research communications
H-pyrazolo[3,4-d]pyrimidine
and Hirshfeld surface analysis of 3-(4-methoxyphenyl)-1-methyl-4-phenyl-1aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, cLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V, University Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elhafi.mohamed1@gmail.com, sevgi.kansiz85@gmail.com
In the title molecule, C19H16N4O, the planar pyrazolopyrimidine moiety is inclined to the attached phenyl rings by 35.42 (4) and 54.51 (6)°. In the crystal, adjacent molecules are linked into chains parallel to [110] and [10] by C—H⋯O and C—H⋯N hydrogen bonds. Additional C—H⋯π(ring) interactions lead to the formation of the final three-dimensional network structure. The Hirshfeld surface analysis of the title compound suggests that the most significant contributions to the crystal packing are from H⋯H (48.2%), C⋯H/H⋯C (23.9%) and N⋯H/H⋯N (17.4%) contacts.
Keywords: crystal structure; hydrogen bond; C—H⋯π(ring) interactions; pyrazolopyrimidine; Hirshfeld surface analysis.
CCDC reference: 1909062
1. Chemical context
Pyrazolo[3,4-d]pyrimidine derivatives represent an important class of compounds because of their potent biological activities and thus find applications as antiproliferative (Tallani et al., 2010), antibacterial (Rostamizadeh et al., 2013) or antitumor agents (Tintori et al., 2015). The present contribution is a continuation of the investigation of pyrazolo[3,4-d]pyrimidine derivatives recently published by us (El Hafi et al., 2017, 2018a,b). We report herein the synthesis, molecular and crystal structures of the title compound, 3-(4-methoxyphenyl)-1-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (Fig. 1), along with the results of a Hirshfeld surface analysis.
2. Structural commentary
The heterocyclic ring system is planar (r.m.s. deviation of the fitted atoms = 0.0194 Å) with a maximum displacement of 0.0329 (10) Å from the mean plane for atom C1. The attached benzene rings (C6–C11 and C13–C18) are inclined to the above plane by 35.42 (4) and 54.51 (6)°, respectively.
3. Supramolecular features
In the crystal, a combination of C9—H9⋯N2 hydrogen bonds between aromatic hydrogen atoms and one of the pyrimidine N atoms as well as C12—H12B⋯O1 hydrogen bonds between a methyl H atom and the methoxy O atoms of adjacent molecules lead to the formation of chains extending alternately parallel to [110] and [10] (Table 1 and Fig. 2). Centrosymmetric dimers with an R22(8) graph-set motif are formed by pairwise C17—H17⋯O1 hydrogen bonds. The chains are linked into layers parallel to (001) by C19—H19C⋯Cg1 interactions, and pairs of layers are joined into thicker slabs by C19—H19B⋯Cg4 interactions (Table 1 and Figs. 2–4).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.40, update November 2018; Groom et al., 2016) for the 1-methyl-1H-pyrazolo[3,4-d]pyrimidine skeleton yielded seven hits. In all of these structures, the pyrazolo[3,4-d]pyrimidine rings are planar, as in the title compound. In FEWVIP (El Hafi et al., 2018a), centrosymmetric dimers with an R22(8) graph set motif are formed by pairwise N—H⋯O hydrogen bonds; the dimers are connected into chains parallel to [001], similar to those in the title compound. Neighbouring molecules in FAXFEP (Sheldrick & Bell, 1987a) and in FOGXAA, FOGXEE, FOGXII, JAGROY (Sheldrick & Bell, 1987b) are linked by N—H⋯O hydrogen bonds, whereas in XAXRUM (El Fal et al., 2017), C—H⋯N hydrogen bonds are responsible for the formation of double chains running parallel to [100].
5. Hirshfeld surface analysis
CrystalExplorer17 (Turner et al., 2017) was used to perform the Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and obtain the associated two-dimensional fingerprint plots (McKinnon et al., 2007). Fig. 5 shows dnorm, di, de, shape-index, curvedness and electrostatic potential mapped over the Hirshfeld surface for the title compound while Fig. 6 illustrates the Hirshfeld surface of the molecule in the crystal, with the evident hydrogen-bonding interactions indicated as intense red spots.
Fig. 7a shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The fingerprint plots provide information about the percentage contributions of various interatomic contacts in the structure. The blue color refers to the frequency of occurrence of the (di, de) pair with the full fingerprint outlined in gray. Individual fingerprint plots (Fig. 7b) reveal that the H⋯H contacts clearly give the most significant contribution to the Hirshfeld surface (48.2%). In addition, C⋯H/H⋯C, N⋯H/H⋯N, O⋯H/H⋯O and C⋯N/N⋯C contacts contribute 23.9%, 17.4%, 5.3% and 2.6%, respectively, to the Hirshfeld surface. In particular, the N⋯H/H⋯N and O⋯H/H⋯O contacts indicate the presence of intermolecular C—H⋯N and C—H⋯O interactions, respectively. Much weaker C⋯C (2.2%) and C⋯O/O⋯C (0.5%) contacts also occur.
A view of the molecular electrostatic potential, in the range −0.0500 to 0.0500 a.u. using the 6-31G(d,p) basis set (DFT method), for the title compound is shown in Fig. 8. The donors and acceptors for C—H⋯O and C—H⋯N hydrogen bonds are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
6. Synthesis and crystallization
Under an atmosphere of argon, a mixture of 1-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (0.1 g, 0.47 mmol), 4-iodoanisole (0.22 g, 0.95 mmol), Cs2CO3 (0.46g, 1.42 mmol), K3PO4 (0.25 g, 1.18 mmol), 1,10-phenanthroline (0.034 g, 0.19 mmol), and Pd(OAc)2 (0.021 g, 0.094 mmol) in DMA (3 ml) was heated to 438 K for 48 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the solvent was removed under reduced pressure. Water (15 ml) was added, and the resulting aqueous phase was extracted with CH2Cl2 (3 × 15 ml). The combined organic layers were dried with MgSO4 and concentrated under vacuum. The residue was purified by on silica gel (EtOAc/petroleum ether). The title compound was recrystallized from ethanol at room temperature, giving colorless crystals (yield: 71%; m.p. 412–414 K).
7. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference-Fourier map and were freely refined.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1909062
https://doi.org/10.1107/S2056989019004894/wm5499sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019004894/wm5499Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019004894/wm5499Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C19H16N4O | F(000) = 664 |
Mr = 316.36 | Dx = 1.331 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 6.5227 (3) Å | Cell parameters from 8514 reflections |
b = 7.8979 (4) Å | θ = 2.9–72.2° |
c = 30.7774 (15) Å | µ = 0.69 mm−1 |
β = 95.389 (2)° | T = 150 K |
V = 1578.51 (13) Å3 | Plate, colourless |
Z = 4 | 0.30 × 0.24 × 0.04 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3069 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2613 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.2°, θmin = 5.8° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −9→8 |
Tmin = 0.85, Tmax = 0.98 | l = −37→33 |
11542 measured reflections |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0337P)2 + 0.5793P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.19 e Å−3 |
3069 reflections | Δρmin = −0.18 e Å−3 |
282 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0035 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.20599 (16) | 0.66433 (13) | 0.47647 (3) | 0.0355 (3) | |
N1 | 0.21981 (18) | −0.14300 (15) | 0.29349 (4) | 0.0310 (3) | |
N2 | 0.53402 (18) | −0.27278 (15) | 0.32443 (4) | 0.0314 (3) | |
N3 | 0.70112 (17) | −0.11435 (15) | 0.38386 (4) | 0.0302 (3) | |
N4 | 0.66731 (18) | 0.02986 (15) | 0.40680 (4) | 0.0306 (3) | |
C1 | 0.2383 (2) | −0.01161 (17) | 0.32134 (4) | 0.0257 (3) | |
C2 | 0.3656 (2) | −0.26430 (19) | 0.29691 (5) | 0.0338 (3) | |
H2 | 0.343 (3) | −0.360 (2) | 0.2760 (6) | 0.038 (4)* | |
C3 | 0.5468 (2) | −0.14182 (18) | 0.35243 (4) | 0.0271 (3) | |
C4 | 0.4895 (2) | 0.09486 (18) | 0.38968 (4) | 0.0267 (3) | |
C5 | 0.4044 (2) | −0.00839 (17) | 0.35407 (4) | 0.0249 (3) | |
C6 | 0.0795 (2) | 0.12152 (17) | 0.31411 (4) | 0.0257 (3) | |
C7 | 0.1276 (2) | 0.29264 (18) | 0.31985 (5) | 0.0305 (3) | |
H7 | 0.270 (3) | 0.330 (2) | 0.3290 (5) | 0.034 (4)* | |
C8 | −0.0249 (3) | 0.4138 (2) | 0.31144 (5) | 0.0366 (4) | |
H8 | 0.017 (3) | 0.533 (2) | 0.3158 (6) | 0.042 (5)* | |
C9 | −0.2243 (2) | 0.3662 (2) | 0.29735 (5) | 0.0379 (4) | |
H9 | −0.331 (3) | 0.454 (2) | 0.2911 (6) | 0.044 (5)* | |
C10 | −0.2719 (2) | 0.1971 (2) | 0.29048 (5) | 0.0347 (3) | |
H10 | −0.408 (3) | 0.162 (2) | 0.2792 (6) | 0.051 (5)* | |
C11 | −0.1211 (2) | 0.07493 (19) | 0.29875 (5) | 0.0287 (3) | |
H11 | −0.153 (2) | −0.048 (2) | 0.2930 (5) | 0.033 (4)* | |
C12 | 0.8835 (2) | −0.2161 (2) | 0.39446 (6) | 0.0370 (4) | |
H12A | 1.000 (3) | −0.162 (3) | 0.3834 (7) | 0.062 (6)* | |
H12B | 0.912 (3) | −0.232 (2) | 0.4259 (7) | 0.057 (6)* | |
H12C | 0.855 (3) | −0.330 (3) | 0.3805 (6) | 0.054 (5)* | |
C13 | 0.4119 (2) | 0.24828 (17) | 0.41004 (4) | 0.0267 (3) | |
C14 | 0.5384 (2) | 0.38855 (18) | 0.41690 (5) | 0.0298 (3) | |
H14 | 0.678 (3) | 0.386 (2) | 0.4064 (5) | 0.037 (4)* | |
C15 | 0.4749 (2) | 0.53140 (18) | 0.43856 (5) | 0.0311 (3) | |
H15 | 0.565 (2) | 0.6368 (18) | 0.4445 (5) | 0.021 (3)* | |
C16 | 0.2816 (2) | 0.53215 (18) | 0.45402 (4) | 0.0291 (3) | |
C17 | 0.1517 (2) | 0.39289 (19) | 0.44698 (5) | 0.0313 (3) | |
H17 | 0.017 (3) | 0.394 (2) | 0.4587 (6) | 0.041 (5)* | |
C18 | 0.2157 (2) | 0.25287 (19) | 0.42500 (5) | 0.0300 (3) | |
H18 | 0.124 (2) | 0.157 (2) | 0.4201 (5) | 0.033 (4)* | |
C19 | 0.3310 (3) | 0.8127 (2) | 0.48265 (6) | 0.0407 (4) | |
H19A | 0.252 (3) | 0.891 (3) | 0.5003 (6) | 0.057 (6)* | |
H19B | 0.471 (3) | 0.782 (2) | 0.4976 (7) | 0.054 (5)* | |
H19C | 0.356 (3) | 0.862 (2) | 0.4538 (6) | 0.046 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0375 (6) | 0.0338 (6) | 0.0346 (6) | 0.0032 (4) | 0.0009 (4) | −0.0060 (4) |
N1 | 0.0310 (6) | 0.0318 (7) | 0.0298 (6) | 0.0027 (5) | 0.0009 (5) | −0.0055 (5) |
N2 | 0.0314 (6) | 0.0314 (6) | 0.0314 (7) | 0.0052 (5) | 0.0035 (5) | −0.0016 (5) |
N3 | 0.0262 (6) | 0.0331 (7) | 0.0304 (6) | 0.0050 (5) | −0.0010 (5) | 0.0001 (5) |
N4 | 0.0277 (6) | 0.0338 (7) | 0.0297 (6) | 0.0020 (5) | 0.0001 (5) | −0.0002 (5) |
C1 | 0.0248 (6) | 0.0284 (7) | 0.0240 (7) | −0.0009 (5) | 0.0034 (5) | 0.0004 (5) |
C2 | 0.0348 (8) | 0.0334 (8) | 0.0330 (8) | 0.0031 (6) | 0.0027 (6) | −0.0068 (6) |
C3 | 0.0261 (7) | 0.0297 (7) | 0.0258 (7) | 0.0013 (5) | 0.0039 (5) | 0.0019 (6) |
C4 | 0.0251 (6) | 0.0295 (7) | 0.0254 (7) | −0.0005 (5) | 0.0012 (5) | 0.0013 (5) |
C5 | 0.0247 (6) | 0.0265 (7) | 0.0238 (7) | 0.0006 (5) | 0.0031 (5) | 0.0008 (5) |
C6 | 0.0272 (7) | 0.0298 (7) | 0.0201 (6) | 0.0023 (5) | 0.0022 (5) | 0.0008 (5) |
C7 | 0.0340 (8) | 0.0304 (7) | 0.0265 (7) | 0.0003 (6) | −0.0006 (6) | 0.0004 (6) |
C8 | 0.0489 (9) | 0.0295 (8) | 0.0312 (8) | 0.0066 (7) | 0.0029 (7) | 0.0009 (6) |
C9 | 0.0402 (8) | 0.0421 (9) | 0.0320 (8) | 0.0161 (7) | 0.0060 (6) | 0.0047 (7) |
C10 | 0.0274 (7) | 0.0465 (9) | 0.0302 (8) | 0.0059 (6) | 0.0024 (6) | 0.0043 (7) |
C11 | 0.0277 (7) | 0.0333 (8) | 0.0251 (7) | 0.0008 (6) | 0.0025 (5) | 0.0006 (6) |
C12 | 0.0273 (8) | 0.0407 (9) | 0.0421 (10) | 0.0082 (6) | −0.0004 (7) | 0.0055 (7) |
C13 | 0.0274 (7) | 0.0304 (7) | 0.0216 (7) | 0.0007 (5) | −0.0017 (5) | −0.0004 (5) |
C14 | 0.0268 (7) | 0.0338 (8) | 0.0285 (7) | −0.0015 (6) | 0.0009 (6) | −0.0003 (6) |
C15 | 0.0322 (7) | 0.0304 (8) | 0.0301 (8) | −0.0036 (6) | 0.0001 (6) | −0.0010 (6) |
C16 | 0.0330 (7) | 0.0312 (7) | 0.0219 (7) | 0.0049 (6) | −0.0030 (5) | −0.0006 (5) |
C17 | 0.0252 (7) | 0.0395 (8) | 0.0286 (7) | 0.0013 (6) | 0.0001 (6) | −0.0010 (6) |
C18 | 0.0270 (7) | 0.0330 (8) | 0.0294 (7) | −0.0034 (6) | −0.0010 (6) | −0.0015 (6) |
C19 | 0.0536 (10) | 0.0306 (8) | 0.0374 (9) | −0.0015 (7) | 0.0012 (8) | −0.0042 (7) |
O1—C16 | 1.3690 (17) | C9—C10 | 1.383 (2) |
O1—C19 | 1.430 (2) | C9—H9 | 0.988 (18) |
N1—C1 | 1.3441 (18) | C10—C11 | 1.385 (2) |
N1—C2 | 1.3471 (18) | C10—H10 | 0.96 (2) |
N2—C2 | 1.3243 (19) | C11—H11 | 1.003 (16) |
N2—C3 | 1.3438 (18) | C12—H12A | 0.96 (2) |
N3—C3 | 1.3464 (18) | C12—H12B | 0.98 (2) |
N3—N4 | 1.3687 (17) | C12—H12C | 1.01 (2) |
N3—C12 | 1.4476 (18) | C13—C14 | 1.3854 (19) |
N4—C4 | 1.3310 (17) | C13—C18 | 1.401 (2) |
C1—C5 | 1.4087 (19) | C14—C15 | 1.393 (2) |
C1—C6 | 1.4778 (18) | C14—H14 | 0.997 (17) |
C2—H2 | 0.993 (17) | C15—C16 | 1.389 (2) |
C3—C5 | 1.4089 (18) | C15—H15 | 1.025 (15) |
C4—C5 | 1.4351 (19) | C16—C17 | 1.393 (2) |
C4—C13 | 1.4753 (19) | C17—C18 | 1.381 (2) |
C6—C7 | 1.395 (2) | C17—H17 | 0.983 (17) |
C6—C11 | 1.3982 (19) | C18—H18 | 0.973 (17) |
C7—C8 | 1.387 (2) | C19—H19A | 1.00 (2) |
C7—H7 | 0.987 (17) | C19—H19B | 1.02 (2) |
C8—C9 | 1.384 (2) | C19—H19C | 0.995 (19) |
C8—H8 | 0.990 (18) | ||
C16—O1—C19 | 117.64 (12) | C9—C10—H10 | 121.0 (11) |
C1—N1—C2 | 118.61 (12) | C11—C10—H10 | 119.0 (11) |
C2—N2—C3 | 111.67 (12) | C10—C11—C6 | 120.35 (14) |
C3—N3—N4 | 111.03 (11) | C10—C11—H11 | 120.7 (9) |
C3—N3—C12 | 127.98 (13) | C6—C11—H11 | 118.9 (9) |
N4—N3—C12 | 120.99 (12) | N3—C12—H12A | 109.5 (12) |
C4—N4—N3 | 107.06 (11) | N3—C12—H12B | 111.7 (12) |
N1—C1—C5 | 119.14 (12) | H12A—C12—H12B | 108.8 (17) |
N1—C1—C6 | 115.69 (12) | N3—C12—H12C | 106.5 (11) |
C5—C1—C6 | 125.16 (12) | H12A—C12—H12C | 111.6 (16) |
N2—C2—N1 | 128.53 (14) | H12B—C12—H12C | 108.8 (16) |
N2—C2—H2 | 116.0 (10) | C14—C13—C18 | 118.58 (13) |
N1—C2—H2 | 115.4 (10) | C14—C13—C4 | 119.90 (12) |
N2—C3—N3 | 125.60 (12) | C18—C13—C4 | 121.42 (12) |
N2—C3—C5 | 126.66 (13) | C13—C14—C15 | 121.41 (13) |
N3—C3—C5 | 107.73 (12) | C13—C14—H14 | 119.1 (10) |
N4—C4—C5 | 110.07 (12) | C15—C14—H14 | 119.5 (10) |
N4—C4—C13 | 118.00 (12) | C16—C15—C14 | 119.18 (13) |
C5—C4—C13 | 131.88 (12) | C16—C15—H15 | 117.3 (8) |
C1—C5—C3 | 115.24 (12) | C14—C15—H15 | 123.6 (8) |
C1—C5—C4 | 140.59 (13) | O1—C16—C15 | 123.91 (13) |
C3—C5—C4 | 104.08 (12) | O1—C16—C17 | 115.98 (13) |
C7—C6—C11 | 119.32 (13) | C15—C16—C17 | 120.11 (13) |
C7—C6—C1 | 121.63 (12) | C18—C17—C16 | 120.07 (13) |
C11—C6—C1 | 118.95 (13) | C18—C17—H17 | 120.7 (10) |
C8—C7—C6 | 119.76 (14) | C16—C17—H17 | 119.2 (10) |
C8—C7—H7 | 119.1 (10) | C17—C18—C13 | 120.62 (13) |
C6—C7—H7 | 121.1 (9) | C17—C18—H18 | 119.4 (9) |
C9—C8—C7 | 120.50 (15) | C13—C18—H18 | 120.0 (9) |
C9—C8—H8 | 122.8 (10) | O1—C19—H19A | 105.4 (11) |
C7—C8—H8 | 116.7 (10) | O1—C19—H19B | 110.0 (11) |
C10—C9—C8 | 120.07 (14) | H19A—C19—H19B | 113.1 (16) |
C10—C9—H9 | 120.4 (10) | O1—C19—H19C | 109.8 (11) |
C8—C9—H9 | 119.5 (10) | H19A—C19—H19C | 112.3 (15) |
C9—C10—C11 | 119.94 (14) | H19B—C19—H19C | 106.3 (15) |
C3—N3—N4—C4 | −0.08 (15) | C5—C1—C6—C7 | 36.6 (2) |
C12—N3—N4—C4 | −179.99 (13) | N1—C1—C6—C11 | 34.01 (18) |
C2—N1—C1—C5 | −2.4 (2) | C5—C1—C6—C11 | −147.05 (14) |
C2—N1—C1—C6 | 176.60 (13) | C11—C6—C7—C8 | 1.8 (2) |
C3—N2—C2—N1 | 2.3 (2) | C1—C6—C7—C8 | 178.07 (13) |
C1—N1—C2—N2 | −1.2 (2) | C6—C7—C8—C9 | −0.1 (2) |
C2—N2—C3—N3 | −179.20 (14) | C7—C8—C9—C10 | −1.6 (2) |
C2—N2—C3—C5 | 0.1 (2) | C8—C9—C10—C11 | 1.6 (2) |
N4—N3—C3—N2 | −179.83 (13) | C9—C10—C11—C6 | 0.1 (2) |
C12—N3—C3—N2 | 0.1 (2) | C7—C6—C11—C10 | −1.8 (2) |
N4—N3—C3—C5 | 0.79 (16) | C1—C6—C11—C10 | −178.18 (13) |
C12—N3—C3—C5 | −179.31 (14) | N4—C4—C13—C14 | 52.12 (18) |
N3—N4—C4—C5 | −0.66 (15) | C5—C4—C13—C14 | −130.58 (16) |
N3—N4—C4—C13 | 177.20 (11) | N4—C4—C13—C18 | −124.27 (15) |
N1—C1—C5—C3 | 4.26 (19) | C5—C4—C13—C18 | 53.0 (2) |
C6—C1—C5—C3 | −174.66 (12) | C18—C13—C14—C15 | 0.7 (2) |
N1—C1—C5—C4 | −179.91 (16) | C4—C13—C14—C15 | −175.81 (13) |
C6—C1—C5—C4 | 1.2 (3) | C13—C14—C15—C16 | 0.7 (2) |
N2—C3—C5—C1 | −3.2 (2) | C19—O1—C16—C15 | 2.7 (2) |
N3—C3—C5—C1 | 176.16 (12) | C19—O1—C16—C17 | −177.26 (13) |
N2—C3—C5—C4 | 179.52 (13) | C14—C15—C16—O1 | 178.62 (13) |
N3—C3—C5—C4 | −1.11 (15) | C14—C15—C16—C17 | −1.4 (2) |
N4—C4—C5—C1 | −175.01 (16) | O1—C16—C17—C18 | −179.36 (13) |
C13—C4—C5—C1 | 7.5 (3) | C15—C16—C17—C18 | 0.7 (2) |
N4—C4—C5—C3 | 1.10 (15) | C16—C17—C18—C13 | 0.8 (2) |
C13—C4—C5—C3 | −176.36 (14) | C14—C13—C18—C17 | −1.4 (2) |
N1—C1—C6—C7 | −142.30 (14) | C4—C13—C18—C17 | 175.00 (13) |
Cg1 and Cg4 are the centroids of the C3/C4/C5/N4/N3 and C13–C18 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···N2i | 0.988 (18) | 2.579 (17) | 3.3995 (19) | 140.3 (14) |
C12—H12B···O1ii | 0.98 (2) | 2.49 (2) | 3.2694 (19) | 136.4 (15) |
C17—H17···O1iii | 0.983 (17) | 2.618 (9) | 3.4973 (17) | 149.3 (14) |
C19—H19B···Cg4iv | 1.02 (2) | 2.74 (2) | 3.5928 (19) | 141.9 (14) |
C19—H19C···Cg1v | 0.995 (19) | 2.947 (19) | 3.9072 (19) | 162.0 (15) |
Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y+1, z. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
El Fal, M., Mague, J. T., Taoufik, J., Essassi, E. M. & Ramli, Y. (2017). IUCrData, 2, x171042. Google Scholar
El Hafi, M., Boulhaoua, M., Lahmidi, S., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180243. Google Scholar
El Hafi, M., Lahmidi, S., Boulhaoua, M., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180483. Google Scholar
El Hafi, M., Naas, M., Loubidi, M., Jouha, J., Ramli, Y., Mague, J. T., Essassi, E. M. & Guillaumet, G. (2017). C. R. Chim. 20, 927–933. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rostamizadeh, S., Nojavan, M., Aryan, R., Sadeghian, H. & Davoodnejad, M. (2013). Chin. Chem. Lett. 24, 629–632. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, W. S. & Bell, P. (1987a). Z. Naturforsch. Teil B, 42, 195–202. CrossRef CAS Google Scholar
Sheldrick, W. S. & Bell, P. (1987b). Inorg. Chim. Acta, 137, 181–188. CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Taliani, S., La Motta, C., Mugnaini, L., Simorini, F., Salerno, S., Marini, A. M., Da Settimo, F., Cosconati, S., Cosimelli, B., Greco, G., Limongelli, V., Marinelli, L., Novellino, E., Ciampi, O., Daniele, S., Trincavelli, M. L. & Martini, C. (2010). J. Med. Chem. 53, 3954–3963. CrossRef CAS PubMed Google Scholar
Tintori, C., Fallacara, A. L., Radi, M., Zamperini, C., Dreassi, E., Crespan, E., Maga, G., Schenone, S., Musumeci, F., Brullo, C., Richters, A., Gasparrini, F., Angelucci, A., Festuccia, C., Delle Monache, S., Rauh, D. & Botta, M. (2015). J. Med. Chem. 58, 347–361. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.