research communications
fac-aqua[(E)-4-(benzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethylidene)aniline-κ2N,N′]tricarbonylrhenium(I) hexafluoridophosphate methanol monosolvate
ofaInstitute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece, bInstitute of Nanoscience and Nanotechnology, Department of Materials Science, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece, and cInstitute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", 15310 Athens, Greece
*Correspondence e-mail: v.psycharis@inn.demokritos.gr
In the title compound, fac-[Re(C19H13N3S)(CO)3(H2O)]PF6·CH3OH, the coordination environment of the ReI atom is octahedral with a C3N2O coordination set. In this molecule, the N,N′ bidentate ligand, (E)-4-(benzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethylidene)aniline, and the monodentate aqua ligand occupy the three available coordination sites of the [Re(CO)3]+ core, generating a `2 + 1' mixed-ligand complex. In this complex, the Re—C bonds of the carbonyl ligands trans to the coordinating N,N′ atoms of the bidentate ligand are longer than the Re—C bond of the carbonyl group trans to the aqua ligand, in accordance with the intensity of their trans effects. The complex is positively charged with PF6− as the counter-ion. In the structure, the complexes form dimers through π–π intermolecular interactions. O—H⋯O and O—H⋯N hydrogen bonds lead to the formation of stacks parallel to the a axis, which further extend into layers parallel to (01). Through O—H⋯F hydrogen bonds between the complexes and the PF6−counter-anions, a three-dimensional network is established.
Keywords: crystal structure; tricarbonyl rhenium (I); mixed ligand complex; 2-(4′-aminophenyl)benzothiazole; trans effect; Hirshfeld surface analysis.
CCDC reference: 1906503
1. Chemical context
`2 + 1' mixed-ligand complexes of general formula fac-[M(CO)3L1L2], where M is Re or 99mTc, L1 is a bidentate ligand (bipyridine, 2-picolinic acid, acetylacetone, etc) and L2 is a monodentate ligand (aqua, imidazole, phosphine or isocyanide), have been studied extensively for the development of novel radiopharmaceuticals for diagnosis (M = 99mTc) or radiotherapy (M = 186/188Re) (Knopf et al., 2017; Mundwiler et al., 2004; Papagiannopoulou et al., 2014; Triantis et al., 2013; Shegani et al., 2017). Furthermore, recent studies have revealed the potential of such fac-[Re(CO)3L1L2] complexes as anticancer agents (Leonidova & Gasser, 2014). According to the `2 + 1' strategy, the intermediate aqua complex fac-[Re(CO)3(L2)(H2O)] plays a crucial role. The labile water ligand can readily be substituted by a monodentate ligand L2 (typically heterocyclic aromatic phosphines), generating the final fac-[Re(CO)3L2L1] product in high yield. The `2 + 1' complexes are characterized by kinetic stability and structural variability that facilitates the tuning of physicochemical properties and tethering of pharmacophores of interest towards the generation of targeted multifunctional compounds.
As part of our ongoing research in the field of Re/Tc coordination chemistry, we report herein the structure of the `2 + 1' tricarbonyl rhenium(I) complex fac-[Re(CO)3(NNbz)(H2O)]PF6·CH3OH where the bidentate NNbz ligand is (E)-4-(benzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethylidene)aniline. The NNbz ligand carries the 2-(4′-aminophenyl)benzothiazole scaffold, which also exhibits interesting biological properties against a variety of targets and presents great potential for diagnostic/therapeutic applications (Keri et al., 2015; Kiritsis et al., 2017; Bradshaw & Westwell, 2004).
2. Structural commentary
The fac-aquatricarbonyl-(E)-4-(benzo[d]thiazol-2-yl)-N-(pyridin-2-ylmethylidene)aniline–rhenium(I) complex molecule, one PF6− counter-anion and one methanol solvent molecule (Fig. 1). Within the complex, the ReI atom presents a distorted octahedral C3N2O coordination set with the three tricarbonyl ligands in facial and the bidentate diimine (NNbz) and the monodentate water ligands in a cis arrangement (Fig. 1). The two coordinating nitrogen atoms N1 and N2 of the bidentate NNbz ligand together with two carbonyl carbon atoms define the equatorial plane with almost perfect planarity (deviation from the least-squares plane = 0.006 Å). The Re—N1 and Re—N2 distances are 2.177 (2) and 2.194 (2) Å, respectively. The oxygen atom of the water molecule [Re—O1W = 2.189 (2) Å] and the carbon atom from the third carbonyl ligand define the axial direction of the octahedron. Both the Re—N and the Re—O distances fall in the range of observed values in complexes with a diimine, aqua or tricarbonyl core (Mella et al., 2016; Connick et al., 1999; Schutte et al. 2011; Salignac et al., 2003; Knopf et al., 2017; Rillema et al., 2007; Barbazán et al., 2009; Carrington et al., 2016; Tzeng et al., 2011; Grewe et al., 2003). The NNbz ligand deviates from planarity as the dihedral angle between the central phenyl ring and the benzothiazole group is 20.48 (8)°, while the dihedral angle between the phenyl ring and the pyridine ring is 39.13 (8)°.
of the title compound comprises one3. Supramolecular features
The counter-anion and the methanol solvent molecules form O1W—H102⋯F1 and O1W—H101⋯O1M hydrogen bonds with the aqua ligand (Fig. 1, Table 1). Neighbouring complexes present a π–π overlap between their coordinating NNbz ligands, forming dimers (Fig. 2). More specifically, the molecules are centrosymetrically related and thus exhibit parallel phenyl rings of the NNbz ligand at a distance of 3.50 (1) Å. In addition, both the pyridine rings and the phenyl rings of the benzothiazole parts of neighbouring centrosymmetrically related NNbz ligands overlap with each other, with their respective centroids Cg1 and Cg2 lying at a distance of 3.8525 (1) Å and forming an angle of 18.67 (6)° [Cg1 and Cg2′ are the centroids of the N1, C4–C8 and C17′–C22′ rings; symmetry code: (′) 1 − x, 1 − y, 1 − z; Fig. 2]. The dimers are stacked along the a-axis direction. Methanol solvent molecules are interleaved between adjacent dimers within the stacked molecules and are linked through intermolecular O1W—H101⋯O1M and O1M—H201⋯N3 interactions (Fig. 3). These stacks are extended into layers parallel to (01) through C5—H5⋯O2 hydrogen bonds and further O1W—H102⋯F1, C9—H9⋯F3ii (Table 1) hydrogen bonds between the counter-anions and the coordinating ligands result in the formation of a three-dimensional network structure (Fig. 4).
4. Hirshfeld surface study
The view of the Hirshfeld surface mapped with dnorm (Fig. 5a) reveals almost all of the hydrogen-bonding interactions discussed above as intense red areas. The same view of the surface mapped with the curvedness property reveals the contact areas of the tricarbonyl part of the complex with the benzothiazole end of the coordinating ligand, as indicated by patches of the same shape (circled areas in Fig. 5b). Finally, the plot of the surface mapped with the shape-index property (Fig. 5c) gives clear evidence that this part of the molecule interacts with a centrosymmetrically related neighbour, as the shape of the patterns on the surface are related centrosymmetrically. The rhombic and triangular shapes with the complementary red(hollows)/blue(bumps) colours are characteristic of π–π interactions. The asymmetric distribution of points in the fingerprint plot for the complex shown in Fig. 5d is indicative that there are contributions from different molecules. The relative contributions for the H⋯H, O⋯H, H⋯F, C⋯H and C⋯C interactions are 23.2, 20.2, 16.2, 9.7 and 8.2%, respectively, which, in total, amount to 96.4%. The rest of the intermolecular interactions include O⋯S (3.1%), H⋯N (2.3%), C⋯S (2.4%) and C⋯N (1.5%), as well as other interactions with <1% contribution.
5. Database survey
A search of the Cambridge Structural Database (Version 5.39, update of August 2918; Groom et al., 2016) revealed twelve fac-aquatricarbonyl ReI complexes with different N,N′-bidentate ligands. A thirteenth structure, FIWQUX-2 (Schutte et al., 2011), consists of two symmetry-independent complexes. The Re—N bond lengths observed in the present study (Table 2) are longer than those in most of the previously studied complexes, and close to the longer ones observed in the SEHGUK structure (Knopf et al., 2017) with the 4,7-diphenyl-1,10-phenanthroline bidentate ligand. As can be seen in Table 2, the Re—N bond lengths fall in the range 2.142–2.210 Å. The corresponding range for the Re—O1W bond is 2.143–2.214 Å, with the value observed in the present study falling in the middle of this range. The values of the Re—C bond lengths are also given. In all cases, the Re—C bonds trans to water molecule are shorter than the Re—C bonds trans to N atoms, in accordance with the intensity of the trans effect of the coordinating ligands.
|
6. Synthesis and crystallization
A mixture of Re(CO)5Br (81 mg, 0.2 mmol) and the NNbz ligand (69 mg, 0.22 mmol) was suspended in 7 ml toluene and refluxed under an N2 atmosphere for 4 h. The red suspension was then allowed to cool to room temperature. The red solid that formed was dissolved in acetonitrile (25 ml) and a batch of AgPF6 (55 mg, 0.22 mmol) was added. The reaction mixture was refluxed for 18 h under an N2 atmosphere. The round flask was covered with aluminium foil to avoid exposure to any ambient light. The reaction mixture was allowed to cool for 1 h to 273 K, and then the precipitate (AgBr) was filtered off through celite. The yellow–orange filtrate was evaporated to dryness under reduced pressure, and the residue was recrystallized from acetonitrile/water to obtain 67 mg (45% yield) of the aqua complex. Analysis calculated (%) for C22H15F6N3O4PReS: C, 35.30; H, 2.02; N, 5.61; found: C: 35.43, H: 2.05, N: 5.52. IR (cm−1): 2034, 1941, 1914 cm−1 (vibration tension of the C≡O bond), 832, 556 cm−1 (due to the counter-ion PF6−). 1H NMR (DMSO-d6), δ (ppm): 9.58, 9.15, 8.49, 8.45, 8.37, 8.21, 8.12, 7.98, 7.83, 7.78, 7.60, 7.52. Red–brown crystals suitable for X-ray analysis were obtained by slow evaporation from a methanol/water solution.
7. Refinement
Crystal data, data collection and structure . All H atoms were freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1906503
https://doi.org/10.1107/S2056989019004298/wm5494sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004298/wm5494Isup2.hkl
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).[Re(C19H13N3S)(CO)3(H2O)]PF6·CH4O | Z = 2 |
Mr = 780.64 | F(000) = 756 |
Triclinic, P1 | Dx = 1.985 Mg m−3 |
a = 10.0447 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.7580 (3) Å | Cell parameters from 23889 reflections |
c = 13.6263 (4) Å | θ = 3.2–27.5° |
α = 74.335 (1)° | µ = 4.88 mm−1 |
β = 76.285 (1)° | T = 160 K |
γ = 68.874 (1)° | Parallelepiped, red brown |
V = 1306.38 (7) Å3 | 0.48 × 0.26 × 0.04 mm |
Rigaku R-AXIS SPIDER IPDS diffractometer | 5416 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.027 |
θ scans | θmax = 27.0°, θmin = 3.1° |
Absorption correction: numerical (CrystalClear; Rigaku, 2005) | h = −12→12 |
Tmin = 0.496, Tmax = 1.000 | k = −13→13 |
25647 measured reflections | l = −17→16 |
5694 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | All H-atom parameters refined |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0212P)2 + 1.3806P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
5694 reflections | Δρmax = 0.97 e Å−3 |
437 parameters | Δρmin = −0.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.60782 (2) | 0.80579 (2) | 0.72803 (2) | 0.02076 (4) | |
O1W | 0.7342 (2) | 0.6297 (2) | 0.82936 (19) | 0.0305 (4) | |
C1 | 0.7598 (3) | 0.7903 (3) | 0.6110 (2) | 0.0278 (6) | |
O1 | 0.8494 (2) | 0.7844 (2) | 0.54080 (17) | 0.0378 (5) | |
C2 | 0.6724 (3) | 0.9386 (3) | 0.7560 (2) | 0.0274 (6) | |
O2 | 0.7081 (2) | 1.0222 (2) | 0.76923 (17) | 0.0368 (5) | |
C3 | 0.4873 (3) | 0.9562 (3) | 0.6452 (2) | 0.0270 (6) | |
O3 | 0.4169 (2) | 1.0526 (2) | 0.59636 (17) | 0.0384 (5) | |
N1 | 0.4410 (2) | 0.7968 (2) | 0.86255 (17) | 0.0235 (5) | |
N2 | 0.5265 (2) | 0.6456 (2) | 0.71983 (17) | 0.0225 (4) | |
N3 | 0.8451 (2) | 0.3276 (2) | 0.34299 (18) | 0.0255 (5) | |
S1 | 0.76531 (10) | 0.12865 (8) | 0.46521 (7) | 0.0419 (2) | |
C4 | 0.3971 (3) | 0.8740 (3) | 0.9337 (2) | 0.0286 (6) | |
C5 | 0.3005 (3) | 0.8508 (3) | 1.0224 (2) | 0.0327 (6) | |
C6 | 0.2477 (4) | 0.7445 (3) | 1.0389 (2) | 0.0362 (7) | |
C7 | 0.2894 (3) | 0.6653 (3) | 0.9652 (2) | 0.0323 (6) | |
C8 | 0.3849 (3) | 0.6940 (3) | 0.8781 (2) | 0.0256 (5) | |
C9 | 0.4331 (3) | 0.6167 (3) | 0.7970 (2) | 0.0258 (6) | |
C10 | 0.5866 (3) | 0.5565 (3) | 0.6476 (2) | 0.0230 (5) | |
C11 | 0.6169 (3) | 0.4165 (3) | 0.6826 (2) | 0.0265 (6) | |
C12 | 0.6798 (3) | 0.3310 (3) | 0.6132 (2) | 0.0286 (6) | |
C13 | 0.7123 (3) | 0.3835 (3) | 0.5087 (2) | 0.0244 (5) | |
C14 | 0.6791 (3) | 0.5242 (3) | 0.4738 (2) | 0.0249 (5) | |
C15 | 0.6175 (3) | 0.6105 (3) | 0.5431 (2) | 0.0233 (5) | |
C16 | 0.7791 (3) | 0.2926 (3) | 0.4342 (2) | 0.0257 (6) | |
C17 | 0.8562 (3) | 0.1046 (3) | 0.3433 (2) | 0.0330 (7) | |
C18 | 0.8893 (4) | −0.0061 (3) | 0.2976 (3) | 0.0441 (8) | |
C19 | 0.9563 (4) | 0.0040 (3) | 0.1968 (3) | 0.0415 (8) | |
C20 | 0.9923 (3) | 0.1196 (3) | 0.1420 (3) | 0.0368 (7) | |
C21 | 0.9609 (3) | 0.2297 (3) | 0.1873 (2) | 0.0328 (6) | |
C22 | 0.8905 (3) | 0.2234 (3) | 0.2887 (2) | 0.0272 (6) | |
C1M | 0.9995 (5) | 0.3997 (5) | 0.6743 (4) | 0.0528 (10) | |
O1M | 0.9675 (3) | 0.5110 (2) | 0.7203 (2) | 0.0505 (7) | |
P1 | 0.72699 (9) | 0.71646 (8) | 1.09118 (6) | 0.03265 (17) | |
F1 | 0.8471 (3) | 0.6216 (3) | 1.0214 (3) | 0.0957 (10) | |
F2 | 0.8364 (4) | 0.7745 (3) | 1.1108 (2) | 0.0963 (11) | |
F3 | 0.7504 (3) | 0.5986 (2) | 1.19014 (18) | 0.0677 (7) | |
F4 | 0.6144 (3) | 0.6560 (2) | 1.0673 (2) | 0.0683 (7) | |
F5 | 0.6990 (3) | 0.8341 (2) | 0.99029 (18) | 0.0631 (6) | |
F6 | 0.5955 (4) | 0.8096 (3) | 1.1538 (3) | 0.1039 (12) | |
H4 | 0.432 (3) | 0.942 (3) | 0.920 (3) | 0.033 (9)* | |
H5 | 0.276 (4) | 0.906 (4) | 1.069 (3) | 0.042 (10)* | |
H6 | 0.186 (4) | 0.731 (3) | 1.094 (3) | 0.031 (8)* | |
H7 | 0.257 (4) | 0.596 (4) | 0.970 (3) | 0.044 (10)* | |
H9 | 0.398 (3) | 0.546 (3) | 0.801 (2) | 0.028 (8)* | |
H11 | 0.598 (3) | 0.384 (3) | 0.750 (2) | 0.023 (7)* | |
H12 | 0.704 (3) | 0.237 (3) | 0.634 (3) | 0.034 (8)* | |
H14 | 0.696 (3) | 0.560 (3) | 0.406 (3) | 0.026 (8)* | |
H15 | 0.592 (3) | 0.702 (3) | 0.517 (2) | 0.016 (7)* | |
H18 | 0.868 (4) | −0.083 (4) | 0.334 (3) | 0.043 (10)* | |
H19 | 0.976 (4) | −0.070 (4) | 0.170 (3) | 0.045 (10)* | |
H20 | 1.038 (4) | 0.127 (3) | 0.071 (3) | 0.036 (9)* | |
H21 | 0.984 (3) | 0.311 (3) | 0.149 (3) | 0.031 (8)* | |
H101 | 0.823 (5) | 0.581 (4) | 0.801 (3) | 0.051 (11)* | |
H102 | 0.749 (4) | 0.641 (4) | 0.874 (3) | 0.044 (12)* | |
H201 | 1.041 (5) | 0.541 (5) | 0.709 (4) | 0.073 (14)* | |
H202 | 1.091 (6) | 0.323 (5) | 0.698 (4) | 0.099 (18)* | |
H203 | 0.915 (6) | 0.364 (5) | 0.702 (4) | 0.095 (17)* | |
H204 | 1.008 (6) | 0.427 (6) | 0.607 (5) | 0.10 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.02758 (6) | 0.01809 (5) | 0.01851 (6) | −0.01022 (4) | −0.00178 (4) | −0.00422 (4) |
O1W | 0.0366 (12) | 0.0287 (10) | 0.0275 (12) | −0.0099 (9) | −0.0071 (10) | −0.0065 (9) |
C1 | 0.0326 (14) | 0.0231 (13) | 0.0306 (15) | −0.0109 (11) | −0.0065 (13) | −0.0058 (11) |
O1 | 0.0379 (12) | 0.0408 (12) | 0.0309 (12) | −0.0142 (10) | 0.0052 (10) | −0.0079 (10) |
C2 | 0.0333 (14) | 0.0257 (13) | 0.0225 (14) | −0.0106 (11) | −0.0041 (11) | −0.0020 (11) |
O2 | 0.0531 (13) | 0.0295 (10) | 0.0382 (12) | −0.0228 (10) | −0.0122 (10) | −0.0056 (9) |
C3 | 0.0338 (14) | 0.0258 (13) | 0.0227 (14) | −0.0134 (12) | 0.0003 (11) | −0.0057 (11) |
O3 | 0.0427 (12) | 0.0308 (11) | 0.0359 (12) | −0.0098 (10) | −0.0094 (10) | 0.0028 (10) |
N1 | 0.0271 (11) | 0.0211 (10) | 0.0220 (11) | −0.0069 (9) | −0.0025 (9) | −0.0059 (9) |
N2 | 0.0285 (11) | 0.0186 (10) | 0.0227 (11) | −0.0089 (9) | −0.0038 (9) | −0.0062 (9) |
N3 | 0.0274 (11) | 0.0236 (11) | 0.0270 (12) | −0.0093 (9) | −0.0015 (9) | −0.0084 (9) |
S1 | 0.0606 (5) | 0.0262 (3) | 0.0392 (4) | −0.0243 (4) | 0.0199 (4) | −0.0164 (3) |
C4 | 0.0339 (15) | 0.0248 (13) | 0.0285 (15) | −0.0084 (12) | −0.0040 (12) | −0.0101 (11) |
C5 | 0.0376 (16) | 0.0338 (15) | 0.0259 (15) | −0.0066 (13) | −0.0031 (12) | −0.0130 (13) |
C6 | 0.0394 (17) | 0.0394 (16) | 0.0242 (15) | −0.0125 (14) | 0.0069 (13) | −0.0080 (13) |
C7 | 0.0364 (16) | 0.0297 (14) | 0.0309 (16) | −0.0155 (13) | 0.0034 (13) | −0.0069 (12) |
C8 | 0.0309 (14) | 0.0218 (12) | 0.0245 (14) | −0.0101 (11) | −0.0021 (11) | −0.0049 (11) |
C9 | 0.0326 (14) | 0.0231 (13) | 0.0251 (14) | −0.0148 (11) | 0.0003 (11) | −0.0061 (11) |
C10 | 0.0261 (13) | 0.0222 (12) | 0.0238 (13) | −0.0106 (10) | −0.0014 (10) | −0.0078 (10) |
C11 | 0.0385 (15) | 0.0224 (13) | 0.0186 (13) | −0.0126 (11) | −0.0013 (11) | −0.0026 (11) |
C12 | 0.0397 (15) | 0.0183 (12) | 0.0286 (15) | −0.0118 (11) | −0.0028 (12) | −0.0045 (11) |
C13 | 0.0269 (13) | 0.0241 (12) | 0.0251 (14) | −0.0120 (10) | 0.0008 (11) | −0.0084 (11) |
C14 | 0.0308 (14) | 0.0239 (13) | 0.0217 (14) | −0.0118 (11) | −0.0019 (11) | −0.0053 (11) |
C15 | 0.0293 (13) | 0.0186 (12) | 0.0233 (13) | −0.0099 (10) | −0.0037 (11) | −0.0035 (10) |
C16 | 0.0294 (13) | 0.0202 (12) | 0.0290 (14) | −0.0099 (10) | −0.0018 (11) | −0.0072 (11) |
C17 | 0.0374 (15) | 0.0282 (14) | 0.0351 (16) | −0.0153 (12) | 0.0090 (13) | −0.0152 (12) |
C18 | 0.0501 (19) | 0.0326 (16) | 0.052 (2) | −0.0214 (15) | 0.0175 (16) | −0.0228 (15) |
C19 | 0.0375 (17) | 0.0401 (17) | 0.052 (2) | −0.0133 (14) | 0.0089 (15) | −0.0310 (16) |
C20 | 0.0329 (15) | 0.0462 (18) | 0.0336 (17) | −0.0127 (14) | 0.0054 (13) | −0.0205 (14) |
C21 | 0.0349 (15) | 0.0338 (15) | 0.0311 (16) | −0.0139 (13) | 0.0009 (13) | −0.0098 (13) |
C22 | 0.0255 (13) | 0.0274 (13) | 0.0316 (15) | −0.0104 (11) | −0.0004 (11) | −0.0112 (12) |
C1M | 0.049 (2) | 0.058 (2) | 0.066 (3) | −0.0270 (19) | −0.001 (2) | −0.029 (2) |
O1M | 0.0334 (12) | 0.0402 (13) | 0.081 (2) | −0.0137 (10) | 0.0051 (12) | −0.0265 (13) |
P1 | 0.0454 (4) | 0.0270 (4) | 0.0253 (4) | −0.0160 (3) | −0.0040 (3) | −0.0003 (3) |
F1 | 0.088 (2) | 0.0651 (16) | 0.104 (2) | −0.0127 (15) | 0.0385 (17) | −0.0299 (16) |
F2 | 0.147 (3) | 0.108 (2) | 0.0777 (19) | −0.102 (2) | −0.0657 (19) | 0.0366 (17) |
F3 | 0.0950 (18) | 0.0641 (14) | 0.0560 (14) | −0.0505 (14) | −0.0404 (13) | 0.0284 (12) |
F4 | 0.0874 (17) | 0.0592 (14) | 0.0723 (16) | −0.0459 (13) | −0.0405 (14) | 0.0199 (12) |
F5 | 0.0817 (16) | 0.0568 (13) | 0.0504 (13) | −0.0385 (12) | −0.0226 (12) | 0.0233 (11) |
F6 | 0.130 (3) | 0.0520 (15) | 0.096 (2) | −0.0228 (16) | 0.052 (2) | −0.0301 (15) |
Re1—C3 | 1.899 (3) | C11—C12 | 1.380 (4) |
Re1—C2 | 1.920 (3) | C11—H11 | 0.89 (3) |
Re1—C1 | 1.925 (3) | C12—C13 | 1.389 (4) |
Re1—N1 | 2.177 (2) | C12—H12 | 0.93 (3) |
Re1—O1W | 2.189 (2) | C13—C14 | 1.397 (4) |
Re1—N2 | 2.194 (2) | C13—C16 | 1.475 (4) |
O1W—H101 | 0.91 (4) | C14—C15 | 1.386 (4) |
O1W—H102 | 0.72 (4) | C14—H14 | 0.90 (3) |
C1—O1 | 1.146 (4) | C15—H15 | 0.92 (3) |
C2—O2 | 1.150 (3) | C17—C18 | 1.390 (4) |
C3—O3 | 1.158 (3) | C17—C22 | 1.410 (4) |
N1—C4 | 1.339 (3) | C18—C19 | 1.373 (5) |
N1—C8 | 1.361 (3) | C18—H18 | 0.92 (4) |
N2—C9 | 1.284 (3) | C19—C20 | 1.389 (5) |
N2—C10 | 1.436 (3) | C19—H19 | 0.90 (4) |
N3—C16 | 1.289 (4) | C20—C21 | 1.384 (4) |
N3—C22 | 1.390 (3) | C20—H20 | 0.96 (3) |
S1—C17 | 1.733 (3) | C21—C22 | 1.390 (4) |
S1—C16 | 1.748 (3) | C21—H21 | 0.96 (3) |
C4—C5 | 1.385 (4) | C1M—O1M | 1.401 (4) |
C4—H4 | 0.89 (3) | C1M—H202 | 1.04 (6) |
C5—C6 | 1.372 (4) | C1M—H203 | 1.01 (6) |
C5—H5 | 0.91 (4) | C1M—H204 | 0.87 (6) |
C6—C7 | 1.385 (4) | O1M—H201 | 0.88 (5) |
C6—H6 | 0.87 (3) | P1—F2 | 1.547 (2) |
C7—C8 | 1.378 (4) | P1—F6 | 1.565 (3) |
C7—H7 | 0.89 (4) | P1—F1 | 1.579 (3) |
C8—C9 | 1.450 (4) | P1—F3 | 1.579 (2) |
C9—H9 | 0.94 (3) | P1—F5 | 1.600 (2) |
C10—C15 | 1.392 (4) | P1—F4 | 1.621 (2) |
C10—C11 | 1.393 (4) | ||
C3—Re1—C2 | 85.26 (12) | C11—C12—H12 | 122 (2) |
C3—Re1—C1 | 89.26 (12) | C13—C12—H12 | 118 (2) |
C2—Re1—C1 | 87.63 (12) | C12—C13—C14 | 119.5 (2) |
C3—Re1—N1 | 95.27 (10) | C12—C13—C16 | 120.8 (2) |
C2—Re1—N1 | 98.04 (10) | C14—C13—C16 | 119.7 (2) |
C1—Re1—N1 | 173.00 (9) | C15—C14—C13 | 120.2 (3) |
C3—Re1—O1W | 176.33 (10) | C15—C14—H14 | 119.4 (19) |
C2—Re1—O1W | 96.59 (10) | C13—C14—H14 | 120.3 (19) |
C1—Re1—O1W | 93.97 (10) | C14—C15—C10 | 119.7 (2) |
N1—Re1—O1W | 81.35 (8) | C14—C15—H15 | 118.1 (18) |
C3—Re1—N2 | 99.29 (10) | C10—C15—H15 | 122.0 (18) |
C2—Re1—N2 | 171.90 (10) | N3—C16—C13 | 124.0 (2) |
C1—Re1—N2 | 99.07 (10) | N3—C16—S1 | 115.7 (2) |
N1—Re1—N2 | 74.96 (8) | C13—C16—S1 | 120.2 (2) |
O1W—Re1—N2 | 78.50 (8) | C18—C17—C22 | 121.5 (3) |
Re1—O1W—H101 | 118 (2) | C18—C17—S1 | 129.6 (2) |
Re1—O1W—H102 | 117 (3) | C22—C17—S1 | 108.8 (2) |
H101—O1W—H102 | 102 (4) | C19—C18—C17 | 117.7 (3) |
O1—C1—Re1 | 178.4 (2) | C19—C18—H18 | 122 (2) |
O2—C2—Re1 | 177.0 (2) | C17—C18—H18 | 121 (2) |
O3—C3—Re1 | 176.2 (2) | C18—C19—C20 | 121.6 (3) |
C4—N1—C8 | 117.9 (2) | C18—C19—H19 | 115 (2) |
C4—N1—Re1 | 127.09 (19) | C20—C19—H19 | 123 (2) |
C8—N1—Re1 | 114.86 (17) | C21—C20—C19 | 120.9 (3) |
C9—N2—C10 | 118.0 (2) | C21—C20—H20 | 117 (2) |
C9—N2—Re1 | 115.25 (18) | C19—C20—H20 | 122 (2) |
C10—N2—Re1 | 125.69 (16) | C20—C21—C22 | 118.7 (3) |
C16—N3—C22 | 111.1 (2) | C20—C21—H21 | 121.0 (19) |
C17—S1—C16 | 89.41 (13) | C22—C21—H21 | 120.2 (19) |
N1—C4—C5 | 122.5 (3) | N3—C22—C21 | 125.6 (3) |
N1—C4—H4 | 116 (2) | N3—C22—C17 | 114.9 (2) |
C5—C4—H4 | 122 (2) | C21—C22—C17 | 119.4 (3) |
C6—C5—C4 | 119.2 (3) | O1M—C1M—H202 | 111 (3) |
C6—C5—H5 | 122 (2) | O1M—C1M—H203 | 105 (3) |
C4—C5—H5 | 119 (2) | H202—C1M—H203 | 108 (4) |
C5—C6—C7 | 119.1 (3) | O1M—C1M—H204 | 109 (4) |
C5—C6—H6 | 119 (2) | H202—C1M—H204 | 113 (5) |
C7—C6—H6 | 122 (2) | H203—C1M—H204 | 111 (5) |
C8—C7—C6 | 119.0 (3) | C1M—O1M—H201 | 112 (3) |
C8—C7—H7 | 117 (2) | F2—P1—F6 | 93.4 (2) |
C6—C7—H7 | 124 (2) | F2—P1—F1 | 92.4 (2) |
N1—C8—C7 | 122.2 (3) | F6—P1—F1 | 173.6 (2) |
N1—C8—C9 | 115.3 (2) | F2—P1—F3 | 92.81 (13) |
C7—C8—C9 | 122.4 (2) | F6—P1—F3 | 91.03 (17) |
N2—C9—C8 | 119.2 (2) | F1—P1—F3 | 91.27 (16) |
N2—C9—H9 | 120.4 (19) | F2—P1—F5 | 89.19 (13) |
C8—C9—H9 | 120.4 (19) | F6—P1—F5 | 88.71 (16) |
C15—C10—C11 | 120.3 (2) | F1—P1—F5 | 88.78 (16) |
C15—C10—N2 | 119.7 (2) | F3—P1—F5 | 177.99 (13) |
C11—C10—N2 | 120.0 (2) | F2—P1—F4 | 178.45 (17) |
C12—C11—C10 | 119.7 (3) | F6—P1—F4 | 87.72 (18) |
C12—C11—H11 | 121.4 (19) | F1—P1—F4 | 86.42 (17) |
C10—C11—H11 | 118.8 (19) | F3—P1—F4 | 88.27 (12) |
C11—C12—C13 | 120.6 (2) | F5—P1—F4 | 89.73 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.91 (4) | 2.59 (4) | 3.439 (4) | 156 (3) |
C9—H9···F3ii | 0.94 (3) | 2.47 (3) | 3.390 (3) | 166 (2) |
O1W—H101···O1M | 0.91 (4) | 1.67 (4) | 2.558 (3) | 165 (4) |
O1W—H102···F1 | 0.72 (4) | 2.36 (4) | 3.059 (5) | 164 (4) |
O1M—H201···N3iii | 0.88 (5) | 2.01 (5) | 2.842 (3) | 158 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+1, −z+2; (iii) −x+2, −y+1, −z+1. |
Re—N1 | Re—C1 | Re—N2 | Re—C2 | Re—O1W | Re—C3 | |
Present work | 2.177 (2) | 1.925 (3) | 2.194 (2) | 1.920 (3) | 2.189 (2) | 1.899 (3) |
ENAJAGa | 2.156 (7) | 1.935 (11) | 2.165 (7) | 1.884 (10) | 2.176 (7) | 1.886 (11) |
ENAJEKa | 2.173 (5) | 1.911 (7) | 2.178 (5) | 1.921 (7) | 2.191 (5) | 1.879 (7) |
FIWQUX-1b | 2.168 (7) | 1.91 (1) | 2.180 (5) | 1.914 (8) | 2.215 (6) | 1.88 (1) |
FIWQUX-2b | 2.164 (7) | 1.902 (10) | 2.178 (7) | 1.909 (10) | 2.210 (6) | 1.868 (10) |
KAWLOLc | 2.168 (4) | 1.914 (6) | 2.175 (4) | 1.929 (7) | 2.162 (3) | 1.893 (5) |
UHUNOAd | 2.161 (5) | 1.938 (7) | 2.183 (5) | 1.931 (7) | 2.181 (5) | 1.898 (7) |
2.160 (5) | 1.928 (6) | 2.174 (4) | 1.926 (9) | 2.196 (6) | 1.915 (7) | |
SEHGUKe | 2.210 (3) | 1.928 (4) | 2.200 (3) | 1.929 (4) | 2.196 (2) | 1.896 (4) |
PIDYILff | 2.167 (2) | 1.918 (3) | 2.167 (2) | 1.918 (3) | 2.143 (3) | 1.912 (4) |
UHUNUGd | 2.161 (6) | 1.901 (9) | 2.165 (6) | 1.914 (10) | 2.190 (5) | 1.882 (10) |
2.165 (6) | 1.901 (9) | 2.161 (6) | 1.91 (1) | 2.190 (5) | 1.88 (1) | |
VUDWATg | 2.185 (4) | 1.888 (7) | 2.175 (6) | 1.925 (8) | 2.165 (5) | 1.853 (9) |
ETEDEOh | 2.186 (5) | 1.933 (6) | 2.178 (5) | 1.902 (7) | 2.155 (5) | 1.896 (7) |
IZORIZi | 2.203 (3) | 1.912 (4) | 2.142 (3) | 1.922 (4) | 2.173 (3) | 1.904 (4) |
TUTDANj | 2.168 (6) | 1.925 (8) | 2.175 (6) | 1.913 (9) | 2.175 (6) | 1.89 (1) |
Notes: (a) 1,10-Phenanthroline (Connick et al., 1999); (b) 1,10-phenanthroline (Schutte et al., 2011); (c) 1,10-phenanthroline (Schutte et al., 2011); (d) 1,10-phenanthroline (Salignac et al., 2003); (e) 4,7-diphenyl-1,10-phenanthroline (Knopf et al., 2017); (f) 2,2'-bipyrazine (Rillema et al., 2007); (g) 2-hydroxybenzoic acid hydrazide, (Barbazán et al., 2009); (h) 2-(2'-pyridyl)benzothiazole (Carrington et al., 2016); (i) 2-(2'-pyridyl)benzimidazole (Tzeng et al., 2011); (j) acetylpyridine benzoylhydrazone (Grewe et al., 2003). |
Funding information
The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT) under the HFRI PhD Fellowship grant (IR, GA. No. 14500). VP would like to thank the Special Account of NCSR "Demokritos" for financial support regarding the operation of the X-ray facilities at INN through the internal program entitled `Structural study and characterization of crystalline materials' (NCSR Demokritos, ELKE #10 813).
References
Barbazán, P., Carballo, R., Prieto, I., Turnes, M. & Vázquez-López, E. M. (2009). J. Organomet. Chem. 694, 3102–3111. Google Scholar
Bradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1241–1253. Web of Science CrossRef Google Scholar
Carrington, S. J., Chakraborty, I., Bernard, J. M. L. & Mascharak, P. K. (2016). Inorg. Chem. 55, 7852–7858. Web of Science CSD CrossRef CAS PubMed Google Scholar
Connick, W. B., Di Bilio, A. J., Schaeffer, W. P. & Gray, H. B. (1999). Acta Cryst. C55, 913–916. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Crystal Impact (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Grewe, J., Hagenbach, A., Stromburg, B., Alberto, R., Vazquez-Lopez, E. & Abram, U. (2003). Z. Anorg. Allg. Chem. 629, 303–311. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Keri, R. S., Patil, M. R., Patil, S. A. & Budagumpi, S. (2015). Eur. J. Med. Chem. 89, 207–251. Web of Science CrossRef CAS PubMed Google Scholar
Kiritsis, C., Mavroidi, B., Shegani, A., Palamaris, E., Loudos, G., Sagnou, M., Pirmettis, I., Papadopoulos, M. & Pelecanou, M. (2017). ACS Med. Chem. Lett. 8, 1089–1092. Web of Science CrossRef CAS PubMed Google Scholar
Knopf, K., Murphy, B., MacMillan, S., Baskin, J., Barr, M., Boros, E. & Wilson, J. J. (2017). J. Am. Chem. Soc. 139, 14302–14314. Web of Science CSD CrossRef CAS PubMed Google Scholar
Leonidova, A. & Gasser, G. (2014). Chem. Biol. 9, 2180–2193. CAS Google Scholar
Mella, P., Cabezas, K., Cerda, C., Cepeda-Plaza, M., Günther, G., Pizarro, N. & Vega, A. (2016). New J. Chem. 40, 6451–6459. Web of Science CSD CrossRef CAS Google Scholar
Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. A. (2004). Dalton Trans. pp. 1320–1328. Web of Science CSD CrossRef Google Scholar
Papagiannopoulou, D., Triantis, C., Vassileiadis, V., Raptopoulou, C. P., Psycharis, V., Terzis, A., Pirmettis, I. & Papadopoulos, M. S. (2014). Polyhedron, 68, 46–52. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404–m1405. Web of Science CSD CrossRef IUCr Journals Google Scholar
Salignac, B., Grundler, P. V., Cayemittes, S., Frey, U., Scopelliti, R., Merbach, A. E., Hedinger, R., Hegetschweiler, K., Alberto, R., Prinz, U., Raabe, G., Kölle, U. & Hall, S. (2003). Inorg. Chem. 42, 3516–3526. Web of Science CSD CrossRef PubMed CAS Google Scholar
Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486–12498. Web of Science CSD CrossRef CAS PubMed Google Scholar
Shegani, A., Triantis, C., Nock, B. A., Maina, T., Kiritsis, C., Psycharis, V., Raptopoulou, C., Pirmettis, I., Tisato, F. & Papadopoulos, M. S. (2017). Inorg. Chem. 56, 8175–8186. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Triantis, C., Tsotakos, T., Tsoukalas, C., Sagnou, M., Raptopoulou, C., Terzis, A., Psycharis, V., Pelecanou, M., Pirmettis, I. & Papadopoulos, M. (2013). Inorg. Chem. 52, 12995–13003. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tzeng, B.-C., Chen, B.-S., Chen, C.-K., Chang, Y.-P., Tzeng, W.-C., Lin, T.-Y., Lee, G.-H., Chou, P.-T., Fu, Y. J. & Chang, A. H.-H. (2011). Inorg. Chem. 50, 5379–5388. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.