research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-(4-meth­­oxy­phen­yl)-1-methyl-4-phenyl-1H-pyrazolo­[3,4-d]pyrimidine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V, University Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elhafi.mohamed1@gmail.com, sevgi.kansiz85@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 April 2019; accepted 9 April 2019; online 16 April 2019)

In the title mol­ecule, C19H16N4O, the planar pyrazolo­pyrimidine moiety is inclined to the attached phenyl rings by 35.42 (4) and 54.51 (6)°. In the crystal, adjacent mol­ecules are linked into chains parallel to [110] and [1[\overline{1}]0] by C—H⋯O and C—H⋯N hydrogen bonds. Additional C—H⋯π(ring) inter­actions lead to the formation of the final three-dimensional network structure. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are from H⋯H (48.2%), C⋯H/H⋯C (23.9%) and N⋯H/H⋯N (17.4%) contacts.

1. Chemical context

Pyrazolo­[3,4-d]pyrimidine derivatives represent an important class of compounds because of their potent biological activities and thus find applications as anti­proliferative (Tallani et al., 2010[Taliani, S., La Motta, C., Mugnaini, L., Simorini, F., Salerno, S., Marini, A. M., Da Settimo, F., Cosconati, S., Cosimelli, B., Greco, G., Limongelli, V., Marinelli, L., Novellino, E., Ciampi, O., Daniele, S., Trincavelli, M. L. & Martini, C. (2010). J. Med. Chem. 53, 3954-3963.]), anti­bacterial (Rostamizadeh et al., 2013[Rostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629-632.]) or anti­tumor agents (Tintori et al., 2015[Tintori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F., Brullo, C., Richters, A., Gasparrini, F., Angelucci, A., Festuccia, C., Delle Monache, S., Rauh, D. & Botta, M. (2015). J. Med. Chem. 58, 347-361.]). The present contribution is a continuation of the investigation of pyrazolo­[3,4-d]pyrimi­dine derivatives recently published by us (El Hafi et al., 2017[El Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927-933.], 2018a[El Hafi, M., Boulhaoua, M., Lahmidi, S., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180243.],b[El Hafi, M., Lahmidi, S., Boulhaoua, M., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180483.]). We report herein the synthesis, mol­ecular and crystal structures of the title compound, 3-(4-meth­oxy­phen­yl)-1-methyl-4-phenyl-1H-pyrazolo­[3,4-d]pyrimidine (Fig. 1[link]), along with the results of a Hirshfeld surface analysis.

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

The heterocyclic ring system is planar (r.m.s. deviation of the fitted atoms = 0.0194 Å) with a maximum displacement of 0.0329 (10) Å from the mean plane for atom C1. The attached benzene rings (C6–C11 and C13–C18) are inclined to the above plane by 35.42 (4) and 54.51 (6)°, respectively.

3. Supra­molecular features

In the crystal, a combination of C9—H9⋯N2 hydrogen bonds between aromatic hydrogen atoms and one of the pyrimidine N atoms as well as C12—H12B⋯O1 hydrogen bonds between a methyl H atom and the meth­oxy O atoms of adjacent mol­ecules lead to the formation of chains extending alternately parallel to [110] and [1[\overline{1}]0] (Table 1[link] and Fig. 2[link]). Centrosymmetric dimers with an R22(8) graph-set motif are formed by pairwise C17—H17⋯O1 hydrogen bonds. The chains are linked into layers parallel to (001) by C19—H19CCg1 inter­actions, and pairs of layers are joined into thicker slabs by C19—H19BCg4 inter­actions (Table 1[link] and Figs. 2[link]–4[link][link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg4 are the centroids of the C3/C4/C5/N4/N3 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N2i 0.988 (18) 2.579 (17) 3.3995 (19) 140.3 (14)
C12—H12B⋯O1ii 0.98 (2) 2.49 (2) 3.2694 (19) 136.4 (15)
C17—H17⋯O1iii 0.983 (17) 2.618 (9) 3.4973 (17) 149.3 (14)
C19—H19BCg4iv 1.02 (2) 2.74 (2) 3.5928 (19) 141.9 (14)
C19—H19CCg1v 0.995 (19) 2.947 (19) 3.9072 (19) 162.0 (15)
Symmetry codes: (i) x-1, y+1, z; (ii) x+1, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1; (v) x, y+1, z.
[Figure 2]
Figure 2
Details of the inter­molecular inter­actions in a view along [100]. C—H⋯O and C—H⋯N hydrogen bonds are shown, respectively, as black and light-purple dashed lines while the C—H⋯π(ring) inter­actions are shown as green dashed lines. [Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y − 1, z; (iii) x − 1, y + 1, z.]
[Figure 3]
Figure 3
Packing of the crystal viewed along [100] with inter­molecular inter­actions depicted as in Fig. 2[link].
[Figure 4]
Figure 4
Packing of the crystal viewed along [010] with inter­molecular inter­actions depicted as in Fig. 2[link].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-methyl-1H-pyrazolo­[3,4-d]pyrimidine skeleton yielded seven hits. In all of these structures, the pyrazolo­[3,4-d]pyrimi­dine rings are planar, as in the title compound. In FEWVIP (El Hafi et al., 2018a[El Hafi, M., Boulhaoua, M., Lahmidi, S., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180243.]), centrosymmetric dimers with an R22(8) graph set motif are formed by pairwise N—H⋯O hydrogen bonds; the dimers are connected into chains parallel to [001], similar to those in the title compound. Neighbouring mol­ecules in FAXFEP (Sheldrick & Bell, 1987a[Sheldrick, W. S. & Bell, P. (1987a). Z. Naturforsch. Teil B, 42, 195-202.]) and in FOGXAA, FOGXEE, FOGXII, JAGROY (Sheldrick & Bell, 1987b[Sheldrick, W. S. & Bell, P. (1987b). Inorg. Chim. Acta, 137, 181-188.]) are linked by N—H⋯O hydrogen bonds, whereas in XAXRUM (El Fal et al., 2017[El Fal, M., Mague, J. T., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171042.]), C—H⋯N hydrogen bonds are responsible for the formation of double chains running parallel to [100].

5. Hirshfeld surface analysis

CrystalExplorer17 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]) was used to perform the Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and obtain the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Fig. 5[link] shows dnorm, di, de, shape-index, curvedness and electrostatic potential mapped over the Hirshfeld surface for the title compound while Fig. 6[link] illustrates the Hirshfeld surface of the mol­ecule in the crystal, with the evident hydrogen-bonding inter­actions indicated as intense red spots.

[Figure 5]
Figure 5
The Hirshfeld surfaces of the title compound mapped over (a) dnorm, (b) di, (c) de, (d) shape-index, (e) curvedness and (f) electrostatic potential.
[Figure 6]
Figure 6
dnorm mapped on Hirshfeld surfaces for visualizing the inter­molecular inter­actions of the title compound.

Fig. 7[link]a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The fingerprint plots provide information about the percentage contributions of various inter­atomic contacts in the structure. The blue color refers to the frequency of occurrence of the (di, de) pair with the full fingerprint outlined in gray. Individual fingerprint plots (Fig. 7[link]b) reveal that the H⋯H contacts clearly give the most significant contribution to the Hirshfeld surface (48.2%). In addition, C⋯H/H⋯C, N⋯H/H⋯N, O⋯H/H⋯O and C⋯N/N⋯C contacts contribute 23.9%, 17.4%, 5.3% and 2.6%, respectively, to the Hirshfeld surface. In particular, the N⋯H/H⋯N and O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯N and C—H⋯O inter­actions, respectively. Much weaker C⋯C (2.2%) and C⋯O/O⋯C (0.5%) contacts also occur.

[Figure 7]
Figure 7
Two-dimensional fingerprint plots for the title structure, with a dnorm view and relative contribution of the atom pairs to the Hirshfeld surface.

A view of the mol­ecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the 6-31G(d,p) basis set (DFT method), for the title compound is shown in Fig. 8[link]. The donors and acceptors for C—H⋯O and C—H⋯N hydrogen bonds are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 8]
Figure 8
A view of the mol­ecular electrostatic potential of the title compound in the range −0.05 to 0.05 a.u. using the 6–31G(d,p) basis set (DFT method).

6. Synthesis and crystallization

Under an atmosphere of argon, a mixture of 1-methyl-4-phenyl-1H-pyrazolo­[3,4-d]pyrimidine (0.1 g, 0.47 mmol), 4-iodo­anisole (0.22 g, 0.95 mmol), Cs2CO3 (0.46g, 1.42 mmol), K3PO4 (0.25 g, 1.18 mmol), 1,10-phenanthroline (0.034 g, 0.19 mmol), and Pd(OAc)2 (0.021 g, 0.094 mmol) in DMA (3 ml) was heated to 438 K for 48 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. Water (15 ml) was added, and the resulting aqueous phase was extracted with CH2Cl2 (3 × 15 ml). The combined organic layers were dried with MgSO4 and concentrated under vacuum. The residue was purified by column chromatography on silica gel (EtOAc/petroleum ether). The title compound was recrystallized from ethanol at room temperature, giving colorless crystals (yield: 71%; m.p. 412–414 K).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference-Fourier map and were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C19H16N4O
Mr 316.36
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 6.5227 (3), 7.8979 (4), 30.7774 (15)
β (°) 95.389 (2)
V3) 1578.51 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.30 × 0.24 × 0.04
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 11542, 3069, 2613
Rint 0.035
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.091, 1.06
No. of reflections 3069
No. of parameters 282
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-(4-Methoxyphenyl)-1-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine top
Crystal data top
C19H16N4OF(000) = 664
Mr = 316.36Dx = 1.331 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.5227 (3) ÅCell parameters from 8514 reflections
b = 7.8979 (4) Åθ = 2.9–72.2°
c = 30.7774 (15) ŵ = 0.69 mm1
β = 95.389 (2)°T = 150 K
V = 1578.51 (13) Å3Plate, colourless
Z = 40.30 × 0.24 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3069 independent reflections
Radiation source: INCOATEC IµS micro-focus source2613 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 5.8°
ω scansh = 78
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 98
Tmin = 0.85, Tmax = 0.98l = 3733
11542 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5793P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.19 e Å3
3069 reflectionsΔρmin = 0.18 e Å3
282 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0035 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20599 (16)0.66433 (13)0.47647 (3)0.0355 (3)
N10.21981 (18)0.14300 (15)0.29349 (4)0.0310 (3)
N20.53402 (18)0.27278 (15)0.32443 (4)0.0314 (3)
N30.70112 (17)0.11435 (15)0.38386 (4)0.0302 (3)
N40.66731 (18)0.02986 (15)0.40680 (4)0.0306 (3)
C10.2383 (2)0.01161 (17)0.32134 (4)0.0257 (3)
C20.3656 (2)0.26430 (19)0.29691 (5)0.0338 (3)
H20.343 (3)0.360 (2)0.2760 (6)0.038 (4)*
C30.5468 (2)0.14182 (18)0.35243 (4)0.0271 (3)
C40.4895 (2)0.09486 (18)0.38968 (4)0.0267 (3)
C50.4044 (2)0.00839 (17)0.35407 (4)0.0249 (3)
C60.0795 (2)0.12152 (17)0.31411 (4)0.0257 (3)
C70.1276 (2)0.29264 (18)0.31985 (5)0.0305 (3)
H70.270 (3)0.330 (2)0.3290 (5)0.034 (4)*
C80.0249 (3)0.4138 (2)0.31144 (5)0.0366 (4)
H80.017 (3)0.533 (2)0.3158 (6)0.042 (5)*
C90.2243 (2)0.3662 (2)0.29735 (5)0.0379 (4)
H90.331 (3)0.454 (2)0.2911 (6)0.044 (5)*
C100.2719 (2)0.1971 (2)0.29048 (5)0.0347 (3)
H100.408 (3)0.162 (2)0.2792 (6)0.051 (5)*
C110.1211 (2)0.07493 (19)0.29875 (5)0.0287 (3)
H110.153 (2)0.048 (2)0.2930 (5)0.033 (4)*
C120.8835 (2)0.2161 (2)0.39446 (6)0.0370 (4)
H12A1.000 (3)0.162 (3)0.3834 (7)0.062 (6)*
H12B0.912 (3)0.232 (2)0.4259 (7)0.057 (6)*
H12C0.855 (3)0.330 (3)0.3805 (6)0.054 (5)*
C130.4119 (2)0.24828 (17)0.41004 (4)0.0267 (3)
C140.5384 (2)0.38855 (18)0.41690 (5)0.0298 (3)
H140.678 (3)0.386 (2)0.4064 (5)0.037 (4)*
C150.4749 (2)0.53140 (18)0.43856 (5)0.0311 (3)
H150.565 (2)0.6368 (18)0.4445 (5)0.021 (3)*
C160.2816 (2)0.53215 (18)0.45402 (4)0.0291 (3)
C170.1517 (2)0.39289 (19)0.44698 (5)0.0313 (3)
H170.017 (3)0.394 (2)0.4587 (6)0.041 (5)*
C180.2157 (2)0.25287 (19)0.42500 (5)0.0300 (3)
H180.124 (2)0.157 (2)0.4201 (5)0.033 (4)*
C190.3310 (3)0.8127 (2)0.48265 (6)0.0407 (4)
H19A0.252 (3)0.891 (3)0.5003 (6)0.057 (6)*
H19B0.471 (3)0.782 (2)0.4976 (7)0.054 (5)*
H19C0.356 (3)0.862 (2)0.4538 (6)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0375 (6)0.0338 (6)0.0346 (6)0.0032 (4)0.0009 (4)0.0060 (4)
N10.0310 (6)0.0318 (7)0.0298 (6)0.0027 (5)0.0009 (5)0.0055 (5)
N20.0314 (6)0.0314 (6)0.0314 (7)0.0052 (5)0.0035 (5)0.0016 (5)
N30.0262 (6)0.0331 (7)0.0304 (6)0.0050 (5)0.0010 (5)0.0001 (5)
N40.0277 (6)0.0338 (7)0.0297 (6)0.0020 (5)0.0001 (5)0.0002 (5)
C10.0248 (6)0.0284 (7)0.0240 (7)0.0009 (5)0.0034 (5)0.0004 (5)
C20.0348 (8)0.0334 (8)0.0330 (8)0.0031 (6)0.0027 (6)0.0068 (6)
C30.0261 (7)0.0297 (7)0.0258 (7)0.0013 (5)0.0039 (5)0.0019 (6)
C40.0251 (6)0.0295 (7)0.0254 (7)0.0005 (5)0.0012 (5)0.0013 (5)
C50.0247 (6)0.0265 (7)0.0238 (7)0.0006 (5)0.0031 (5)0.0008 (5)
C60.0272 (7)0.0298 (7)0.0201 (6)0.0023 (5)0.0022 (5)0.0008 (5)
C70.0340 (8)0.0304 (7)0.0265 (7)0.0003 (6)0.0006 (6)0.0004 (6)
C80.0489 (9)0.0295 (8)0.0312 (8)0.0066 (7)0.0029 (7)0.0009 (6)
C90.0402 (8)0.0421 (9)0.0320 (8)0.0161 (7)0.0060 (6)0.0047 (7)
C100.0274 (7)0.0465 (9)0.0302 (8)0.0059 (6)0.0024 (6)0.0043 (7)
C110.0277 (7)0.0333 (8)0.0251 (7)0.0008 (6)0.0025 (5)0.0006 (6)
C120.0273 (8)0.0407 (9)0.0421 (10)0.0082 (6)0.0004 (7)0.0055 (7)
C130.0274 (7)0.0304 (7)0.0216 (7)0.0007 (5)0.0017 (5)0.0004 (5)
C140.0268 (7)0.0338 (8)0.0285 (7)0.0015 (6)0.0009 (6)0.0003 (6)
C150.0322 (7)0.0304 (8)0.0301 (8)0.0036 (6)0.0001 (6)0.0010 (6)
C160.0330 (7)0.0312 (7)0.0219 (7)0.0049 (6)0.0030 (5)0.0006 (5)
C170.0252 (7)0.0395 (8)0.0286 (7)0.0013 (6)0.0001 (6)0.0010 (6)
C180.0270 (7)0.0330 (8)0.0294 (7)0.0034 (6)0.0010 (6)0.0015 (6)
C190.0536 (10)0.0306 (8)0.0374 (9)0.0015 (7)0.0012 (8)0.0042 (7)
Geometric parameters (Å, º) top
O1—C161.3690 (17)C9—C101.383 (2)
O1—C191.430 (2)C9—H90.988 (18)
N1—C11.3441 (18)C10—C111.385 (2)
N1—C21.3471 (18)C10—H100.96 (2)
N2—C21.3243 (19)C11—H111.003 (16)
N2—C31.3438 (18)C12—H12A0.96 (2)
N3—C31.3464 (18)C12—H12B0.98 (2)
N3—N41.3687 (17)C12—H12C1.01 (2)
N3—C121.4476 (18)C13—C141.3854 (19)
N4—C41.3310 (17)C13—C181.401 (2)
C1—C51.4087 (19)C14—C151.393 (2)
C1—C61.4778 (18)C14—H140.997 (17)
C2—H20.993 (17)C15—C161.389 (2)
C3—C51.4089 (18)C15—H151.025 (15)
C4—C51.4351 (19)C16—C171.393 (2)
C4—C131.4753 (19)C17—C181.381 (2)
C6—C71.395 (2)C17—H170.983 (17)
C6—C111.3982 (19)C18—H180.973 (17)
C7—C81.387 (2)C19—H19A1.00 (2)
C7—H70.987 (17)C19—H19B1.02 (2)
C8—C91.384 (2)C19—H19C0.995 (19)
C8—H80.990 (18)
C16—O1—C19117.64 (12)C9—C10—H10121.0 (11)
C1—N1—C2118.61 (12)C11—C10—H10119.0 (11)
C2—N2—C3111.67 (12)C10—C11—C6120.35 (14)
C3—N3—N4111.03 (11)C10—C11—H11120.7 (9)
C3—N3—C12127.98 (13)C6—C11—H11118.9 (9)
N4—N3—C12120.99 (12)N3—C12—H12A109.5 (12)
C4—N4—N3107.06 (11)N3—C12—H12B111.7 (12)
N1—C1—C5119.14 (12)H12A—C12—H12B108.8 (17)
N1—C1—C6115.69 (12)N3—C12—H12C106.5 (11)
C5—C1—C6125.16 (12)H12A—C12—H12C111.6 (16)
N2—C2—N1128.53 (14)H12B—C12—H12C108.8 (16)
N2—C2—H2116.0 (10)C14—C13—C18118.58 (13)
N1—C2—H2115.4 (10)C14—C13—C4119.90 (12)
N2—C3—N3125.60 (12)C18—C13—C4121.42 (12)
N2—C3—C5126.66 (13)C13—C14—C15121.41 (13)
N3—C3—C5107.73 (12)C13—C14—H14119.1 (10)
N4—C4—C5110.07 (12)C15—C14—H14119.5 (10)
N4—C4—C13118.00 (12)C16—C15—C14119.18 (13)
C5—C4—C13131.88 (12)C16—C15—H15117.3 (8)
C1—C5—C3115.24 (12)C14—C15—H15123.6 (8)
C1—C5—C4140.59 (13)O1—C16—C15123.91 (13)
C3—C5—C4104.08 (12)O1—C16—C17115.98 (13)
C7—C6—C11119.32 (13)C15—C16—C17120.11 (13)
C7—C6—C1121.63 (12)C18—C17—C16120.07 (13)
C11—C6—C1118.95 (13)C18—C17—H17120.7 (10)
C8—C7—C6119.76 (14)C16—C17—H17119.2 (10)
C8—C7—H7119.1 (10)C17—C18—C13120.62 (13)
C6—C7—H7121.1 (9)C17—C18—H18119.4 (9)
C9—C8—C7120.50 (15)C13—C18—H18120.0 (9)
C9—C8—H8122.8 (10)O1—C19—H19A105.4 (11)
C7—C8—H8116.7 (10)O1—C19—H19B110.0 (11)
C10—C9—C8120.07 (14)H19A—C19—H19B113.1 (16)
C10—C9—H9120.4 (10)O1—C19—H19C109.8 (11)
C8—C9—H9119.5 (10)H19A—C19—H19C112.3 (15)
C9—C10—C11119.94 (14)H19B—C19—H19C106.3 (15)
C3—N3—N4—C40.08 (15)C5—C1—C6—C736.6 (2)
C12—N3—N4—C4179.99 (13)N1—C1—C6—C1134.01 (18)
C2—N1—C1—C52.4 (2)C5—C1—C6—C11147.05 (14)
C2—N1—C1—C6176.60 (13)C11—C6—C7—C81.8 (2)
C3—N2—C2—N12.3 (2)C1—C6—C7—C8178.07 (13)
C1—N1—C2—N21.2 (2)C6—C7—C8—C90.1 (2)
C2—N2—C3—N3179.20 (14)C7—C8—C9—C101.6 (2)
C2—N2—C3—C50.1 (2)C8—C9—C10—C111.6 (2)
N4—N3—C3—N2179.83 (13)C9—C10—C11—C60.1 (2)
C12—N3—C3—N20.1 (2)C7—C6—C11—C101.8 (2)
N4—N3—C3—C50.79 (16)C1—C6—C11—C10178.18 (13)
C12—N3—C3—C5179.31 (14)N4—C4—C13—C1452.12 (18)
N3—N4—C4—C50.66 (15)C5—C4—C13—C14130.58 (16)
N3—N4—C4—C13177.20 (11)N4—C4—C13—C18124.27 (15)
N1—C1—C5—C34.26 (19)C5—C4—C13—C1853.0 (2)
C6—C1—C5—C3174.66 (12)C18—C13—C14—C150.7 (2)
N1—C1—C5—C4179.91 (16)C4—C13—C14—C15175.81 (13)
C6—C1—C5—C41.2 (3)C13—C14—C15—C160.7 (2)
N2—C3—C5—C13.2 (2)C19—O1—C16—C152.7 (2)
N3—C3—C5—C1176.16 (12)C19—O1—C16—C17177.26 (13)
N2—C3—C5—C4179.52 (13)C14—C15—C16—O1178.62 (13)
N3—C3—C5—C41.11 (15)C14—C15—C16—C171.4 (2)
N4—C4—C5—C1175.01 (16)O1—C16—C17—C18179.36 (13)
C13—C4—C5—C17.5 (3)C15—C16—C17—C180.7 (2)
N4—C4—C5—C31.10 (15)C16—C17—C18—C130.8 (2)
C13—C4—C5—C3176.36 (14)C14—C13—C18—C171.4 (2)
N1—C1—C6—C7142.30 (14)C4—C13—C18—C17175.00 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg4 are the centroids of the C3/C4/C5/N4/N3 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.988 (18)2.579 (17)3.3995 (19)140.3 (14)
C12—H12B···O1ii0.98 (2)2.49 (2)3.2694 (19)136.4 (15)
C17—H17···O1iii0.983 (17)2.618 (9)3.4973 (17)149.3 (14)
C19—H19B···Cg4iv1.02 (2)2.74 (2)3.5928 (19)141.9 (14)
C19—H19C···Cg1v0.995 (19)2.947 (19)3.9072 (19)162.0 (15)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Fal, M., Mague, J. T., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171042.  Google Scholar
First citationEl Hafi, M., Boulhaoua, M., Lahmidi, S., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180243.  Google Scholar
First citationEl Hafi, M., Lahmidi, S., Boulhaoua, M., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180483.  Google Scholar
First citationEl Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927–933.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629–632.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, W. S. & Bell, P. (1987a). Z. Naturforsch. Teil B, 42, 195–202.  CrossRef CAS Google Scholar
First citationSheldrick, W. S. & Bell, P. (1987b). Inorg. Chim. Acta, 137, 181–188.  CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTaliani, S., La Motta, C., Mugnaini, L., Simorini, F., Salerno, S., Marini, A. M., Da Settimo, F., Cosconati, S., Cosimelli, B., Greco, G., Limongelli, V., Marinelli, L., Novellino, E., Ciampi, O., Daniele, S., Trincavelli, M. L. & Martini, C. (2010). J. Med. Chem. 53, 3954–3963.  CrossRef CAS PubMed Google Scholar
First citationTintori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F., Brullo, C., Richters, A., Gasparrini, F., Angelucci, A., Festuccia, C., Delle Monache, S., Rauh, D. & Botta, M. (2015). J. Med. Chem. 58, 347–361.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds