0651 (16)0.104 (2)0.0127 (15)0.0385 (17)0.0299 (16)
F20.147 (3)0.108 (2)0.0777 (19)0.102 (2)0.0657 (19)0.0366 (17)
F30.0950 (18)0.0641 (14)0.0560 (14)0.0505 (14)0.0404 (13)0.0284 (12)
F40.0874 (17)0.0592 (14)0.0723 (16)0.0459 (13)0.0405 (14)0.0199 (12)
F50.0817 (16)0.0568 (13)0.0504 (13)0.0385 (12)0.0226 (12)0.0233 (11)
F60.130 (3)0.0520 (15)0.096 (2)0.0228 (16)0.052 (2)0.0301 (15)
Geometric parameters (Å, º) top
Re1—C31.899 (3)C11—C121.380 (4)
Re1—C21.920 (3)C11—H110.89 (3)
Re1—C11.925 (3)C12—C131.389 (4)
Re1—N12.177 (2)C12—H120.93 (3)
Re1—O1W2.189 (2)C13—C141.397 (4)
Re1—N22.194 (2)C13—C161.475 (4)
O1W—H1010.91 (4)C14—C151.386 (4)
O1W—H1020.72 (4)C14—H140.90 (3)
C1—O11.146 (4)C15—H150.92 (3)
C2—O21.150 (3)C17—C181.390 (4)
C3—O31.158 (3)C17—C221.410 (4)
N1—C41.339 (3)C18—C191.373 (5)
N1—C81.361 (3)C18—H180.92 (4)
N2—C91.284 (3)C19—C201.389 (5)
N2—C101.436 (3)C19—H190.90 (4)
N3—C161.289 (4)C20—C211.384 (4)
N3—C221.390 (3)C20—H200.96 (3)
S1—C171.733 (3)C21—C221.390 (4)
S1—C161.748 (3)C21—H210.96 (3)
C4—C51.385 (4)C1M—O1M1.401 (4)
C4—H40.89 (3)C1M—H2021.04 (6)
C5—C61.372 (4)C1M—H2031.01 (6)
C5—H50.91 (4)C1M—H2040.87 (6)
C6—C71.385 (4)O1M—H2010.88 (5)
C6—H60.87 (3)P1—F21.547 (2)
C7—C81.378 (4)P1—F61.565 (3)
C7—H70.89 (4)P1—F11.579 (3)
C8—C91.450 (4)P1—F31.579 (2)
C9—H90.94 (3)P1—F51.600 (2)
C10—C151.392 (4)P1—F41.621 (2)
C10—C111.393 (4)
C3—Re1—C285.26 (12)C11—C12—H12122 (2)
C3—Re1—C189.26 (12)C13—C12—H12118 (2)
C2—Re1—C187.63 (12)C12—C13—C14119.5 (2)
C3—Re1—N195.27 (10)C12—C13—C16120.8 (2)
C2—Re1—N198.04 (10)C14—C13—C16119.7 (2)
C1—Re1—N1173.00 (9)C15—C14—C13120.2 (3)
C3—Re1—O1W176.33 (10)C15—C14—H14119.4 (19)
C2—Re1—O1W96.59 (10)C13—C14—H14120.3 (19)
C1—Re1—O1W93.97 (10)C14—C15—C10119.7 (2)
N1—Re1—O1W81.35 (8)C14—C15—H15118.1 (18)
C3—Re1—N299.29 (10)C10—C15—H15122.0 (18)
C2—Re1—N2171.90 (10)N3—C16—C13124.0 (2)
C1—Re1—N299.07 (10)N3—C16—S1115.7 (2)
N1—Re1—N274.96 (8)C13—C16—S1120.2 (2)
O1W—Re1—N278.50 (8)C18—C17—C22121.5 (3)
Re1—O1W—H101118 (2)C18—C17—S1129.6 (2)
Re1—O1W—H102117 (3)C22—C17—S1108.8 (2)
H101—O1W—H102102 (4)C19—C18—C17117.7 (3)
O1—C1—Re1178.4 (2)C19—C18—H18122 (2)
O2—C2—Re1177.0 (2)C17—C18—H18121 (2)
O3—C3—Re1176.2 (2)C18—C19—C20121.6 (3)
C4—N1—C8117.9 (2)C18—C19—H19115 (2)
C4—N1—Re1127.09 (19)C20—C19—H19123 (2)
C8—N1—Re1114.86 (17)C21—C20—C19120.9 (3)
C9—N2—C10118.0 (2)C21—C20—H20117 (2)
C9—N2—Re1115.25 (18)C19—C20—H20122 (2)
C10—N2—Re1125.69 (16)C20—C21—C22118.7 (3)
C16—N3—C22111.1 (2)C20—C21—H21121.0 (19)
C17—S1—C1689.41 (13)C22—C21—H21120.2 (19)
N1—C4—C5122.5 (3)N3—C22—C21125.6 (3)
N1—C4—H4116 (2)N3—C22—C17114.9 (2)
C5—C4—H4122 (2)C21—C22—C17119.4 (3)
C6—C5—C4119.2 (3)O1M—C1M—H202111 (3)
C6—C5—H5122 (2)O1M—C1M—H203105 (3)
C4—C5—H5119 (2)H202—C1M—H203108 (4)
C5—C6—C7119.1 (3)O1M—C1M—H204109 (4)
C5—C6—H6119 (2)H202—C1M—H204113 (5)
C7—C6—H6122 (2)H203—C1M—H204111 (5)
C8—C7—C6119.0 (3)C1M—O1M—H201112 (3)
C8—C7—H7117 (2)F2—P1—F693.4 (2)
C6—C7—H7124 (2)F2—P1—F192.4 (2)
N1—C8—C7122.2 (3)F6—P1—F1173.6 (2)
N1—C8—C9115.3 (2)F2—P1—F392.81 (13)
C7—C8—C9122.4 (2)F6—P1—F391.03 (17)
N2—C9—C8119.2 (2)F1—P1—F391.27 (16)
N2—C9—H9120.4 (19)F2—P1—F589.19 (13)
C8—C9—H9120.4 (19)F6—P1—F588.71 (16)
C15—C10—C11120.3 (2)F1—P1—F588.78 (16)
C15—C10—N2119.7 (2)F3—P1—F5177.99 (13)
C11—C10—N2120.0 (2)F2—P1—F4178.45 (17)
C12—C11—C10119.7 (3)F6—P1—F487.72 (18)
C12—C11—H11121.4 (19)F1—P1—F486.42 (17)
C10—C11—H11118.8 (19)F3—P1—F488.27 (12)
C11—C12—C13120.6 (2)F5—P1—F489.73 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.91 (4)2.59 (4)3.439 (4)156 (3)
C9—H9···F3ii0.94 (3)2.47 (3)3.390 (3)166 (2)
O1W—H101···O1M0.91 (4)1.67 (4)2.558 (3)165 (4)
O1W—H102···F10.72 (4)2.36 (4)3.059 (5)164 (4)
O1M—H201···N3iii0.88 (5)2.01 (5)2.842 (3)158 (4)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+2, y+1, z+1.
Characteristic bond lengths (Å) for a series of ReI complexes with a fac-aqua tricarbonyl diimine octahedral core top
Re—N1Re—C1Re—N2Re—C2Re—O1WRe—C3
Present work2.177 (2)1.925 (3)2.194 (2)1.920 (3)2.189 (2)1.899 (3)
ENAJAGa2.156 (7)1.935 (11)2.165 (7)1.884 (10)2.176 (7)1.886 (11)
ENAJEKa2.173 (5)1.911 (7)2.178 (5)1.921 (7)2.191 (5)1.879 (7)
FIWQUX-1b2.168 (7)1.91 (1)2.180 (5)1.914 (8)2.215 (6)1.88 (1)
FIWQUX-2b2.164 (7)1.902 (10)2.178 (7)1.909 (10)2.210 (6)1.868 (10)
KAWLOLc2.168 (4)1.914 (6)2.175 (4)1.929 (7)2.162 (3)1.893 (5)
UHUNOAd2.161 (5)1.938 (7)2.183 (5)1.931 (7)2.181 (5)1.898 (7)
2.160 (5)1.928 (6)2.174 (4)1.926 (9)2.196 (6)1.915 (7)
SEHGUKe2.210 (3)1.928 (4)2.200 (3)1.929 (4)2.196 (2)1.896 (4)
PIDYILff2.167 (2)1.918 (3)2.167 (2)1.918 (3)2.143 (3)1.912 (4)
UHUNUGd2.161 (6)1.901 (9)2.165 (6)1.914 (10)2.190 (5)1.882 (10)
2.165 (6)1.901 (9)2.161 (6)1.91 (1)2.190 (5)1.88 (1)
VUDWATg2.185 (4)1.888 (7)2.175 (6)1.925 (8)2.165 (5)1.853 (9)
ETEDEOh2.186 (5)1.933 (6)2.178 (5)1.902 (7)2.155 (5)1.896 (7)
IZORIZi2.203 (3)1.912 (4)2.142 (3)1.922 (4)2.173 (3)1.904 (4)
TUTDANj2.168 (6)1.925 (8)2.175 (6)1.913 (9)2.175 (6)1.89 (1)
Notes: (a) 1,10-Phenanthroline (Connick et al., 1999); (b) 1,10-phenanthroline (Schutte et al., 2011); (c) 1,10-phenanthroline (Schutte et al., 2011); (d) 1,10-phenanthroline (Salignac et al., 2003); (e) 4,7-diphenyl-1,10-phenanthroline (Knopf et al., 2017); (f) 2,2'-bipyrazine (Rillema et al., 2007); (g) 2-hydroxybenzoic acid hydrazide, (Barbazán et al., 2009); (h) 2-(2'-pyridyl)benzothiazole (Carrington et al., 2016); (i) 2-(2'-pyridyl)benzimidazole (Tzeng et al., 2011); (j) acetylpyridine benzoylhydrazone (Grewe et al., 2003).
 

Funding information

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT) under the HFRI PhD Fellowship grant (IR, GA. No. 14500). VP would like to thank the Special Account of NCSR "Demokritos" for financial support regarding the operation of the X-ray facilities at INN through the inter­nal program entitled `Structural study and characterization of crystalline materials' (NCSR Demokritos, ELKE #10 813).

References

First citationBarbazán, P., Carballo, R., Prieto, I., Turnes, M. & Vázquez-López, E. M. (2009). J. Organomet. Chem. 694, 3102–3111.  Google Scholar
First citationBradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1241–1253.  Web of Science CrossRef Google Scholar
First citationCarrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. 55, 7852–7858.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationConnick, W. B., Di Bilio, A. J., Schaeffer, W. P. & Gray, H. B. (1999). Acta Cryst. C55, 913–916.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCrystal Impact (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGrewe, J., Hagenbach, A., Stromburg, B., Alberto, R., Vazquez-Lopez, E. & Abram, U. (2003). Z. Anorg. Allg. Chem. 629, 303–311.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKiritsis, C., Mavroidi, B., Shegani, A., Palamaris, E., Loudos, G., Sagnou, M., Pirmettis, I., Papadopoulos, M. & Pelecanou, M. (2017). ACS Med. Chem. Lett. 8, 1089–1092.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKnopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302–14314.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLeonidova, A. & Gasser, G. (2014). Chem. Biol. 9, 2180–2193.  CAS Google Scholar
First citationMella, P., Cabezas, K., Cerda, C., Cepeda-Plaza, M., Günther, G., Pizarro, N. & Vega, A. (2016). New J. Chem. 40, 6451–6459.  Web of Science CSD CrossRef CAS Google Scholar
First citationMundwiler, S., Kündig, M., Ortner, K. & Alberto, R. A. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationPapagiannopoulou, D., Triantis, C., Vassileiadis, V., Raptopoulou, C. P., Psycharis, V., Terzis, A., Pirmettis, I. & Papadopoulos, M. S. (2014). Polyhedron, 68, 46–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404–m1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalignac, B., Grundler, P. V., Cayemittes, S., Frey, U., Scopelliti, R., Merbach, A. E., Hedinger, R., Hegetschweiler, K., Alberto, R., Prinz, U., Raabe, G., Kölle, U. & Hall, S. (2003). Inorg. Chem. 42, 3516–3526.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486–12498.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShegani, A., Triantis, C., Nock, B. A., Maina, T., Kiritsis, C., Psycharis, V., Raptopoulou, C., Pirmettis, I., Tisato, F. & Papadopoulos, M. S. (2017). Inorg. Chem. 56, 8175–8186.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTriantis, C., Tsotakos, T., Tsoukalas, C., Sagnou, M., Raptopoulou, C., Terzis, A., Psycharis, V., Pelecanou, M., Pirmettis, I. & Papadopoulos, M. (2013). Inorg. Chem. 52, 12995–13003.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTzeng, B.-C., Chen, B.-S., Chen, C.-K., Chang, Y.-P., Tzeng, W.-C., Lin, T.-Y., Lee, G.-H., Chou, P.-T., Fu, Y. J. & Chang, A. H.-H. (2011). Inorg. Chem. 50, 5379–5388.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds