research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 4-{(E)-3-[(imino-λ5-aza­nyl­­idene)amino]­prop-1-en­yl}-N,N-di­methyl­imidazole-1-sulfonamide and 2-[(imino-λ5-aza­nyl­­idene)amino]-4-{(E)-3-[(imino-λ5-aza­nyl­­idene)amino]­prop-1-en­yl}-N,N-di­methyl­imidazole-1-sulfonamide

CROSSMARK_Color_square_no_text.svg

aLife and Health Sciences Department, University of North Texas at Dallas, 7400 University Hills Blvd, Dallas, TX 75241, USA, and bDepartment of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Pl., Arlington, TX 76019, USA
*Correspondence e-mail: myousuf@untdallas.edu

Edited by M. Zeller, Purdue University, USA (Received 5 March 2019; accepted 15 April 2019; online 25 April 2019)

The structures of two azide containing imidazole derivatives are reported. Allylic azides are fairly reactive making them attractive starting compounds to convert into amides. The first, C8H12N6O2S, contains one azide group with an Nα—Nβ distance of 1.229 (2) Å and an Nβ—Nγ distance of 1.128 (2) Å. The second, C8H11N9O2S, contains two azide groups with an average Nα—Nβ distance of 1.249 (2) Å and an average Nβ—Nγ distance of 1.132 (2) Å. Each compound contains a bulky protecting group (di­methyl­amino­sulfon­yl) which can be easily removed under mildly acidic conditions.

1. Chemical context

The efficient synthesis of nagelamide alkaloids (a subfamily of oroidin natural products derived from marine sponges) has garnered inter­est (Du et al., 2006[Du, H., He, Y., Rasapalli, S. & Lovely, C. J. (2006). Synlett, 965-992.]; Das et al., 2016[Das, J., Bhandari, M. R. & Lovely, C. J. (2016). edited by Att-ur-Rahman, Vol. 50, 341-371: Elsevier.]) since first reported (Endo et al., 2004[Endo, T., Tsuda, M., Okada, T., Mitsuhashi, S., Shima, H., Kikuchi, K., Mikami, Y., Fromont, J. & Kobayashi, J. (2004). J. Nat. Prod. 67, 1262-1267.]). Allylic azides (Carlson & Top­czewski, 2019[Carlson, A. S. & Topczewski, J. J. (2019). Org. Bio. Chem. In the press. doi: 10.1039/C8OB03178A]) are fairly reactive making them attractive starting compounds to convert into amides. Our group has successfully synthesized a number of azide-containing imidazole derivatives and determined their structures. Many of our strategies have led to the successful synthesis of several nagelamide derivatives (Bhandari et al., 2009[Bhandari, M. R., Sivappa, R. & Lovely, C. J. (2009). Org. Lett. 11, 1535-1538.]; Mukherjee et al., 2010[Mukherjee, S., Sivappa, R., Yousufuddin, M. & Lovely, C. J. (2010). Synlett, pp. 817-821.]). However, the application of our approaches to several other nagelamide congeners were unsuccessful, leading us to rethink our tactics. Recently, we reported the efficient synthesis of amide compounds from allylic azide-containing imidazoles (Herath et al., 2017[Herath, A. K., Bhandari, M. R., Gout, D., Yousufuddin, M. & Lovely, C. J. (2017). Tetrahedron Lett. 58, 3913-3918.]). In that report we were also able to show that although the imidazoles contained di­methyl­amino­sulfonyl (DMAS) protecting groups, efficient conversion to amides was still possible. In addition, the free imidazole (lacking the protecting group but still containing azide) underwent selective and rapid conversion to amide without the undesired hydro­sulfenylation we observed with protected imidazoles. Here we present the crystal structures of two azide-containing imidazoles, 4-{(E)-3-[(imino-λ5-aza­nyl­idene)amino]­prop-1-en­yl}-N,N-di­methyl­imidazole-1-sulfonamide (1) and 2-[(imino-λ5-aza­nyl­idene)amino]-4-{(E)-3-[(imino-λ5-aza­nyl­idene)amino]­prop-1-en­yl}-N,N-di­methyl­imidazole-1-sulfonamide (2). These compounds were synthesized in the previous study but the structures were not reported. Figs. 1[link] and 2[link] show displacement ellipsoid plots of 1 and 2, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound 1, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
The mol­ecular structure of compound 2, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

2. Structural commentary

Compound 1 contains one allylic azide while compound 2 contains two azide groups, an allylic azide and one azide bound directly to the imidazole ring at C2. The azide group in 1 shows an N3—N4 distance of 1.229 (2) Å and an N4—N5 distance of 1.128 (2) Å. The N3—N4—N5 angle is 172.32 (13)°. The azide groups in 2 show an N3—N4 distance of 1.253 (2) Å, N4—N5 distance of 1.129 (2) Å, N6—N7 distance of 1.239 (2) Å, and N7—N8 distance of 1.134 (2) Å. The N3—N4—N5 angle is 171.58 (15)° and the N6—N7—N8 angle is 173.95 (15)°. All three azide moieties in both compounds show the same general trend of a longer Nα—Nβ distance and shorter Nβ—Nγ distance with a quasilinear geometry. This is typical for covalent azides with terminal Nβ—Nγ demonstrating more triple-bond character. A previously reported covalent azide occurring in the compound ethyl-2-[(azido­carbon­yl)amino]­benzoate demonstrated bond lengths Nα—Nβ of 1.264 (2) Å and Nβ—Nγ of 1.131 (2) Å and an Nα—Nβ—Nα angle of 174.7 (2)° (Yassine et al., 2016[Yassine, H., Hafid, A., Khouili, M., Mentre, O. & Ketatni, E. M. (2016). IUCrData, 1, x161155.]).

The torsion angles for the azides and dihedral angles between the azides and imidazole rings for both compounds have been measured. The allylic azide torsion angles between 1 and 2 are quite different. The measured torsion angle for the allylic azide (C5—C6—N3—N4) in 1 was −115.21 (13)° while the related torsion angle (C5—C6—N6—N7) in 2 was 50.25 (18)°. 2 contains one azide group bound to the imidazole at C2 and shows a torsion angle N1—C2—N3—N4 of −174.82 (11)°. The allylic azides in both compounds exhibit a similar dihedral angle between the azide and the imidazole ring, 70.3 (11)° for 1 and 77.3 (17)° for 2. While the imidazole-bound azide in 2 shows a dihedral angle of 5.0 (10)°. Indeed, the torsion angle and dihedral angle for this particular azide demonstrate the near planarity between the imidazole and its covalently bound azide. Figs. 3[link] and 4[link] show the dihedral planes for 1 and 2, respectively.

[Figure 3]
Figure 3
Dihedral planes between imidazole and allylic azide for compound 1
[Figure 4]
Figure 4
Dihedral planes between imidazole and allylic azide for compound 2

Both title compounds contain a DMAS protecting group. The amine component of this protecting group is sp3-hybrid­ized, as validated by the C—N—C bond angles C6—N6—C8 = 113.86 (10)° for 1 and C7—N9—C8 = 113.93 (12)° for 2. Both compounds also contain a double bond between C4 and C5. The measured bond distance is 1.333 (2) Å for 1 and 1.340 (2) Å for 2.

The imidazole ring in 1 is substituted at the N1 and C3 position with no substitution at C2. The N1—C2 distance is 1.378 (2) Å while the N2—C2 distance is 1.301 (2) Å. However, in 2, the imidazole ring is substituted with an azide group at C2 but this seemingly has no effect on the ring bond distances. The measured bond distances for N1—C2 and N2—C2 in 2 are 1.385 (2) and 1.310 (2) Å, respectively.

There is, however, a significant difference in the measured N1—S1 distance for the two compounds. The imidazole ring is substituted at the N1 position for both compounds with DMAS. The N1—S1 distance for 1 is 1.686 (1) Å and 1.718 (1) Å for 2. The disparity may be attributed to the presence of azide, which is substituted at the C2 position for 2.

3. Supra­molecular features

The title compounds each contain bulky DMAS protecting groups and hydrogen bond distances that influence the mol­ecule packing. Compound 1 shows C1—H1⋯O1i and C2—H2⋯O2ii inter­actions of 2.53 and 2.39 Å, respectively. There is also a C4—H4⋯N5iii inter­action of 2.70 Å (symmetry codes as in Table 1[link]). Compound 2 demonstrates a C7—H7B⋯O1i inter­action of 2.51 Å. There are also C6—H6A⋯N8ii and C7—H7C⋯N6iii inter­actions of 2.70 and 2.62 Å, respectively (symmetry codes as in Table 2[link]). Figs. 5[link] and 6[link] show the close contacts for 1 and 2, respectively.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.53 3.4487 (18) 164
C2—H2⋯O2ii 0.95 2.39 3.2861 (18) 157
C4—H4⋯N5iii 0.95 2.70 3.1920 (17) 113
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z+2; (iii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.98 2.51 3.444 (2) 160
C6—H6A⋯N8ii 0.99 2.70 3.337 (2) 123
C7—H7C⋯N6iii 0.98 2.62 3.357 (2) 132
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) x-1, y, z-1.
[Figure 5]
Figure 5
Close contacts for compound 1.
[Figure 6]
Figure 6
Close contacts for compound 2.

Although both compounds contain aromatic rings, there appears to be no π-stacking present in the crystals of either compound. The stacking appears more staggered, most likely due to the presence of bulky DMAS groups on both compounds. However, the staggering in 1 appears more pronounced than in 2. In other words, the mol­ecules are further apart in 1. This is most likely due to the larger torsion angle for the azide in 1 than in 2.

4. Database survey

A search of related compounds was conducted in the Cambridge Structural Database (Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). One very closely related compound, methyl 3-(1-(di­methyl­sulfamo­yl)-1H-imidazol-5-yl)acrylate, was reported (Lovely et al., 2010[Lovely, C. J., Sivappa, R., Mukherjee, S., Doundoulakis, T., Lima, H. M. & Yousufuddin, M. (2010). Heterocycles, 80, 1353-1358.]). This particular compound contains an imidazole with a DMAS protecting group and an allylic ester moiety. The DMAS amine has a C—N—C angle of 114.33 (14)°, showing the same amine hybridization exhibited in 1 and 2. The C4=C5 double bond distance is measured to be 1.330 (2) Å which is similar to the bond distances in 1 and 2 [1.333 (2) and 1.340 (2) Å respectively].

The crystal structure of a related allylic azide has been reported from our previous study (Herath et al., 2017[Herath, A. K., Bhandari, M. R., Gout, D., Yousufuddin, M. & Lovely, C. J. (2017). Tetrahedron Lett. 58, 3913-3918.]). This particular compound is a dimerized mol­ecule with two allylic azides.

5. Synthesis and crystallization

The syntheses of the title compounds were previously reported by our group (Lovely et al., 2017[Lovely, C. J., Sivappa, R., Mukherjee, S., Doundoulakis, T., Lima, H. M. & Yousufuddin, M. (2010). Heterocycles, 80, 1353-1358.]). As shown in Fig. 7[link], the parent allylic azide 1 was prepared from the known alcohol starting compound (He et al., 2003[He, Y., Chen, Y., Wu, H. & Lovely, C. J. (2003). Org. Lett. 5, 3623-3626.]) by treatment with di­phenyl­phospho­rylazide (DPPA) and 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (DBU) according to the procedure described previously (Thompson et al., 1993[Thompson, A. S., Humphrey, G. R., DeMarco, A. M., Mathre, D. J. & Grabowski, E. J. J. (1993). J. Org. Chem. 58, 5886-5888.]). Crystals were acquired by dissolving title compounds in ethanol with heating and slowly cooling in a freezer. Crystals appeared after about 1 week.

[Figure 7]
Figure 7
Synthetic scheme for both compounds. The title compounds are highlighted in red.

6. Refinement

Crystal data, data collection and structure refinement details for 1 and 2 are summarized in Table 3[link]. Refinement for both compounds were routine. H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C8H12N6O2S C8H11N9O2S
Mr 256.30 297.32
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 5.4252 (15), 9.830 (3), 11.137 (3) 6.6151 (18), 9.563 (3), 11.634 (3)
α, β, γ (°) 74.636 (5), 83.418 (5), 80.255 (5) 108.645 (4), 105.994 (4), 93.828 (4)
V3) 563.0 (3) 660.6 (3)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.29 0.26
Crystal size (mm) 0.25 × 0.20 × 0.05 0.80 × 0.28 × 0.08
 
Data collection
Diffractometer Bruker D8 Quest Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.616, 0.746 0.634, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 9314, 4292, 3477 11030, 5171, 4051
Rint 0.033 0.030
(sin θ/λ)max−1) 0.774 0.780
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.104, 1.01 0.043, 0.109, 1.07
No. of reflections 4292 5171
No. of parameters 157 184
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.48 0.46, −0.60
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-{(E)-3-[(Imino-λ5-azanylidene)amino]prop-1-enyl}-N,N-dimethylimidazole-1-sulfonamide (compound_1) top
Crystal data top
C8H12N6O2SZ = 2
Mr = 256.30F(000) = 268
Triclinic, P1Dx = 1.512 Mg m3
a = 5.4252 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.830 (3) ÅCell parameters from 4940 reflections
c = 11.137 (3) Åθ = 3.2–33.3°
α = 74.636 (5)°µ = 0.29 mm1
β = 83.418 (5)°T = 100 K
γ = 80.255 (5)°Prism, colourless
V = 563.0 (3) Å30.25 × 0.20 × 0.05 mm
Data collection top
Bruker D8 Quest
diffractometer
3477 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 33.4°, θmin = 3.2°
Tmin = 0.616, Tmax = 0.746h = 88
9314 measured reflectionsk = 1515
4292 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.2224P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.104(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.42 e Å3
4292 reflectionsΔρmin = 0.48 e Å3
157 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.035 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.02066 (5)0.56887 (3)0.72049 (3)0.01267 (8)
O11.14077 (17)0.54225 (11)0.60703 (8)0.01878 (19)
O21.15939 (17)0.56915 (10)0.82106 (8)0.01797 (18)
N10.84664 (19)0.43637 (11)0.77979 (9)0.01388 (19)
N20.6248 (2)0.28893 (12)0.91880 (10)0.0177 (2)
N30.1658 (2)0.00361 (13)0.71066 (11)0.0199 (2)
N40.0161 (2)0.04337 (11)0.64781 (10)0.0164 (2)
N50.1668 (2)0.08138 (15)0.57975 (11)0.0256 (3)
N60.82889 (19)0.71510 (11)0.68919 (10)0.01508 (19)
C10.7216 (2)0.37309 (13)0.71178 (11)0.0140 (2)
H10.7285640.3891910.6235840.017*
C20.7775 (3)0.38185 (14)0.90406 (11)0.0176 (2)
H20.8343330.4088150.9707970.021*
C30.5864 (2)0.28275 (13)0.79888 (11)0.0139 (2)
C40.4234 (2)0.19129 (12)0.77555 (11)0.0144 (2)
H40.4078660.1923060.6912090.017*
C50.2939 (2)0.10591 (13)0.86438 (11)0.0160 (2)
H50.3066990.1068020.9485140.019*
C60.1298 (2)0.00877 (14)0.84143 (12)0.0174 (2)
H6A0.1684350.0869330.8985070.021*
H6B0.0479190.0457750.8600310.021*
C70.6774 (3)0.73822 (15)0.58222 (13)0.0211 (3)
H7A0.5369840.6832860.6073590.032*
H7B0.7818370.7069560.5139230.032*
H7C0.6123800.8398310.5541360.032*
C80.6881 (3)0.75732 (15)0.79801 (13)0.0211 (3)
H8A0.6114340.8573290.7728390.032*
H8B0.8026320.7456660.8631400.032*
H8C0.5566840.6970620.8304190.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01100 (13)0.01655 (14)0.01073 (13)0.00187 (9)0.00111 (9)0.00383 (10)
O10.0157 (4)0.0266 (5)0.0153 (4)0.0035 (3)0.0026 (3)0.0087 (4)
O20.0151 (4)0.0247 (5)0.0155 (4)0.0014 (3)0.0055 (3)0.0066 (3)
N10.0176 (5)0.0138 (4)0.0102 (4)0.0028 (4)0.0014 (3)0.0025 (3)
N20.0248 (5)0.0166 (5)0.0110 (4)0.0035 (4)0.0011 (4)0.0023 (4)
N30.0150 (5)0.0256 (6)0.0204 (5)0.0007 (4)0.0020 (4)0.0091 (4)
N40.0163 (5)0.0170 (5)0.0164 (5)0.0033 (4)0.0022 (4)0.0057 (4)
N50.0231 (6)0.0337 (7)0.0202 (5)0.0032 (5)0.0023 (4)0.0113 (5)
N60.0145 (4)0.0154 (5)0.0145 (4)0.0021 (4)0.0026 (4)0.0017 (4)
C10.0164 (5)0.0154 (5)0.0107 (5)0.0019 (4)0.0014 (4)0.0040 (4)
C20.0251 (6)0.0176 (5)0.0104 (5)0.0040 (5)0.0021 (4)0.0028 (4)
C30.0165 (5)0.0133 (5)0.0112 (5)0.0003 (4)0.0009 (4)0.0029 (4)
C40.0151 (5)0.0145 (5)0.0127 (5)0.0005 (4)0.0012 (4)0.0027 (4)
C50.0171 (5)0.0174 (5)0.0129 (5)0.0014 (4)0.0012 (4)0.0032 (4)
C60.0166 (5)0.0190 (5)0.0154 (5)0.0035 (4)0.0003 (4)0.0020 (4)
C70.0201 (6)0.0213 (6)0.0200 (6)0.0045 (5)0.0075 (5)0.0014 (5)
C80.0207 (6)0.0191 (6)0.0231 (6)0.0008 (5)0.0013 (5)0.0079 (5)
Geometric parameters (Å, º) top
S1—O21.4200 (9)C2—H20.9500
S1—O11.4209 (10)C3—C41.4505 (17)
S1—N61.6067 (11)C4—C51.3332 (17)
S1—N11.6858 (11)C4—H40.9500
N1—C21.3783 (15)C5—C61.4963 (18)
N1—C11.3896 (15)C5—H50.9500
N2—C21.3012 (17)C6—H6A0.9900
N2—C31.3934 (15)C6—H6B0.9900
N3—N41.2288 (15)C7—H7A0.9800
N3—C61.4814 (17)C7—H7B0.9800
N4—N51.1277 (16)C7—H7C0.9800
N6—C71.4711 (16)C8—H8A0.9800
N6—C81.4736 (17)C8—H8B0.9800
C1—C31.3668 (16)C8—H8C0.9800
C1—H10.9500
O2—S1—O1121.78 (6)C5—C4—C3124.48 (11)
O2—S1—N6108.51 (6)C5—C4—H4117.8
O1—S1—N6108.95 (6)C3—C4—H4117.8
O2—S1—N1104.30 (6)C4—C5—C6124.87 (11)
O1—S1—N1105.35 (5)C4—C5—H5117.6
N6—S1—N1106.96 (6)C6—C5—H5117.6
C2—N1—C1106.84 (10)N3—C6—C5111.73 (10)
C2—N1—S1126.59 (9)N3—C6—H6A109.3
C1—N1—S1126.18 (8)C5—C6—H6A109.3
C2—N2—C3105.77 (10)N3—C6—H6B109.3
N4—N3—C6116.05 (11)C5—C6—H6B109.3
N5—N4—N3172.32 (13)H6A—C6—H6B107.9
C7—N6—C8113.86 (10)N6—C7—H7A109.5
C7—N6—S1116.58 (9)N6—C7—H7B109.5
C8—N6—S1115.49 (9)H7A—C7—H7B109.5
C3—C1—N1105.29 (10)N6—C7—H7C109.5
C3—C1—H1127.4H7A—C7—H7C109.5
N1—C1—H1127.4H7B—C7—H7C109.5
N2—C2—N1111.73 (11)N6—C8—H8A109.5
N2—C2—H2124.1N6—C8—H8B109.5
N1—C2—H2124.1H8A—C8—H8B109.5
C1—C3—N2110.36 (11)N6—C8—H8C109.5
C1—C3—C4127.00 (11)H8A—C8—H8C109.5
N2—C3—C4122.65 (11)H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.533.4487 (18)164
C2—H2···O2ii0.952.393.2861 (18)157
C4—H4···N5iii0.952.703.1920 (17)113
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z+2; (iii) x+1, y, z.
2-[(Imino-λ5-azanylidene)amino]-4-{(E)-3-[(imino-λ5-azanylidene)amino]prop-1-enyl}-N,N-dimethylimidazole-1-sulfonamide (compound_2) top
Crystal data top
C8H11N9O2SZ = 2
Mr = 297.32F(000) = 308
Triclinic, P1Dx = 1.495 Mg m3
a = 6.6151 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.563 (3) ÅCell parameters from 5257 reflections
c = 11.634 (3) Åθ = 3.2–33.6°
α = 108.645 (4)°µ = 0.26 mm1
β = 105.994 (4)°T = 100 K
γ = 93.828 (4)°Needle, colourless
V = 660.6 (3) Å30.80 × 0.28 × 0.08 mm
Data collection top
Bruker D8 Quest
diffractometer
4051 reflections with I > 2σ(I)
φ and ω scansRint = 0.030
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 33.7°, θmin = 3.2°
Tmin = 0.634, Tmax = 0.747h = 1010
11030 measured reflectionsk = 1414
5171 independent reflectionsl = 1718
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.3565P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.46 e Å3
5171 reflectionsΔρmin = 0.60 e Å3
184 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.022 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58817 (5)0.32361 (4)0.11881 (3)0.01478 (8)
O10.65163 (17)0.18829 (12)0.05384 (10)0.0219 (2)
O20.66446 (17)0.46415 (12)0.11471 (10)0.0215 (2)
N10.68124 (18)0.33810 (13)0.27604 (10)0.0146 (2)
N20.75962 (17)0.42326 (13)0.48977 (10)0.0144 (2)
N30.64496 (19)0.59233 (13)0.37520 (11)0.0174 (2)
N40.67946 (18)0.69635 (13)0.48007 (11)0.0164 (2)
N50.7040 (2)0.80092 (15)0.56596 (13)0.0242 (3)
N60.8624 (2)0.18310 (17)0.83285 (12)0.0237 (3)
N70.66897 (19)0.15149 (14)0.77329 (12)0.0193 (2)
N80.4889 (2)0.12679 (17)0.72893 (15)0.0287 (3)
N90.33102 (18)0.29742 (13)0.07962 (11)0.0156 (2)
C10.7358 (2)0.21797 (15)0.31603 (13)0.0156 (2)
H10.7386430.1193810.2635720.019*
C20.69706 (19)0.45659 (15)0.38610 (12)0.0139 (2)
C30.78417 (19)0.27227 (15)0.44638 (12)0.0144 (2)
C40.8525 (2)0.19077 (15)0.53300 (12)0.0156 (2)
H40.8365770.0848310.4973460.019*
C50.9364 (2)0.25679 (16)0.66005 (13)0.0159 (2)
H50.9547490.3628790.6954910.019*
C61.0028 (2)0.17314 (17)0.74931 (13)0.0181 (3)
H6A1.1523960.2146360.8038670.022*
H6B0.9962550.0666420.6990970.022*
C70.2306 (2)0.15853 (17)0.08670 (15)0.0221 (3)
H7A0.2501790.1711100.1762610.033*
H7B0.2973670.0746360.0489820.033*
H7C0.0777750.1379690.0395400.033*
C80.2288 (2)0.42873 (17)0.12339 (15)0.0221 (3)
H8A0.0796490.4084880.0693710.033*
H8B0.3046300.5165100.1175310.033*
H8C0.2342240.4481760.2122520.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01499 (14)0.01799 (16)0.01287 (14)0.00388 (11)0.00554 (11)0.00623 (11)
O10.0251 (5)0.0260 (5)0.0168 (5)0.0108 (4)0.0107 (4)0.0057 (4)
O20.0222 (5)0.0242 (5)0.0211 (5)0.0001 (4)0.0076 (4)0.0122 (4)
N10.0157 (5)0.0157 (5)0.0123 (4)0.0037 (4)0.0040 (4)0.0049 (4)
N20.0120 (4)0.0159 (5)0.0151 (5)0.0010 (4)0.0043 (4)0.0055 (4)
N30.0198 (5)0.0148 (5)0.0169 (5)0.0027 (4)0.0053 (4)0.0052 (4)
N40.0130 (5)0.0164 (5)0.0206 (5)0.0021 (4)0.0064 (4)0.0066 (4)
N50.0221 (6)0.0208 (6)0.0261 (6)0.0026 (5)0.0090 (5)0.0025 (5)
N60.0176 (5)0.0379 (7)0.0179 (5)0.0039 (5)0.0057 (4)0.0129 (5)
N70.0188 (5)0.0212 (6)0.0225 (6)0.0048 (4)0.0100 (4)0.0105 (5)
N80.0185 (6)0.0307 (7)0.0381 (8)0.0026 (5)0.0097 (5)0.0134 (6)
N90.0139 (5)0.0152 (5)0.0169 (5)0.0026 (4)0.0030 (4)0.0060 (4)
C10.0154 (5)0.0160 (6)0.0160 (5)0.0034 (4)0.0047 (4)0.0063 (5)
C20.0106 (5)0.0148 (5)0.0159 (5)0.0004 (4)0.0044 (4)0.0051 (4)
C30.0107 (5)0.0169 (6)0.0156 (5)0.0015 (4)0.0037 (4)0.0063 (5)
C40.0131 (5)0.0178 (6)0.0168 (6)0.0032 (4)0.0044 (4)0.0076 (5)
C50.0132 (5)0.0193 (6)0.0167 (6)0.0031 (4)0.0053 (4)0.0078 (5)
C60.0141 (5)0.0254 (7)0.0167 (6)0.0050 (5)0.0051 (4)0.0093 (5)
C70.0192 (6)0.0195 (7)0.0245 (7)0.0017 (5)0.0028 (5)0.0080 (5)
C80.0180 (6)0.0203 (7)0.0251 (7)0.0074 (5)0.0042 (5)0.0057 (5)
Geometric parameters (Å, º) top
S1—O21.4237 (11)C1—C31.3707 (18)
S1—O11.4297 (11)C1—H10.9500
S1—N91.6146 (12)C3—C41.4579 (18)
S1—N11.7177 (12)C4—C51.3402 (19)
N1—C21.3846 (17)C4—H40.9500
N1—C11.4039 (17)C5—C61.4961 (19)
N2—C21.3099 (17)C5—H50.9500
N2—C31.4058 (18)C6—H6A0.9900
N3—N41.2531 (16)C6—H6B0.9900
N3—C21.4002 (18)C7—H7A0.9800
N4—N51.1291 (17)C7—H7B0.9800
N6—N71.2389 (17)C7—H7C0.9800
N6—C61.5053 (18)C8—H8A0.9800
N7—N81.1342 (18)C8—H8B0.9800
N9—C81.4792 (18)C8—H8C0.9800
N9—C71.4814 (19)
O2—S1—O1121.70 (7)N2—C3—C4122.43 (12)
O2—S1—N9109.81 (6)C5—C4—C3123.73 (13)
O1—S1—N9108.59 (6)C5—C4—H4118.1
O2—S1—N1106.16 (6)C3—C4—H4118.1
O1—S1—N1102.88 (6)C4—C5—C6123.82 (13)
N9—S1—N1106.52 (6)C4—C5—H5118.1
C2—N1—C1105.71 (11)C6—C5—H5118.1
C2—N1—S1129.94 (10)C5—C6—N6111.84 (11)
C1—N1—S1124.00 (9)C5—C6—H6A109.2
C2—N2—C3104.81 (11)N6—C6—H6A109.2
N4—N3—C2114.19 (12)C5—C6—H6B109.2
N5—N4—N3171.58 (15)N6—C6—H6B109.2
N7—N6—C6113.91 (12)H6A—C6—H6B107.9
N8—N7—N6173.95 (15)N9—C7—H7A109.5
C8—N9—C7113.93 (12)N9—C7—H7B109.5
C8—N9—S1117.77 (10)H7A—C7—H7B109.5
C7—N9—S1115.55 (9)N9—C7—H7C109.5
C3—C1—N1105.82 (11)H7A—C7—H7C109.5
C3—C1—H1127.1H7B—C7—H7C109.5
N1—C1—H1127.1N9—C8—H8A109.5
N2—C2—N1113.05 (12)N9—C8—H8B109.5
N2—C2—N3128.30 (12)H8A—C8—H8B109.5
N1—C2—N3118.64 (11)N9—C8—H8C109.5
C1—C3—N2110.59 (11)H8A—C8—H8C109.5
C1—C3—C4126.98 (13)H8B—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.982.513.444 (2)160
C6—H6A···N8ii0.992.703.337 (2)123
C7—H7C···N6iii0.982.623.357 (2)132
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x1, y, z1.
 

Acknowledgements

The authors thank the Center for Nanostructured Materials at the University of Texas at Arlington for the use of their diffractometer.

Funding information

Funding for this research was provided by: Robert Welch Foundation (grant No. Y-1362).

References

First citationBhandari, M. R., Sivappa, R. & Lovely, C. J. (2009). Org. Lett. 11, 1535–1538.  CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlson, A. S. & Topczewski, J. J. (2019). Org. Bio. Chem. In the press. doi: 10.1039/C8OB03178A  Google Scholar
First citationDas, J., Bhandari, M. R. & Lovely, C. J. (2016). edited by Att-ur-Rahman, Vol. 50, 341-371: Elsevier.  Google Scholar
First citationDu, H., He, Y., Rasapalli, S. & Lovely, C. J. (2006). Synlett, 965–992.  Google Scholar
First citationEndo, T., Tsuda, M., Okada, T., Mitsuhashi, S., Shima, H., Kikuchi, K., Mikami, Y., Fromont, J. & Kobayashi, J. (2004). J. Nat. Prod. 67, 1262–1267.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, Y., Chen, Y., Wu, H. & Lovely, C. J. (2003). Org. Lett. 5, 3623–3626.  CrossRef PubMed CAS Google Scholar
First citationHerath, A. K., Bhandari, M. R., Gout, D., Yousufuddin, M. & Lovely, C. J. (2017). Tetrahedron Lett. 58, 3913–3918.  CrossRef CAS PubMed Google Scholar
First citationLovely, C. J., Sivappa, R., Mukherjee, S., Doundoulakis, T., Lima, H. M. & Yousufuddin, M. (2010). Heterocycles, 80, 1353–1358.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, S., Sivappa, R., Yousufuddin, M. & Lovely, C. J. (2010). Synlett, pp. 817–821.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, A. S., Humphrey, G. R., DeMarco, A. M., Mathre, D. J. & Grabowski, E. J. J. (1993). J. Org. Chem. 58, 5886–5888.  CrossRef CAS Google Scholar
First citationYassine, H., Hafid, A., Khouili, M., Mentre, O. & Ketatni, E. M. (2016). IUCrData, 1, x161155.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds